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TREND TESTS FOR THE EVALUATION OF DOSE-RESPONSE 
RELATIONSHIPS IN EPIDEMIOLOGICAL EXPOSURE STUDIES 

 
 

1. INTRODUCTION 
 
In epidemiological exposure studies frequently an unexposed group E1 is compared with 
several exposed groups, an one-way design [E1, E2,...,Ek] is assumed here. One important 
objective in epidemiology is causation. According to Hill (1971)1 and Weed and Gorelic 
(1996)2 the demonstration of a global dose-response relationship belongs to the causation 
criteria. However, care is needed because hidden bias may produce a dose-response when 
the factor is without effect Rosenbaum (2003)3. In many exposure studies this is the 
primary objective. The outcome of the study is the number of cases with the investigated 
disease, e.g. a selected tumor site, and the number without this disease (controls). 
Throughout this paper we assume a sufficient total number of observations, and therefore 
asymptotic tests can be used. Exposure studies are performed as cohort studies 
Takebayashi et al. (2003)4 where the data represent a 2 by k contingency table, or as case 
control studies Barros-Dios et al. (2003)5 where two multinomial distributions are 
compared.  
 
Numerous papers exist on the analysis of dose-response relationships in epidemiological 
studies, particularly model-based (Royston et al. (1999)6) and test-based (Leuraud and 
Benichou (2001)7) approaches. The basic difficulty is that the shape of the dose-response is 
a-priori unknown- it is an outcome of the study - but the choice of the model or the test 
depends seriously on that shape. Therefore, inherently a broad class of models or tests 
should be used and a model selection problem arises. Model selection itself belongs to the 
delicate problems in statistics. But here, model selection is not the objective; it is only a 
tool for decision of correct trend. And the outcome of a significant trend test, e.g. a p-value 
is frequently not sufficient for epidemiologists. In the case of a significant trend they want 
information on the shape of the dose-response and/or a measure of the magnitude of the 
effect, e.g. relative risk or odds ratios. Hereby some level for false positive and false 
negative decision rate, and the correctness of the selected model, should be controlled. 
 
The exposure in case control studies is frequently continuously. Categorization at pre-
selected cut-off points to a small number of ordered categories is common. E.g. Pike et al. 
(1998)8 estimated the relative risk of breast cancer on four categories of age of menopause 
and Baumgartner et al. (1998)9  reported the odds ratio of sarcopenia on six categories of 
physical disability. Inappropriate chosen cut-off points reduce the power of the trend test 
seriously according to Greenland (1995)10. Some exposures are naturally grouped, e.g. 2 
cups coffee/day and by the impreciseness of the definition of a ”cup” and of “coffee” (e.g. 
in terms of caffeine content), e.g. data between 1.5 and 2.5 cups/day are not really different 
even if curious pseudo-continuous caffeine contents were calculated into a continuous 
exposure (Weimann et al. (1997)11). If a single cut-off point would exists and would be a-
priori known, the best approach is a two sample test “above vs. below the cut-off point” in 
both terms of power and interpretation (an odds ratio and its one-sided confidence interval 
can be estimated). For the trend test approach discussed here the worst case is continuous 
data and a nearly linear shape, while the best case is naturally grouped exposure with a 
single change point. The reality is almost in-between, i.e. the appropriateness of the 
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approach depends on the design and the data of the exposure study. For continuous 
exposure models a continuous covariate can be used. However, the choice of an 
appropriate model (e.g. linear, logistic, etc.) remains open whereas the model influences 
the inference. In this paper power-optimal trend tests for the comparison of k ordered 
binomial proportions are discussed. The concept of multiple contrasts is used because of its 
simplicity and the availability the distribution under the alternative. After a significant 
trend test, information is provided which contrast is the “best”, and therefore which shape 
of the dose-response is likely. Alternatively, an information criterion-based approach for 
the likelihood ratio test under total order restriction according to Anraku (1999)12 is 
investigated. 
 
Some exposure studies are characterized by few observations with higher exposure, 
particularly in the highest exposure only some cases are available (fortunately from an 
ethical point of view). An example is the study on child cancer and magnetic fields from 
high voltage installations where sample size is 2 in the highest exposure group but 6457 in 
the unexposed group Olsen et al. (1993)13. However, the identification of a trend in such a 
highly unbalanced design is quite complicated: a significant trend may depend only on 
these cases, and the size and power of unbalanced designs differ seriously from those in 
balanced designs. 
 
Design, randomization and definition of the dose are important tasks for evaluation. In 
preclinical dose-response studies and clinical dose finding studies the dose is a a-priori 
defined factor with fixed levels, the randomization of the animals/patients is according to 
the dose groups before dosing and the subject specific outcome is dichotomous: 
responder/non-responder. Examples are toxicological studies on carcinogenicity with the 
outcome: tumor/no tumor (Neuhäuser and Hothorn, 1997)14 and a placebo controlled, 
double blinded trial to assess dose dependence of any adverse event (present/ absent) by 
cabergoline in hyperprolactinaemia Webster et al. (1992)15. In this randomized clinical trial 
the patients received either placebo or 0.125, 0.5, 0.75 and 1.0 mg cabergoline. Related are 
epidemiological cohort studies but the commonly used case control studies are different. 
To the cases (i.e. subjects with a disease) controls (i.e. subjects without this disease) are 
randomly matched according to selected criteria. Each subject is characterized by several 
covariates, while the exposure covariate is commonly continuously and of primary interest. 
Sometimes, this continuous covariate is post-hoc categorized and the analysis is directed 
on these virtual exposure levels.  
 
The paper is organized as follows. In chapter 2 some real data examples are discussed 
under the view of design, categorization, data and interpretation. In chapter 3 is shown, that 
the likelihood ratio test of identical multinomials against the L condition (local odds ratios 
are non-negative) is asymptotically equivalent to the comparing of k independent binomial 
proportions against a simple ordered alternative. Chapter 4 describes order restricted tests 
for k binomial proportions, and Chapter 5 describes related approaches for identification 
the kind of alternative. Two different approaches are discussed: the identification of the 
best contrast and a model selection approach based on the order restricted information 
criterion. Chapter 6 discussed the more restricted alternative of one change point. In  
Chapter 7 the relation between the multiple contrast test and the score test in a logistic 
model is described to allow correction for additional categorical or continuous confounders 
In Chapter 8 some real data examples are analyzed and interpreted using to above 
described approaches.   
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2. EXAMPLES FOR EXPOSURE STUDIES 
 
Some 2 by k tables from epidemiological exposure studies from several areas were selected 
as real data examples. The number of groups varies from 4 to 12, the spontaneous rate from 
0 to 0.35, the degree of unbalanceness ( exp/highest un osedn n ) from 2.1 to 0.0003 and the 
relative risk of the highest exposure versus unexposed ( , exphighest un osedRR ) from 1.57 to ∞. 
 
A common public health problem is the question if routinely coffee consumption causes 
any disease. Weinmann et al. (1997)11 investigated the primary cardiac arrest (PCA) 
depending on caffeine intake. The summary exposure data (crude, unadjusted) are given in 
Table 1. 
 
 

Coffee intake in cups j nPCA nno PCA nj ˆ jπ  RRj1 
<1/week 1 79 149 228 0.346  - 
1/week …1.9/day 2 48 101 149 0.322 0.930 
2…4.9/day 3 126 196 322 0.391 1.129 
≥ 5 /day 4 86 72 158 0.544 1.571 

Table 1: PCA and coffee consumption 
 
The cut-points: 1/week, 2/day and 5/day were fixed a-priori (with is equivalent to 0-19.5, 
19.6-274.6, 274.7-686.6 and 686.7-4120.1 mg caffeine/day) and hence the number of 
categories (four) was a-priori defined. In the paper no explicit discussion on the choice of 
the cut-points was found. Unexposed (nonuser) is defined to less than 1 cup/week and the 
upper cut-point may be due to the meta-analysis result of Greenland (1994)16 which makes 
inference for 5 cups/day. The question arises if caffeine cause PCA in a dose-depended 
manner, and if the shape of the dose-response relationship – based on the pre-selected 
categories – is plausible.  Costantino et al. (1995)17 published a case-control study for 
respiratory cancer possibly caused by long-term exposure to coke oven emissions in the 
period 1966-1975. The definition of the categories seems to be rather formal. 
 

Exposure 
/mg/m3-mo 

j ncancer nno cancer nj ˆ jπ  RRj1 

Unexposed 1 72 9426 9498 0.008 - 
1-199 2 33 2314 2347 0.014 1.855 
200-399 3 26 1181 1207 0.022 2.842 
400-599 4 17 550 567 0.030 3.955 
>599 5 22 465 487 0.045 5.960 

Table 2: Respiratory cancer and PAH 
 
This is an example for an unbalanced design, i.e. only 487 cases in the high exposure group 
compared with 9498 unexposed cases. A more extreme unbalanced designs was used by 
Lausen et al. (2002)18 for the association between all major types of child cancer and 
magnetic fields from high voltage installations based on continuous exposure data by Olsen 
et al. (1993)13. The original continuous exposure data were categorized using a sieve 
parameter of 0.05 μTesla. 
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Exposure 
μTesla. 

j ncancer nno cancer nj ˆ jπ  RRj1 

0-0.05 1 1698 4759 6457 0.263 - 
0.051-0.101 2 0 9 9 0 0.000
0.101-0.15 3 2 3 5 0.4 1.525
0.151-.20 4 1 3 4 0.25 0.953
0.201-0.25 5 1 3 4 0.25 0.953
0.251-0.30 6 0 4 4 0 0.000
0.301-0.35 7 0 2 2 0 0.000
0.351-0.85 8 1 0 2 0.5 1.906
0.851-1.6 9 2 0 2 1 3.812
>1.61 10 2 0 2 1 3.812

Table 3: Child cancer and magnetic fields 
 
Xiong and El Barmi (2002)19 reported the absence or presence of hypoglycemia in the 
relation the mean daily insulin levels. The definition of the categories seems to be rather 
formal. 
 

Insulin level j npresent nabsent nj ˆ jπ  RRj1 
<.25 1 4 40 44 0.091  
0.251-0.49 2 21 74 95 0.221 2.432 
0.5-0.74 3 28 59 87 0.322 3.540 
0.75-0.99 4 15 26 41 0.366 4.024 
>1 5 12 46 58 0.207 2.276 

Table 4: Percentage hypoglycemia and daily insulin level 
 
Slama et al.(2003)20 investigated the percentage rate of spontaneous abortion between 
weeks 5 and 20 of pregnancy according to the age of the males in a random cross-sectional 
population of 1151 French women who had been pregnant between 1985 and 2000 (the 
strata of 20-24 years old females is given in Table 5). The definition of the categories 
seems to be rather formal in a five years pattern. 
 

Males age j nabortion nnormal nj ˆ jπ  RRj1 
<25 1 33 226 259 0.127 - 
25-29 2 37 321 358 0.103 0.811 
30-34 3 3 61 64 0.047 0.368 
35-39 4 7 5 12 0.583 4.579 

Table 5: Abortion rate and male age  
 
In a case-control study of Norwegian nickel-refinery workers, Grimsrud et al. (2002)21 
examined the dose-related associations between smoking adjusted lung cancer rates and 
cumulative exposure to different forms of nickel (in Table 6 the sulfidic form is presented). 
The definition of the categories is ordinal. 
 

Sulfidic nickel exposure j nlung cancer nno cancer nj ˆ jπ  RRj1 
Unexposed 1 57 10 67 0.149 - 
Low 2 93 27 120 0.225 1.51 

π
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Low-medium 3 95 48 143 0.336 2.25 
Medium 4 92 42 134 0.313 2.10 
Medium-high 5 94 40 134 0.299 2.00 
High 6 94 46 140 0.329 2.20 

Table 6: Lung cancer and cumulative exposure to sulfidic nickel 
 

Numerous papers have been published on the impact of radiation exposure of Japanese A-
bomb survivors on several health effects. Otake et al (1996)22 reported the incidence of 
severe mental retardation of prenatal exposed A-bomb survivors (Table 7) and Otake et al 
(1996)23 reported the incidence of severe cataracts depending on DS86 eye organ dose 
(Table 8). The definition of the categories seems to be rather formal in both examples. 
 

Radiation Dose /Gy nwith mr nwithout mr nj ˆ jπ  RRj1 
<0.005 9 1060 1069 0.008   
0.005-0.095 3 209 212 0.014 1.7 
0.095-0.495 2 213 215 0.009 1.1 
0.495-0.995 4 39 43 0.093 11.0 
>0.995 12 14 26 0.462 54.8 

Table 7: Severe mental retardation and organ specific radiation dose 
 

Radiation Dose /Gy nwith cat nwithout cat nj ˆ jπ  
<0.005 0 292 292 0.000 
0.005-0.494 12 436 448 0.027 
0.495-0.994 38 393 431 0.088 
0.995-1.994 136 226 362 0.376 
1.995-2.994 81 48 129 0.628 
2.995-3.994 27 11 38 0.711 
>3.995 29 13 42 0.690 

Table 8: Severe cataracts depending on DS86 eye organ dose 
 
 

3. THE ANALYSIS OF CONTINGENCY TABLES UNDER 
INEQUALITY CONSTRAINTS 

 
Here we consider inequality constraints defined in terms of local odds ratios in a 2×k 
contingency table. Let L denote the condition that all local odds ratios are non-negative and 
I the condition of independence then we prove that “The likelihood ratio test of identical 
multinomials against L (and the maximum likelihood fit) is apparently equivalent to the 
one for comparing k independent binomial proportions against a simple ordered 
alternative” (Agresti and Coull, 2002, page 53)24.  
Consider a 2×k contingency table of counts , 1,2, 1, ,ijy i j k= = … . We shall consider three 
models for this table: 
 
Model 1: The counts y are realizations of independent Poisson variates with means λij . 
Log-linear parameters ( , )α=θ β,γ,δ are introduced by  
ln( )λ α β γ δ= + + +ij i j ij  
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satisfying 0β γ δ δ= = = =∑ ∑ ∑ ∑i i ij ij
i j i j

.  

The likelihood function for the parameters in Model 1 is denoted 1( )L θ  
 
Model 2: The counts y are realizations of k independent binomial( ,i in p ). This model is 
obtained from Model 1 as the conditional distribution of y given ⋅ =j jy n  and we have the 
following relationship between the parameters of Model 2 and Model 1 

( )2 1 2 1 2 2ln 2
1

β β δ δ β δ
⎛ ⎞

= − + − = +⎜ ⎟⎜ ⎟−⎝ ⎠

j
j j j

j

p
p

 

The likelihood function for the parameters in Model 2 is denoted 2 ( )L p . Since Model 2 
can be obtained as a conditional distribution in model 1 we have 

1 2 2( ) ( ) ( )=L L Lpθ θ  
 
where 2 ( )L θ  is the likelihood function based on c independent Poisson distributions for the 
margins ⋅ jy . 
 
Model 3: The counts y are realizations of two independent multinomial( ,i im π ).This model 
is obtained from Model 1 as the conditional distribution of y given ⋅ =i iy m  and we have 
the following relationship between the local odds ratios in Model 3 and the parameters in 
Model 1 

( ) ( )( )2 1 1
2 1 2 1 1 1 2 1 2

2 1 1

exp exp 2
π π

δ δ δ δ δ δ
π π

+
+ + +

+

= − − + = −j j
j j j j j j

j j

 

The likelihood function for the parameters in Model 3 is denoted 3( )L π . Since Model 3 
can be obtained as a conditional distribution in model 1 we have 

1 3 3( ) ( ) ( )=L L Lθ π θ  
where 3 ( )L θ  is the likelihood function based on two independent Poisson distributions for 
the margins ⋅iy . 
 
From the relationships between the different parameterizations it follows immediately that 
the condition I of independence in the Poisson model, , : 0δ∀ =iji j , is identical to the 
hypothesis 1 kp p= ="  of homogeneity in the binomial model, and the hypothesis of 
identical multinomial probabilities, 1 2:π π∀ =j jj , in Model 3. Moreover, it is also well-
known that the parameter estimates and the fitted values under this hypothesis are identical 
in the three models.  
 
In Model 2 we now consider the hypothesis given by the order restriction 1 2 kp p p≤ ≤ ≤"  
with at least one strict inequality. From the relationships between the parameterizations it 
follows that the condition alternatively may be expressed as 

21 22 2kδ δ δ≤ ≤ ≤"  
or as the condition L of non-negative local odds ratios in model 3: 



 8

2 1 1

2 1 1

0, 1, ,j j

j j

j k
π π
π π

+

+

≥ = …  

 
To prove that ”The LR test of identical multinomials against L (and the ML fit) is 
apparently equivalent to the one for comparing k independent binomial proportions against 
a simple ordered alternative” we need the following lemmas. 
 
Lemma 1. The maximum of the likelihood function 2 ( )L θ  is obtained for λ̂⋅ ⋅=j jy  and the 
maximum value is  

( )
.

2
1

exp
!

jyk
j

j
j j

y
M y

y
⋅

⋅
= ⋅

= −∏  

Moreover,  22, , ( , , , )α α∀ ∃ =L Mβ δ γ :     β γ δ . 
 
Proof: It is well-known that the maximum likelihood estimate of the mean of a Poisson 
distribution based on a single observation is λ̂⋅ ⋅=j jy  and the maximum value is simply 
obtained by inserting these values. The final claim follows by choosing α  and γ  such that  

( )ln( ) ln expα γ β δ⋅
⎛ ⎞+ = − +⎜ ⎟
⎝ ⎠
∑j j i ij

i
y  

 
Lemma 2. The maximum of the likelihood function 3 ( )L θ  is obtained for λ̂ ⋅ ⋅=i iy  and the 
maximum value is  

( )
.2

3
1

exp
!

⋅
⋅

= ⋅

= −∏
iy

i
i

i i

yM y
y

 

Moreover,  33, , ( , , , )L Mα α∀ ∃ =γ δ β :     β γ δ . 
 
Proof: The proof is identical to that of Lemma 1. 
 
We are now ready to show 
 
Proposition: The likelihood ratio test of identical multinomials against L (and the fitted 
values) is equivalent to the one for comparing c independent binomial proportions against a 
simple ordered alternative. 
 
Proof: Consider Model 2 and let 1 2ˆ ˆ ˆ, , , kp p p…  denote the maximum likelihood estimates 

under the order restriction 1 2 kp p p≤ ≤ ≤"  and let β̂i  and δ̂ ij  denote the corresponding 
values in the parameterization of Model 1. We then have  

( )1 2 2 2 22 2
ˆmax ( ) max ( ) ( ) max ( ) max ( ) ( )= ≤ =L L L LL L L L L L Mp p pθ θ θ , 

since, by Lemma 1, we can always select the parameters α  and γ  such that the final factor 
is maximal. Also 

( )
( )

2 2 2 22 2

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) max ( , , , ) max ( ) ( , , , )

ˆ ˆmax ( , , , max ( ),

α α

α

= =

= ) ≤

L L

L L

L M L L L L

L L

p p pβ γ δ β γ δ

β γ δ θ
 



 9

where the second equality follows from Lemma 1. Consequently, 
1 2 2ˆmax ( ) ( )=L L L Mpθ  

In a similar fashion we may show that 
1 3 3ˆmax ( ) ( )=L L L Mθ π  

where π̂  denote the maximum likelihood estimate under condition L.  
Let 2LR  and 3LR  denote the likelihood ratio tests of I against L in Model 2 and Model 3, 
respectively, then 

32 1
2 3

2 1 3

max ( )max ( ) max ( )
max ( ) max ( ) max ( )

= = = =II I

L L L

LL LLR LR
L L L

p
p

πθ
θ π

 

and the fitted values are also identical since the maximum likelihood estimates, expressed 
in terms of the θ -parameterization, coincide. 
 
 

4. GLOBAL TESTS ON DOSE-RESPONSE RELATIONSHIP FOR 
PROPORTIONS 

 
In chapter 3 was shown that both case-control and cohort exposure studies can be analyzed 
by comparing k independent binomial proportions against a simple ordered alternative if 
asymptotic tests based on large sample sizes can be used. The number of diseased and the 
number of healthy persons for each exposure group Ei are organized in the following 2 by k 
table, where index 1 belongs to group without exposure: 
 

 E1 …. Ek Total 
With disease n11  nk1 n.1 
Without 
disease 

n10  nk0 n.0 

Sample size n1.  nk. n.. 
Table 9: Principle of 2 by k tables for exposure studies 
 
The estimator for the proportions per exposure group is 1 ./ 1,...,j j jp n n j k= = , the 

total is ../1. nnp = and the expected values for the proportions are denoted as jπ . The 
hypotheses system for a total order is: 

0 1 2: ... kH π π π= = =  

1 1 2: ... kH π π π≤ ≤ ≤  with at least one strict inequality 
Extensive references on order restricted tests exists, including for 2 by k contingency 
tables, e.g. recently Leuraud and Benichou (2001)7, Agresti and Coull (2002)24. Peddada et 
al (2001)25, Bretz and Hothorn (2003)26 and Salanti and Ulm (2003)27. However, no 
uniform most powerful trend test exists for all possible shapes of the alternative. The 
possible shapes can be seen as equality-inequality-pattern of H1. This can be simplified 
explained for an extreme convex shape, e.g. {0, 0, 0, π}. Clearly the so-called Helmert 
contrast is most powerful because optimal pooling all lower doses and comparing with the 
high dose: 4 1 2 3( ) / 3HelmertC p p p p= − + + . On the other hand, for an extreme concave 
shape, e.g. {0, π, π, π} the Helmert contrast looses strongly power. 
 



 10

But the shape of the exposure-response relationship is a-priori unknown. Irrespective from 
numerous recent proposals the likelihood ratio test (Robertson et al. ,1988)28 represents an 
appropriate solution for the above situation, although it is not uniformly most powerful but 
almost powerful. This test is numerically complicated, particularly its distribution under 
the alternative, needed for power/sample size calculations. 
 
The multiple contrast test (Bretz and Hothorn, 2002)29 approximate its false negative rate 
and is simpler. For k-1 exposure groups 2k-1-1 different shapes exist, and for each shape a 
contrast with minimum false negative rate exists. The idea is to select the best contrast, 
sensitive for a certain shape. To select the best contrast is simply done by a maximum test. 
A single contrast test is a linear combination of the proportions  

1

2
.

1

(1 ) /

k

j j
j

SC k

j j
j

c p
t

p p c n

=

=

=

−

∑

∑
(with 0jj

c =∑ )  

and is asymptotically normal distributed. Different variance estimators can be used, but to 
keep the problem simple only the total pooled estimator is used here. In epidemiology the 
total sample size 

.
1

..
k

j
j

n n
=

= ∑  is commonly large and therefore asymptotic test versions are 

used throughout here. The contrast coefficients cj are specific for each contrast test, e.g. for 
the Helmert contrast [cj = -1,  j = 1, ... , k-1 and  ck = k]. A multiple contrast test is the 
maximum of s pre-defined single contrast tests max( ) , 1,...,i

MC SCs
t t i s= = . This 

maximum statistics is asymptotically s-variate normal distributed with a non-product-
moment correlation matrix. The correlation between two contrast tests with contrast 

coefficients aj and bj is .
1

,
2 2

. .
1 1

/

( / )( / )

k

j j j
j

a b k k

j j j j
j j

a b n

a n b n
ρ =

= =

=
∑

∑ ∑

. For the balanced designs with k= 3 and 4 

this approach based on q= 3 respective 7 contrasts can be simply demonstrated in Table 10. 
 

Design Alternative Contrast ci 

1 2 3π π π< =  {-2  1  1} 

1 2 3π π π= <  {-1 -1  2} 
k=3 

1 2 3π π π< <  {-1  0  1} 

1 2 3 4π π π π< = =  {-3  1  1  1} 

1 2 3 4π π π π= < =  {-1 -1  1  1} 

1 2 3 4π π π π= = <  {-1 -1 -1  3} 

1 2 3 4π π π π< < <  {-3 -1  1  3} 

1 2 3 4π π π π= < <  {-1 -1  0  2} 

1 2 3 4π π π π< = <  {-1  0  0  1} 

k=4 

1 2 3 4π π π π< < =  {-2  0  1  1} 
Table10: Contrast coefficients for the balanced design with three exposure groups 
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Size and power of the multiple contrast test was compared with the likelihood ratio test for 
normal distributed variable (Bretz and Hothorn, 2003)26 and with the Cochran-Armitage 
test (Hothorn and Bretz, 2000)30 for binomial proportions. The power in the unbalanced 
design was characterized recently (Bretz and Hothorn, 2002)29. The above multiple 
contrast test is defined for differences in proportions, but can be re-formulated for the 
relative risk, commonly used in epidemiology. The estimators for the relative risk (RR) 

versus unexposed (j=1) are: 1 .
1

11 1.

/
2,...,

/
j j

j

n n
RR j k

n n
= =  The single contrast tests can be 

formulated for relative risk, e.g. for the reverse Helmert contrast:  

1
2

2
1

2

(1 )( 1/ / )

k

j
j

revHelmert k

j
j

kp p
t

p p n k n

=

=

− +
=

− +

∑

∑
 

1 111 1.
1

2 21. . . 11 2

2 2 21. 1.
1 1 1

2 2 211 11

(1 )( 1/ / ) (1 )( 1/ / ) (1 )( 1/ / )

k k k
j j

j
j jj j jRR

revHelmert k k k

j j j
j j j

n nn nk k k RR
n n n n

t
n np p n k n p p n k n p p n k n
n n

= = =

= = =

− + − + − +
= = =

− + − + − +

∑ ∑ ∑

∑ ∑ ∑

For general contrasts hold true  
1 1

2

21.

111

(1 )( / )

k

j j
jRR

SingleContrast k

j j
j

c c RR
t

n p p c n
n

=

=

+
=

−

∑

∑
 

 
 

5. IDENTIFICATION OF THE DOSE-RESPONSE SHAPE 
 

The trend tests decide between the null-hypothesis and the alternative hypotheses globally 
only, e.g. based on the asymptotical distribution of the test statistics under the null-
hypothesis. I.e. either a trend exists or not. But the alternative is not unique. E.g. for a 
design with three exposure and the unexposed groups the following 23-1 hypotheses are 
possible:  

1
1 1 2 3 4:H π π π π< = = , 2

1 1 2 3 4:H π π π π= < = , 3
1 1 2 3 4:H π π π π= = < , 

4
1 1 2 3 4:H π π π π< < < , 5

1 1 2 3 4:H π π π π= < < , 6
1 1 2 3 4:H π π π π< = < , 

7
1 1 2 3 4:H π π π π< < =  

 
But the global trend tests give no answer which particular alternative exists. Two different 
approaches can be used for answering this question, important for epidemiologists: i) the 
best contrast approach, and ii) model selection approach based on the information criterion 
for order restriction according to Anraku (1999)12 . We are interested in an identification of 
one of the possible 2k-1-1 elementary alternatives, i.e. a classification into 1

1 1,..., rH H . 
Consequently, the misclassification rate, i.e. the proportion of erroneous identified 
elementary alternatives is used as a performance measure later on. 
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5.1 THE BEST CONTRAST APPROACH 
 

The global test decision of the multiple contrast based on the maximum of all included 
single contrasts sitt i

SCsMC ,...,1,)(max == , whereby each single contrast is power 

optimal for a particular type of alternative (see Table 10 in chapter 4). Therefore, this 
maximum contrast can be used as an estimator for the dose-response shape (naïve 
approach). Two versions of this approach can be used: i) classification after a significant 
trend test only, ii) classification independent of the outcome of the trend test. E.g. for a 
design with two exposure groups three alternatives are possible: 1

1 1 2 3:H π π π= < , 
2
1 1 2 3:H π π π< = , 3

1 1 2 3:H π π π< < . The classification rate for a convex (or concave) 
shape will be relatively high, because misclassification is given by the linear shape while 
from a concave (convex) shape this misclassification will be very small. But the 
classification rate for a linear shape will be smaller because of the two competing 
alternatives 2

1
1
1 , HH . According to the asymmetric testing problem in 2 by k tables these 

misclassification rate are not symmetrically. Generally, the classification rates will increase 
with decreasing numbers of inequalities in the alternative (see simulation results). 
 
Reformulating this setup, we observe k binomial random variables kxx ,...,1  where 

1

( )
n

j i i
i

x I j j v
=

= =∑  and ∑
=

==
n

i
ij jjIn

1

)( , I denotes the indicator function ( 1i ix n= in Table 

9). Furthermore, we assume that the parameters )( jπ  are ordered 1 ... kπ π≤ ≤ . A possible 
dose-response is described by a contrast vector ),...,( 1 kccc = . When s such contrast 
vectors are given, the problem is to estimate of the underlying dose-response relationship. 
A simple estimator is a function 1: ( ,..., ) {1,..., }kx x sψ → .  A simple estimator can be 
derived from the associated contrast test. Let 1 1 1 1( ,..., ) ( ( ,..., ),..., ( ,..., ))k k s kT x x T x x T x x=  
denote the vector of appropriately standardized test statistics for each of the s contrasts. 
Then 1 1

{1,..., }
( ,..., ) arg maxk l

l s
x x Tψ ψ

∈

= = . This approach is denoted the naïve best contrast 

approach (class_naive). 
 
We are now interested in the variability of the simple estimator 1ψ : how likely is each of 
the s possible values under the observed data? This question can be addressed via the 
parametric bootstrap. We draw repeated realizations from k binomial distributions with 
sample sizes jn  and the estimated success parameter jj nxj /)(ˆ =π  for j=1,…,k. 

• Draw B bootstrap samples BbjnBxxx j
b

j
b

k
b ,...,1)),(ˆ,(~,,..., ***

1 =π  
• Compute ),...,( **

111
b

k
bb xxψψ =  

• And compute the relative frequency of each possible value from 1,…,s 
This is a measure for the variance of the estimator. Under special circumstances, an 
improved estimator can be computed by majority voting over 

b
1ψ : 2 1

{1,..., }
arg max ( )b

l s b

I lψ ψ
∈

= =∑ . This approach is denoted the parametric bootstrap best 

contrast approach (class_boot). 
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5.1.1 SIMULATION STUDY FOR THE DESIGN WITH THREE 
GROUPS 

 
The simulation study is structured in two parts: i) for the general unbalanced design with 
an unexposed and two exposure groups for both change point alternative and total order 
alternative (Chapter 5.1.1), ii) for the general unbalanced design for more than two 
exposure groups for the total alternative (Chapter 5.1.2), while the change point alternative 
is discussed in Chapter 6.2.  
 
The parametric bootstrap approach was investigated by a simulation study for the two 
scenarios i) the change point problem with the elementary hypotheses 1

1 1 2 3:H π π π= < , 
2
1 1 2 3:H π π π< = and the total order problem with the elementary hypotheses. 
1
1 1 2 3:H π π π= < , 2

1 1 2 3:H π π π< = , 3
1 1 2 3:H π π π< < . The comparison between the 

estimation functions 1 2andψ ψ  for the both scenarios and order restricted designs with 
higher dimensions is discussed in chapter 5.1.2. Table 11 shows the model classification 
rates for the two scenarios (bold … correct model classification, italic … estimates under 
the null-hypothesis, underlined … misclassification). Because of the asymmetric test 
statistics the expected value shapes were investigated for different spontaneous rates 1π (i.e. 
the rate of the unexposed group) (balanced sample size of 100). For both scenarios the 
identification of the convex model is better than for the concave model in the direction of 
smaller 1π  while for 0.5π ≈  both rates are similar. Both rates are larger for the simpler 
change point scenario because of the simpler alternative. For the total order scenario the 
classification rate of the linear model is substantial smaller. The classification rate for a 
convex (or concave) shape will be relatively high, because the most likely misclassification 
is by the linear shape and the misclassification from the concave (convex) shape is very 
small. The classification rate for a linear shape will be smaller because of the two nearly 
equally competing alternatives convex and concave. According to the asymmetric testing 
problem in 2 by k tables these misclassification rate are not symmetrically. The first row 
represents the null-hypothesis. The power estimates is the estimation for size, and the 
model classification estimates are irregular because the power must be larger than 0.5 per 
definition. 
 
Table 12 represents the influence of different non-centrality parameters Δ for the convex 
model { }1 1 1, ,π π π Δ+ . While for both scenarios the power estimates are similar the 
increase of the classification rates for the total order scenarios is weaker than for the 
change point scenario. 
 
 
 

Max(H1,H2) Max(H1,H2,H3) 
πi power H1 H2 power H1 H2 H3 
0.3/0.3/0.3 .050 .514 .486 .048 .442 .333 .224 
0.1/0.1/0.3 .991 .987 .004 .989 .924 .000 .076 
0.1/0.3/0.3 .991 .030 .961 .991 .003 .827 .170 
0.1/0.2/0.3  .969 .175 .196 .629 
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0.2/0.2/0.4 .959 .936 .023 .960 .834 .004 .124 
0.2/0.4/0.4 .966 .040 .926 .957 .007 .796 .155 
0.2/0.3/0.4  .910 .249 .214 .537 
0.3/0.3/0.5 .940 .906 .034 .939 .799 .006 .135 
0.3/0.5/0.5 .926 .044 .882 .930 .010 .770 .150 
0.3/0.4/0.5  .861 .228 .236 .536 
0.4/0.4/0.6 .923 .887 .036 .926 .771 .013 .143 
0.4/0.6/0.6 .924 .039 .885 .932 .009 .777 .147 
0.4/0.5/0.6  .872 .238 .236 .527 

Table 11: Classification rates for the best contrast approach (class_boot)  
for several spontaneous rates 1π .(ni=100) 
 

Max(H1,H2) Max(H1,H2,H3) 
πi power H1 H2 power H1 H2 H3 
0.3/0.3/0.35 .177 .739 .261 .182 .629 .154 .209 
0.3/0.3/0.4 .472 .861 .139 .477 .732 .067 .201 
0.3/0.3/0.45 .764 .918 .082 .764 .791 .031 .179 
0.3/0.3/0.5 .940 .906 .034 .941 .842 .004 .154 
0.3/0.3/0.55 .992 .986 .014 .990 .866 .003 .131 
0.3/0.3/0.6 .999 .998 .002 .999 .915 .000 .086 

Table 12: Classification rates for the best contrast approach (class_boot)  
for several non-centrality parameters Δ (ni=100) 
 
As expected, with decreasing sample size the classification rates decrease. For the total 
order scenario the classification rate of the concave shape becomes larger than these of the 
convex shape for smaller sample sizes. The rates for the linear shape decrease more than 
for the convex shape. Clearly estimations with a power < 0.5 are not valid, because the 
model identification based on a preliminary significant multiple contrast test.  From Tables 
11-13 a high correlation between power and classification rates could be concluded. 
However, this relationship is quite complicated, e.g. with higher dimensions k up to 10 the 
classification rates decreases while the power increases (see chapter 5.1.2). In 
epidemiology frequently unbalanced designs occur, particularly with large sample sizes in 
the unexposed group and smaller sample sizes in the exposed groups. For a selected sample 
size pattern in Table 4 the classification rates are given. The classification rate decreases 
seriously for a convex shape and small sample size in the highest exposure group. For the 
linear shape even misclassification occurs. Detailed investigations on unbalancedness can 
be found in Chapter 6.3. 
 
 

Max(H1,H2) Max(H1,H2,H3) 
πi ni power H1 H2 power H1 H2 H3 
0.3/0.3/0.5 150 .991 .983 .017 .987 .873 .003 .124 
0.3/0.5/0.5 150 .984 .020 .980 .988 .002 .858 .140 
0.3/0.4/0.5 150  .970 .188 .178 .634 
0.3/0.3/0.5 125 .975 .954 .021 .973 .835 .005 .133 
0.3/0.5/0.5 125 .968 .028 .939 .976 .003 .850 .146 
0.3/0.4/0.5 125  .929 .204 .211 .585 
0.3/0.3/0.5 100 .940 .906 .034 .939 .799 .006 .135 
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0.3/0.5/0.5 100 .926 .044 .882 .930 .010 .770 .150 
0.3/0.4/0.5 100  .861 .228 .236 .536 
0.3/0.3/0.5 75 .869 .824 .044 .858 .694 .017 .147 
0.3/0.5/0.5 75 .852 .048 .804 .864 .015 .788 .188 
0.3/0.4/0.5 75  .767 .273 .246 .481 
0.3/0.3/0.5 50 .699 .645 .054 .713 .555 .026 .131 
0.3/0.5/0.5 50 .683 .061 .622 .699 .040 .746 .214 
0.3/0.4/0.5 50  .625 .300 .290 .410 
0.3/0.3/0.5 25 .450 .384 .065 .486 .349 .042 .094 
0.3/0.5/0.5 25 .427 .073 .354 .467 .084 .678 .239 
0.3/0.4/0.5 25  .404 .309 .330 .360 

Table 13: Classification rates for the best contrast approach (class_boot)  
for several sample sizes 
 

Max(H1,H2) Max(H1,H2,H3) 
πi ni power H1 H2 Power H1 H2 H3 
0.3/0.3/0.5 100/100/100 .975 .954 .021 .973 .835 .005 .133 
0.3/0.5/0.5 100/100/100 .968 .028 .939 .976 .003 .850 .146 
0.3/0.4/0.5 100/100/100  .929 .204 .211 .585 
0.3/0.3/0.5 200/80/20 0.506 0.455 0.050 .529 .523 .079 .358 
0.3/0.5/0.5 200/80/20 0.927 0.026 0.901 .928 .000 .950 .050 
0.3/0.4/0.5 200/80/20  .667 .050 .634 .315 

Table 14: Classification rates for the best contrast approach (class_boot)  
for an unbalanced design 
 
 

5.1.2 SIMULATION STUDY FOR TOTAL ORDER 
The two approaches will be compared by a simulation study for the total order restriction 
according to the dimension k (Table 15), the sample size n (Table 16), the spontaneous rate 
p0 (Table 17), several shapes (Table 18). The approaches are only defined for significant 
global tests, i.e. with power > 0.50. Therefore, non-significant simulation results are 
marked italic. 

Class_naive .913 .823 .773 .657 .575 .524 .476
Class_boot .971 .901 .801 .749 .673 .608 .561
Power .827 .853 .883 .889 .885 .892 .903
k 3 4 5 6 7 8 9 

Table 15: Classification rates and power for several dimensions k (nj=100, alternative: 
0.01/0.01/…/0.01/0.07) 
 
As expected the classification rates decrease with increasing dimension k of the design for 
a selected shape, although the power increases slightly simultaneously (see Table 15).   
 

Class_naive .739 .793 .799 .823 .817 .856 
Class_boot .817 .912 .901 .901 .875 .903 
Power .394 .614 .787 .853 .926 .952 
nj 25 50 75 100 125 150 

Table 16: Classification rates and power for several balanced sample sizes nj (Alternative: 
0.01/0.01/0.01/0.07) 
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With decreasing sample sizes the classification rates decrease to some extent, but the 
decrease is much smaller than the related power decrease (see Table 16).  
 

Model of the alternative Power Class_naiv Classs_boot 
M1 .01/.07/.07/.07 .742 M1:   0.507 M1:   0.522 
M2 .01/0.04/0.07/0.07 .753 M3:   0.311 M3:   0.395 
M3 .01/.01/.07/.07 .915 M3:   0.764 M3:   0.787 
M4 .01/.04/.04/.07 .671 M4.   0.397 M4:   0.378 
M5 .01/.01/.04/.07 .840 M4:   0.482 M5:   0.375 
M6 .01/.01/.01/.07 .853 M6:   0.823 M6:   0.901 
M7 .01/0.03/0.05/.07 .712 M7:   0.263 M7:   0.331 

Table 17 Best model, classification rates and power  (nj=100, k=3) 
 
From Table 16 can be shown, that alternatives with only one inequality are detected 
precisely (more details see Chapter 6), while the incorrect classification for alternatives 
with more inequalities increases. With higher dimensions k this incorrect classification 
increases (Table 18) for the alternatives with more than one inequality.  
 

Class_naive 0.480 0.397 0.364 0.327 
Power 0.695 0.671 0.634 0.585 
k 3 4 5 6 

Table 18: Classification rates and power for dimensions k for model M4 (nj=100) 
 

Class_naïve .823 .655 .510 .478 .435 .404 .422 .405 
Class_boot .901 .709 .551 .528 .522 .496 .512 .489 
Power .853 .697 .386 .310 .222 .185 .183 .175 
p1 .01 .06 .11 .16 .20 .30 .40 .50 

Table 19: Classification rates and power for several spontaneous rates 1π  (Alternative:  

{ }1 1 1 1 1, , , , 0.06π π π π π Δ+ = ,  nj=100) 
 
Analogously to the power decrease, a serious decrease of classification rate with increasing 
spontaneous rate p1 can be seen in Table 19. 
 

Class_naïve .671 .745 .823 .849 .918 .925 .953 
Class_boot .822 .841 .901 .908 .948 .942 .963 
Power .325 .659 .853 .961 .985 .996 .998 
non-centrality Δ 0.03 0.05 0.07 0.09 0.11 0.13 0.15 

Table 20: Classification rates and power for several non-centralities Δ (Alternative: 
0.01/0.01/0.01/Δ, nj=100) 
 
The increase of classification rates with increasing non-centrality Δ is much steeper than 
the related power increase (see Table 20) 
 
From these simulation can be concluded,  

• The model classification is possible for one-inequality alternatives with rather high 
classification rate, particularly for the parametric bootstrap approach. 
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• For alternatives with several inequalities acceptable classification rates are only 
given for the design k=3.  

• The classification rates increase with smaller dimension k, higher sample sizes ni, 
smaller spontaneous rate 1π , higher non-centralities Δ and for more concave shapes 
but not in a direct relationship to power . 

 
 

5.2 INFORMATION CRITERION FOR ORDER RESTRICTION 
 
Anraku (1999)12 published a model selection approach based on the information criterion 
for order restriction for normal distributed variables. The Akaike (1974)31 criterion for the 
unrestricted maximum likelihood estimator θ̂ : plAIC −= )ˆ()ˆ( θθ  (with )ˆ(θl  log-
likelihood, p dimension of θ ) was modified for order-restricted maximum likelihood 
estimators:  

),()~()~( inkpenaltylORIC −= θθ .  
 
The penalty term is calculated for each model using the level probabilities under order 
restriction according to Robertson et al (1988)28. The models are the null-hypothesis and all 
elementary alternative hypotheses as described above. In a simulation study for normal 
variables the correct model classification rates were about 50% for convex, concave, step 
and linear shapes. For the unbalanced design with an unexposed and two exposure groups 
in the binomial case the ORIC is as follows (Anraku, 2003)32 . 
The four models are: 

0 0 1 2 3{ : }M H π π π= =  ,
11 1 2 3{ : }MM H π π π= < , 

22 1 2 3{ : }MM H π π π< = , }:{ 3213 3
πππ <<MHM   

 
The likelihood is  3 3 31 1 1 2 2 21 2 3

1 1 2 2 3 3
1 1 1 2 2 2 3 3 3

! ! !( ) (1 ) (1 ) (1 )
!( )! !( )! !( )!

x n xx n x x n xn n nL
x n x x n x x n x

π π π π π π π −− −= − − −
− − −

 

With the expected values jπ , the crude estimators 

 1
1

1
ˆ x

nπ = , 2
2

2
ˆ x

nπ = , 3
3

3
ˆ x

nπ =  11 1 12 2 13 3( , , )n x n x n x= = = . 

The jπ� are the maximum likelihood estimates under the simple order restriction: 

: :
min max

t
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j
s j

w

w

π
π =

≥ ≤

=

=
∑

∑
� .  The likelihood for the null-model M0 is:  

1 2 3 1 2 3 1 2 3

0 0 0

3 ( )
1

!
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!( )!
j x x x n n n x x x
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ˆH
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 provided j jw n=  

The likelihood for the null-model M1 is:  
3 3 31 2 1 2 1 2

1

3 ( )
(12) (12) 3 31

!
ˆ( ) (1 ) (1 )

!( )!
j x n xx x n n x x

M j
j j j

n
L

x n x
π π π π π −+ + − +

=
= − −
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1 2

ˆ x x
n n

π +
=

+
, 3

3
3

ˆ x
nπ = (12) 3 12 (12) 3 3ˆ ˆ ˆ: ,if π π π π π π< ⇒ = =� � �  
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The likelihood for the null-model M2 is:  

2 3 2 3 2 3 1 1 1

2

3 ( )
(23) (23) 1 11
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The likelihood for the null-model M3 is:  

3 3 31 1 1 2 2 2

3

3
1 1 2 2 3 31

!
ˆ( ) (1 ) (1 ) (1 )

!( )!
j x n xx n x x n x

M j
j j j

n
L

x n x
π π π π π π π −− −

=
= − − −

−∏  

The model-specific ORIC are: 
( ) log ( ) ( )r Mr rORIC M L penalty Mπ= −� . 

Where the penalty terms are { }
1

( ) , , ( )r r
i

penalty M iP i j w M
=

= ∑  

With 1. 2. 3.( )w H n n n= + + 1 1. 2. 3.( ) ,w M n n n= + 2 1. 2. 3.( ) ,w M n n n= + 1. 2. 3.( ) , ,w H n n n=  
Because { }1,1, ( ) 1P w H =  ( ) ( ) 1HORIC H l π= −�  

Because { }1
11,2, ( )
2

P w M =  { }1
12,2, ( )
2

P w M =
11

3( ) ( )
2MORIC M l π= −�  

Because { }2
11,2, ( )
2

P w M = { }2
12,2, ( )
2

P w M =
22

3( ) ( )
2MORIC M l π= −�  

Because { } 1
3

1 11,3, ( ) sin
4 2

P w M ρ
π

−= − , { }3
12,3, ( )
2

P w M = , { }3
1 13,3, ( ) arcsin
4 2

P w M ρ
π

= + , 

and 1 3
12

1 2 2 3( )( )
n n

n n n n
ρ = −

+ + 33 12
1ˆ( ) ( ) (2 arcsin )MORIC M l π ρ
π

= − +  

 
Recently Zhao and Peng (2002)33 published a modification of Anraku`s approach which 
converges better for small sample sizes. Because here large sample sizes are assumed 
throughout, this will be not investigated. Also recently Xiong and El Barmi (2002)34 
proposed a modified AIC criterion for the change point problem including a test between 
different model-specific AICs. 
 
 

5.2.1 SIMULATION STUDY 
 
For the unbalanced design with 2 exposure groups in a simulation study the correct 
classification rates of both approaches were compared for the change-point alternative 

1
1 0 1 2:H π π π= < , 2

1 0 1 2:H π π π< =  and the simple order alternative (described in 
chapter 5.2). 
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ORIC(M0,M1,M2) ORIC(M0,M1,M2,M3) 
πi M0 M1 M2 M0 M1 M2 M3 
0.3/0.3/0.3 .758 .112 .129 .532 .080 .093 .295 
0.1/0.1/0.3 .001 .979 .021 .000 .588 .410 .002 
0.1/0.3/0.3 .001 .020 .980 .001 .408 .588 .408 
0.1/0.2/0.3  .002 .109 .174 .715 
0.2/0.2/0.4 .002 .958 .041 .005 .578 .004 .414 
0.2/0.4/0.4 .005 .029 .967 .003 .008 .535 .436 
0.2/0.3/0.4  .0095 .184 .232 .575 
0.3/0.3/0.5 .006 .940 .054 .004 .582 .014 .401 
0.3/0.5/0.5 .004 .053 .943 .007 .011 .566 .416 
0.3/0.4/0.5  .018 .221 .225 .536 
0.4/0.4/0.6 .009 .940 .052 .008 .557 .014 .422 
0.4/0.6/0.6 .009 .053 .940 .004 .015 .555 .427 
0.4/0.5/0.6  .021 .221 .223 .536 

Table 21: Model selection rate for the ORIC approach for several 1π  (ni=100). 
 

ORIC(M0,M1,M2) ORIC(M0,M1,M2,M3) 
πi M0 M1 M2 M0 M1 M2 M3 
0.3/0.3/0.35 .465 .362 .174 .386 .254 .132 .229 
0.3/0.3/0.4 .179 .686 .134 .156 .458 .102 .285 
0.3/0.3/0.45 .042 .867 .092 .039 .565 .049 .348 
0.3/0.3/0.5 .008 .947 .045 .0045 .588 .0125 .395 
0.3/0.3/0.55 .0005 .978 .022 .000 .593 .0025 .405 
0.3/0.3/0.6 .000 .991 .009 .000 .595 .000 .405 

Table 22: Model selection rate for the ORIC approach for several non-centrality parameters Δ 
 

ORIC(M0,M1,M2) ORIC(M0,M1,M2,M3) 
πi ni M0 M1 M2 M0 M1 M2 M3 
0.3/0.3/0.5 150 .0010 .975 .025 .0000 .596  .001  .403  
0.3/0.5/0.5 150 .0005 .021 .979 .0000 .0025 .601 .400 
0.3/0.4/0.5 150  .004 .153 .175 .669 
0.3/0.3/0.5 125 .001 .972 .028 .000 .565 .007 .428 
0.3/0.5/0.5 125 .002 .026 .972 .0015 .005 .596 .398 
0.3/0.4/0.5 125  .006 .193 .206 .596 
0.3/0.3/0.5 100 .006 .940 .054 .004 .582 .014 .401 
0.3/0.5/0.5 100 .004 .053 .943 .007 .011 .566 .416 
0.3/0.4/0.5 100  .018 .221 .225 .536 
0.3/0.3/0.5 75 .024 .908 .069 .012 .574 .025 .39 
0.3/0.5/0.5 75 .025 .072 .903 .021 .023 .525 .432 
0.3/0.4/0.5 75  .046 .242 .252 .461 
0.3/0.3/0.5 50 .067 .828 .105 .051 .517 .062 .375 
0.3/0.5/0.5 50 .064 .100 .837 .052 .055 .574 .320 
0.3/0.4/0.5 50  .080 .284 .324 .314 
0.3/0.3/0.5 25 .196 .644 .160 .152 .433 .100 .316 
0.3/0.5/0.5 25 .199 .153 .649 .182 .082 .382 .355 
0.3/0.4/0.5 25  .200 .254 .264 .283 

Table 23: Model selection rate for the ORIC approach for several sample sizes nj 
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ORIC(M0,M1,M2) ORIC(M0,M1,M2,M3) 
πi ni M0 M1 M2 M0 M1 M2 M3 
0.3/0.3/0.5 100/100/100 .006 .940 .054 0.004 0.582 0.014 0.401 
0.3/0.5/0.5 100/100/100 .004 .053 .943 0.007 0.011 0.566 0.416 
0.3/0.4/0.5 100/100/100  0.018 0.221 0.225 0.536 
0.3/0.3/0.5 133/133/34 .092 .842 .067 .075 .553 .030 .343 
0.3/0.5/0.5 133/133/34 .005 .010 .977 .0035 .006 .630 .361 
0.3/0.4/0.5 133/133/34  .0480 .145 .362 .446 
0.3/0.3/0.5 180/102/18 .195 .681 .124 .156 .483 .078 .285 
0.3/0.5/0.5 180/102/18 .006 .024 .971 .0035 .004 .609 .384 
0.3/0.4/0.5 180/102/18  .082 .140 .406 .374 
0.3/0.3/0.5 92/134/74 .103 .950 .038 .014 .600 .014 .374 
0.3/0.5/0.5 92/134/74 .009 .036 .956 .008 .008 .620 .366 
0.3/0.4/0.5 92/134/74  .036 .216 .258 .491 
0.3/0.3/0.5 34/133/133 .005 .972 .024 .003 .613 .004 .381 
0.3/0.5/0.5 34/133/133 .078 .076 .847 .055 .036 .587 .322 
0.3/0.4/0.5 34/133/133  .061 .321 .175 .444 

Table 24: Model selection rate for the ORIC approach for an unbalanced design 
 
For the unbalanced design with three groups in a simulation study the correct classification 
rates of both approaches were compared for the two scenarios ORIC(M0,M1,M2) and 
ORIC(M0,M1,M2,M3) . From the first row in Table 21 where no differences between the 
proportions is investigated, the principle difference to the best contrast approach can be 
seen. The ORIC approach does not control α , i.e. under the null-hypothesis only in 76 
respective 53% cases M0 will be selected, not 95%. The false selection rates are for the 
recessive and dominant model similar, while for the additive model much larger. The 
difference of selection rates between the two scenarios is substantial, while the difference 
between the three models is small. The influence of different non-centrality parameters Δ 
for the convex alternative [ ]0 0 0, ,π π π Δ+  is quite different for the both scenarios. For 
ORIC(M0,M1,M2) is a strong increase of the selection rate, but for ORIC(M0,M1,M2,M3) 
there is a threshold and the false selection is concentrated in the additive model (see Table 
22). With increasing sample size the model selection rates increases (Table 23), whereas 
for the linear alternative a much stronger increase can be observed. Four patterns of 
unbalanced sample sizes were used in Table 24, each adjusted to a total sample size of 300. 
When the informative group in the convex alternative has the lowest sample size a serious 
decrease in correct model selection occur. For these patterns the model selection rate of the 
linear alternative decreases substantially and even misclassifications are possible. 
 
Alone from the simulation of the null-hypothesis the differences between both approaches 
becomes clear: the best contrast approach estimates α as size (power under H0) and for this 
about 5% each model reveals the same classification rate. The ORIC approach identifies in 
about 76% the null-model and the alternative models with about 11 and 13%. Both 
approaches differ substantially: the parametric bootstrap is a testing approach with 
conditional characterization of the alternative, ORIC approach is a model estimation 
approach without control of the false positive error rate α. A direct comparison is not 
possible.  
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Convex and concave shapes will be classified similar by the ORIC-approach, but different 
by the best contrast approach reflecting the impact of power (impact of the different 
variance estimators). Analogously the classification rates increases with decreasing 
spontaneous rates p0 and the sample size, particularly in the best contrast approach. For the 
typically unbalanced designs in epidemiology a serious decrease in classification rates 
occurs only if small sample sizes occur in informative groups. 
 
Linear, convex and concave shapes will be classified similar by the ORIC-approach. These 
effects are analogously to the normal distributed experiment in Anraku’s (1999)12 
simulation study.  
 
 

6. ESTIMATION A CHANGE POINT 
6.1 TESTING AND CLASSIFICATION APPROACH 

 
A special case of order restricted inference is the consideration of step shapes only, the 
most special case is the identification of exactly one step – denoted as change-point 
problem  according to Hirotsu and Marumo (2002)34 Pastor-Barriuso  et al.(2003)35. For 
example in a diabetes study with the relationship between 2-hour plasma glucose and 
mortality the following questions were formulated 35: exists a certain glucose level at 
which the mortality risk increases markedly? Can this change-point estimated? What is the 
shape of the risk relationship above, below and around this change point? This chapter 
proposes a simple solution for the first and second question, and demonstrates the 
difficulties in answering the last question. 
 
In chapter 4 approaches considering a trend as any monotone increasing pattern of the 
dose-response. Here we discuss a simpler approach: the assumption that a dose-response 
can be characterize by a lower part, an upper part and an abrupt change between both, only. 
This seems to be rather naïve. But we will demonstrate that this change point problem is a 
substantial member of the all-pattern trend problem. Moreover, in some epidemiological 
problems exactly this question arises, like in the diabetes example, and some practical data 
can be appropriately analyzed. Proposals in the literature are directed on the proof of the 
existence of such a change point only. But epidemiologist want not simply to know that 
such a change exist, they want furthermore information where this change is located. Here 
we demonstrate the estimation of the change point q characterized by its correct 
classification rate by means of multiple contrast tests, i.e. in a testing framework. 
The hypotheses system for a change from q to q+1 is: 

0 1 2: ... kH π π π= = =  

1 1 1: ... ... (1,..., 1)q q kH q kπ π π π+= = < = = ∈ −  
In epidemiology the exposure groups are not too frequently characterized by an exact 
amount of exposure, commonly only a range is available, e.g. 1-2 cups coffee per day, or 
50-100 μg/L arsenic in drinking water. If exact doses are available the change point can be 
estimated using the hypothesis of sigmoidicity according to Hirotsu and Marumo (2002)34. 
The above hypotheses system can be tested by multiple step contrasts. Exactly (k-1) step 
contrasts are appropriate for testing the above hypothesis:  
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This principle was introduced as cumulative chi-square method Hirotsu (1982)36. For the 
simple design with an unexposed and three exposure groups exactly three possible change 
points q exists and for each change point exactly one contrast is optimal: 

1 2 3 4

1 ( 3 1 1 1)
2 ( 2 2 2 2)
3 ( 1 1 1 3)

q c c c c
−
− −
− − −

 

Optimal means simply the maximum test statistics because the i
SCt  itself are normal 

distributed and hence standardized, and MCt  is q-variate normal distributed. The contrast 
coefficients cij are defined for the general unbalanced design to Hirotsu et al. (1992)37: 
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These step contrasts reveal a nice property to transform the k-sample problem into an 
unbalanced two-sample problem, which can be used later for estimation the unadjusted 
relative risk (or odds ratio) “above/below” the change point Moreover, the step contrasts 
belong to a broader class of multiple contrasts. Isotonic contrasts approximate quite well 
the power of the likelihood ratio test for total ordered hypothesis, while the bivariate 
up/down-proposals (Neuhauser and Hothorn (1997)38, Stewart and Ruberg (2000)39) use 
only the two extreme contrasts. This can be simply explained for a balanced design with 
four groups.  

Type of contrasts Alternative Contrast ci No. of contrasts 

1 2 3 4π π π π< = =  {-3  1  1  1} 

1 2 3 4π π π π= < =  {-1 -1  1  1} 

1 2 3 4π π π π= = <  {-1 -1 -1  3} 

1 2 3 4π π π π< < <  {-3 -1  1  3} 

1 2 3 4π π π π= < <  {-1 -1  0  2} 

1 2 3 4π π π π< = <  {-1  0  0  1} 

Isotonic 

1 2 3 4π π π π< < =  {-2  0  1  1} 

2k-1-1 

1 2 3 4π π π π< = =  {-3  1  1  1} 

1 2 3 4π π π π= < =  {-1 -1  1  1} 
Step 

1 2 3 4π π π π= = <  {-1 -1 -1  3} 

k-1 

1 2 3 4π π π π< = =  {-3  1  1  1} Up/down 

1 2 3 4π π π π= = <  {-1 -1 -1  3} 
2 
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Under this view multiple step contrasts represent a good compromise even for trend testing 
in general, much less dependence of the power on the shape compared with single linear 
contrast (frequently used) or up/down, still not the full information compared with isotonic 
contrasts, but with k instead of 2k-1-1  contrasts. 
 
For normal populations Worsley (1979)40 proposed a likelihood ratio test taking the 
maximum over quadratic forms of step-contrasts. However, the distribution under the null-
hypothesis is rather complicated. A related approach is the reduced monotonic regression 
approach by Schell and Singh (1987)41 which allows multiple change points. A Bayesian 
version for binary data and multiple prognostic factors was recently published by Holmes 
and Heard (2003)42. If at least one –anyone- contrast is significant, a global decision 
against the null-hypothesis is possible. But this is only a global decision; no information on 
the change point q is available directly.  
 
 

6.2 SIMULATIONS 
 
The two approaches will be compared by a simulation study for the total order restriction 
according to the dimension k (Table 25, the sample size n (Table 26), the spontaneous rate 

0π (Table 27), several shapes (Table 28).  
 

Class_naive .985 .984 .966 .961 .957 .960
Class_boot .992 .987 .977 .971 .971 .964
Power .828 .845 .861 .899 .889 .894
k 3 4 5 6 7 8 

Table 25: Classification rates and power for several dimensions k (nj=100, alternative: 
0.01/0.01/…/0.01/0.07) 
 
As expected the classification rates decrease with increasing dimension k, although the 
power increases slightly simultaneously (see Table 25). The decrease is much weaker 
compared with that of the total order alternative.  
 

Class_naive .808 .964 .972 .984 .986 
Class_boot .809 .973 .978 .987 .989 
Power .393 .618 .742 .845 .903 
nj 25 50 75 100 125 

Table 26: Classification rates and power for several balanced sample sizes nj (Alternative: 
0.01/0.01/0.01/0.07) 
 
With decreasing sample sizes the classification rates decrease only slightly as long the 
power is > 0.50, and the decrease is much smaller than the power decrease (see Table 26). 

 Class_naïve .984 .884 .807 ,759 ,746 ,681 ,675
Class_boot .987 .903 .817 .767 .766 .679 .682
Power .845 .488 .373 .312 .266 .226 .210
p1 .01 .06 .11 .16 .20 .30 .40 

Table 27: Classification rates and power for several spontaneous rates p1 (Alternative: 
{ }1 1 1 1 1, , , , 0.06π π π π π Δ+ = , nj=100) 
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A serious decrease of classification rate with increasing spontaneous rate p0 can be seen in 
Table 27. The decrease is much weaker compared with the total order alternative.  
  

Class_naïve .942 .968 .982 .995 .997 .999 
Class_boot .953 .973 .985 .994 .998 .999 
Power .479 .773 .904 .972 .991 .999 
non-centrality Δ 0.03 0.05 0.07 0.09 0.11 0.13 

Table 28: Classification rates and power for several non-centralities Δ (Alternative: 
0.01/0.01/0.01/Δ, nj=100) 
 
The increase of classification rates with increasing non-centrality Δ is much steeper than 
the power increase (see Table 28). For a very large non-centrality Δ the classification is 
almost sure.  
 

Alternative k nj Power Class_naiv Class_boot 
.01/.01/.07 100 .818 .981 .991 
.01/.07/.07 

3 
100 .728 .863 .845 

.01/.01/.01/.07 100 .855 .973 .978 

.01/.01/.07/.07 100 .910 .863 .850 

.01/.07/.07/.07 100 .749 .788 .762 

.11/.11/.11/.17 100 .365 .816 .830 

.11/.11/.17/.17 100 .442 .699 .691 

.11/.17/.17/.17 100 .342 .671 .659 

.11/.11/.11/.17  150 .485 .852 .861 

.11/.11/.17/.17 150 .559 .770 .765 

.11/.17/.17/.17 150 .448 .751 .737 

.40/.40/.40/.46  800 .839 .922 .924 
40/.40/.46/.46  800 .938 .894 .890 
40/.46/.46/.46  

4 

800 .840 .899 .902 
.01/.01/.01/.01/.07 100 .865 .970 .977 
.01/.01/.01/.07/.07 100 .956 .871 .862 
.01/.01/.07/.07/.07 100 .934 .832 .820 
.01/.07/.07/.07/.07 

5 

100 .721 .747 .730 
.01/.01/.01/.01/.01/.07 100 .884 .964 .972 
.01/.01/.01/.01/.07/.07 100 .971 .861 .847 
.01/.01/.01/.07/.07/.07 100 .976 .835 .819 
.01/.01/.07/.07/.07/.07 100 .950 .825 .809 
.01/.07/.07/.07/.07/.07 

6 

100 .676 .729 .711 
Table 29: Classification rates and power for several locations of the change point and 
k=3,4,5 
  
With larger change points s the classification rates increases monotonously, but the rates 
for the parametric bootstrap are better than for the naïve approach only for the largest 
possible change point. The incorrect classification is asymmetrical in direction of 
overestimation the change point q, while underestimation is rather small. 
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Alternative q M1 M2 M3 M4 M5 Cum 
over. 

Cum 
under. 

.01/.01/.01/.01/.01/.07 5 .000 .000 .001 .027 .972 - 0.028 

.01/.01/.01/.01/.07/.07 4 .000 .002 .012 .847 .139 0.139 0.014 

.01/.01/.01/.07/.07/.07 3 .000 .011 .819 .119 .051 0.17 0.011 

.01/.01/.07/.07/.07/.07 2 .004 .809 .117 .038 .032 0.187 0.004 

.01/.07/.07/.07/.07/.07 1 .711 .135 .052 .050 .053 0.29 - 
Table 30: Asymmetrical cumulative false classification rates (nj=100) 
 
After a significant test on a change point, the estimation of the change point can be 
performed by model selection. A selection between transition models in logistic regression 
is recently available (1). The estimation of a change point in likelihood ratio ordering based 
on a AIC-test, with the disadvantage of a yes/no decision for a change point without 
information of the correct classification. Multiple change points can be identified by testing 
the sub-spaces right and/or left of the change point q by conditional testing according to 
Xiong and Barmi (2002)19. 
 
In practice the change point definition is relative to the pattern of proportions. In Table 31 
the switch from q=3 to q=2 reveals a monotonic increase of the estimation of model 2. This 
increase is weaker for the switch from q=3 to q=1 according to the asymmetrical effect 
described in Table 31. 
 

Alternative Switch Power M1 M2 M3 
.01/.01/.01/.07 q=4 3 .862 .000 .021 .979 
.01/.01/.02/.07  .809 .001 .114 .885 
.01/.01/.03/.07  .809 .001 .268 .731 
.01/.01/.04/.07  .820 .005 .454 .541 
.01/.01/.05/.07  .851 .004 .629 .367 
.01/.01/.06/.07  .885 .002 .770 .229 
.01/.01/.07/.07  .907 .004 .843 .153 
.01/.01/.01/.07 q=4 2 .862 .000 .021 .979 
.01/.02/.02/.07  .727 .009 .074 .917 
.01/.03/.03/.07  .639 .084 .156 .761 
.01/.04/.04/.07  .603 .222 .188 .590 
.01/.05/.05/.07  .599 .422 .241 .337 
.01/.06/.06/.07  .662 .610 .196 .193 
.01/.07/.07/.07  .728 .764 .147 .089 

Table 31: Model classification rates for the bootstrap approach for switching the change 
point from q=4 to q=3 respective q=2 (nj=100) 
 
 

6.3. EXTREME UNBALANCED EXPOSURE DATA 
 

Particularly in environmental studies, many data for unexposed and low to medium 
exposed persons exist, but rarely data with high exposure exist - fortunately from an ethical 
point of view. However, extreme unbalanced 2 by k tables results and the statistical 
outcome depends on the rare high exposed data seriously. Costantino et al. (1995)17 
published a case-control study for respiratory cancer possibly caused by long-term 
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exposure to coke oven emissions, with a sample size of 10198 in the unexposed group but 
487 in the highest exposure group (see Table 2).  A more extreme example is the study on 
child cancer and magnetic fields from high voltage installations where sample size is 2 in 
the highest exposure group but 6457 in the unexposed group Olsen et al. (1993)13.(see 
Table 3). For moderate unbalanced designs the power is not seriously influenced (Bretz 
and Hothorn (2002)29, but here we look really on extremely unbalanced designs and the 
power decreases seriously with such a degree of unbalancedness although the total sample 
size is constant. Accordingly the correct classification rate decreases. If the total sample 
size is increased to achieve the same power, the correct classification is in the same 
magnitude of the balanced case. Interesting is that the correct classification increases if the 
change point decreases, i.e. a less unbalanced two-sample design results. 
Epidemiologically is a change point at a high exposure based on rare data very vague, 
however becomes more stable for medium-to-high exposure based on some more data for 
theses groups together.   
 

Sample sizes Shape power Class_naiv Class_boot 
200/200/200/200 .05/.05/.05/.10 .682 .930 .935 
540/200/40/20 .05/.05/.05/.10 .251 .755 .758 
200/200/200/200 .05/.05/.10/.10 .792 .843 .831 
540/200/40/20 .05/.05/.10/.10 .425 .698 .687 
200/200/200/200 .05/.10/.10/.10 .603 .795 .783 
540/200/40/20 .05/.10/.10/.10 .755 .856 .854 
400/400/400/400 .05/.05/.05/.10 .915 .965 .971 
1340/200/40/20 .05/.05/.05/.10 .266 .749 .749 
400/400/400/400 .05/.05/.10/.10 .968 .920 .916 
1340/200/40/20 .05/.05/.10/.10 .438 .674 .667 
400/400/400/400 .05/.10/.10/.10 .903 .907 .904 
1340/200/40/20 .05/.10/.10/.10 .832 .882 .883 
9740/200/40/20 .05/.05/.05/.10 .252 .696 .702 

Table 32: Model classification rates for the bootstrap approach for extreme unbalanced 
designs 
 
Unbalanced designs where the smallest sample size occurs at the informative groups (large 
change point s) reveal a clearly reduced classification rate, but the decrease compared with 
the balanced design is much weaker than the related power loss. A further reduction occurs 
for “in-between”-change points as long the sample size of the pooled informative groups is 
still smaller than in the lower exposure groups because of the interaction between the 
location of the change point and the sample size pattern. A further substantial increase of 
the sample size for the unexposed group has nearly no influence on the classification rate.  
 
 

6.4 ASYMPTOTIC POWER 
 
According to Bretz and Hothorn (2002)29 the asymptotic power for the change point test is: 
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1 1, , , ,, ,… …d i d i d i  are the vectorially summarized 

expectations and variances, as introduced in section 2. The asymptotic correlation matrix R 
derived above can be of a complicated structure. 
A R-code makes power calculation for arbitrary sample site pattern, shapes of the dose 
response and dimensions k available. In Figure 2 the power for increasing global sample 
sizes N was calculated for two rather unbalanced sample size patterns (Pattern P2 {0.8*N, 
0.125*N, 0.05*N, 0.02*N, 0.005*N} and Pattern P1 {0.6*N, 0.2*N, 0.15*N, 0.03*N, 
0.02*N}) and two change points (q=4 and 3). The power of the balanced design approaches 
1 and the power loss due to unbalancedness is seriously particularly when the change point 
is to the last exposure group. 
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Figure 2: Power for unbalanced designs 
 
 

6.5 SIMULTANEOUS CONFIDENCE INTERVALS 
 
The general multiple contrast test in chapter 4 can be simplified written fort he change 
point problem: 
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above. Because k-1 change points are possible is this test (k-1)-variate normal distributed 
with correlation matrix R based on the 1,..., , 1,..., 1ij j k i j kρ = = + −  from chapter 4. For 
one-sided increasing dose-responses the lower one-sided simultaneous (1-α) confidence 
intervals are in analogy to Hirotsu and Srivastava (2000)43: 
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7. A MODEL BASED FRAMEWORK FOR MULTIPLE CONTRAST 
TESTS AND CORRECTION FOR ADDITIONAL CONFOUNDING. 

 
7.1 SCORE TEST IN THE LOGISTIC MODEL 

 
A disadvantage of the multiple contrast test in the chapters 1-6 is its limitation on simple 
one-way layouts. In this chapter the relation between the multiple contrast test and the 
score test in a logistic model is described to allow correction for additional confounders.  
Consider k binomials ~ ( , )j j jy Bin n π , j = 0,…,k and introduce the parametrization  
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The following models are relevant for the developments here.  
Full model. M: 1kR +∈α  
Isotonic regression. 2 0 1: kH α α α≤ ≤ ≤" .  
Regression on a number of contrast vectors. 1 1 2: j j jH a bα α β β= + +  
 
For simplicity we shall here consider two contrast vectors a and b satisfying 

0j j j j
j j

a n b n= =∑ ∑ , but the results are not restricted to this situation. 

Note also that the isotonic regression model can be specified as a regression model with k 

contrast vectors corresponding to the k simple comparisons (group 1,…,j-1 versus group 

j,…,k  for j = 2,…,k). 

Homogeneity. 0 : jH α α=  
 
The likelihood function based on the data ( )1 2, , , ky y y=y …  becomes 
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so the log-likelihood function can be written as 
 

( )( ) ln 1 exp( )j j j j
j j

l c y nα α= + − +∑ ∑α . 

Under 1H  the log-likelihood function reduces to 

{ }( )1 2 0 1 1 2 2 1 2( , , ) ln 1 expj j j
j

l c T T T n a bα β β α β β α β β= + + + − − + +∑ , 

with sufficient statistic given by ( )0 1 2( , , ) , ,j j j j jT T T y y a y b= = ∑ ∑ ∑T  

Similarly, under 0H  the likelihood function becomes , { }( )0( ) ln 1 expl c T Nα α α= + − −  

where j
j

N n= ∑  and the sufficient statistic is simply 0T . 

Following Gart & Tarone (1983)44 hypotheses about the parameters 1 2( , )β β  should be 
assessed in the distribution of the T given 0T , equivalently in the distribution ( )1 2,T T  given 

0T . This is the score statistic based on the conditional likelihood function. Under the 
hypothesis of homogeneity, 1 2 0β β= = , the conditional distribution of ( )1 2,T T  given 0T  
becomes a multivariate hypergeometric distribution and the mean and the variance of 
( )1 2,T T  can be obtained immediately as  

1 2( ) ( ) 0E T E T= =  
2

1( ) (1 )
1 j j

NVar T n a p p
N

= −
− ∑ , 

2
2( ) (1 )

1 j j
NVar T n b p p

N
= −

− ∑  
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1 2( , ) (1 )
1 j j j

NCov T T n a b p p
N

= −
− ∑ , 

where 0 j

j

yTp
N n

= = ∑
∑

. 

Alternatively, one may want to consider the score statistic based on the unconditional 
likelihood function. This leads to the distribution of ( )1 2,T T  under the hypothesis of 
homogeneity. Mean and variances are then obtained by omitting the finite sample 
correction in the formulas above. The usual score test is therefore obtained as a 2χ -test of 
the form 1'S V S− , where S is the vector of score statistics and V is the variance-covariance 
matrix under 0H . Each of components of the score statistic is a single contrast test statistic 
based on the particular contrast and a global test of the hypothesis of homogeneity versus 
the regression model can therefore also based on the maximum of the scaled components 
of the score statistic.  
 
 

7.2 CORRECTION FOR CATEGORICAL CONFOUNDERS VIA 
STRATIFICATION 

 
We now turn to a stratified version of the problem above. In each of m strata, e.g. defined 
from the one or several categorical confounders, consider k binomials ~ ( , )ij ij ijy Bin n π ,  
i = 1,…m, j = 1,…,k and introduce the logit parametrization  

logit
1

ij
ij

ij

π
α

π
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 

Besides the full model in which the logit parameters are allowed to vary freely we consider 
the following models. 
Isotonic regression with each strata. 2 11 12 1 1 2: , ,K m m mkH α α α α α α≤ ≤ ≤ ≤ ≤ ≤" … "  
Regression on a number of contrast vectors within strata. 1 1 2: ij i j jH a bα α β β= + + , 
where we again for simplicity consider two contrast vectors, only. 
Homogeneity within strata. 0 : ij iH α α=   
 
The log-likelihood function becomes 

( )( ) ln 1 exp( )ij ij ij ij
i j i j

l c y nα α= + − +∑∑ ∑∑α  

and under the regression hypothesis the log-likelihood function reduces to  
{ }( )1 2 0 1 1 2 2 1 2( , , ) ln 1 expi i ij i j j

i i j
l c T T T n a bβ β α β β α β β= + + + − − + +∑ ∑∑α  

with sufficient statistic given by  

10 0 1 2 1( , , , ) , , , ,m j mj ij j ij j
j j i j i j

T T T T y y y a y b
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠
∑ ∑ ∑∑ ∑∑… …T  
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Similarly, under 0H  the likelihood function becomes 

{ }( )0( ) ln 1 expi i i i
i i

l c T Nα α= + − −∑ ∑α  where i ij
j

N n= ∑  and the sufficient statistic is 

simply 10 0( , )mT T= …0T . 
 
Again, following Gart & Tarone (1983)44, hypotheses about the parameters 1 2( , )β β  should 
be assessed in the distribution of the T given 0T , equivalently in the distribution ( )1 2,T T  
given 0T . Under the hypothesis of homogeneity, 1 2 0β β= = , the conditional distribution is 
a sum of multivariate hypergeometric distributions and the mean and the variance of 
( )1 2,T T  are therefore obtained as  

0
1( ) i

ij j
i ji

TE T n a
N

= ∑ ∑  

0
2( ) i

ij j
i ji

TE T n b
N

= ∑ ∑  

 
2

20 0
1

( )( )
1

ij iji i i i
j j

i j ji i i i

n nN T N TVar T a a
N N N N

⎡ ⎤⎧ ⎫⎛ ⎞− ⎪ ⎪⎢ ⎥= −⎨ ⎬⎜ ⎟−⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
∑ ∑ ∑ , 

2

20 0
2

( )( )
1

ij iji i i i
j j

i j ji i i i

n nN T N TVar T b b
N N N N

⎡ ⎤⎧ ⎫⎛ ⎞− ⎪ ⎪⎢ ⎥= −⎨ ⎬⎜ ⎟−⎢ ⎥⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
∑ ∑ ∑  

0 0
1 2

( )( , )
1

ij ij iji i i i
j j j j

i j j ji i i i i

n n nN T N TCov T T a b a b
N N N N N

⎡ ⎤⎧ ⎫⎛ ⎞⎛ ⎞− ⎪ ⎪= −⎢ ⎥⎨ ⎬⎜ ⎟⎜ ⎟− ⎪ ⎪⎢ ⎥⎝ ⎠⎝ ⎠⎩ ⎭⎣ ⎦
∑ ∑ ∑ ∑  

 
The usual score test can also here be obtained as a 2χ -test of the form 1'S V S− , where S is 
the vector of score statistics and V is the variance-covariance matrix under 0H . A multiple 
contrast test of the hypothesis of within stratum homogeneity can constructed from the 
maximum of the scaled components of the score statistic.  
 
 

7.3 CORRECTION FOR CONTINUOUS COVARIATES 
 

The same approach can in principle be used to correct for a continuous covariate z, but a 
closed form expression for the (conditional) moments may be difficult, or impossible, to 
derive. Consider the simplest situation with no strata and a single continuous covariate. 
The binomial variate jy  is a sum of Bernoulli contributions , 1,...,lj jy l n= . Let ljz  the 
value of the covariate measured together with ljy  then the sufficient statistic for the 

regression model becomes ( )0 1 2* , , ,zT T T T T= , where z lj lj
lj

T z y= ∑ . The relevant null 

hypothesis is, however, no longer homogeneity, but lj ljzα α β= +  and the mean and 
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variance of the contrasts ( )1 2,T T  given ( )0 , zT T  is in general complex even if individuals in 
same group share the same value of the covariate, i.e. if lj jz z= .  
 
 

8. EXAMPLES 
 

The primary cardiac arrest data in Table 1 reveals at clear change point at q=3 with a 
classification rate of 86% (the observed power is 0.99), i.e. drinking more than 4.9 cups 
coffee the day makes problems with PCA. The maximum simultaneous lower confidence 
limit is for the sub-set [4 vs. {3,2,1}] and with 0.104 medically relevant large. This finding 
agrees with the estimation of the change point. 
 

Coffee intake in 
cups 

j ˆ jπ  p CI 

<1/week 1 0.346 {4,3,2} vs.1 -.02 
1/week …1.9/day 2 0.322 {4,3} vs.{1,2} .035 
2…4.9/day 3 0.391 4 vs.{3,2,1} .104 
≥ 5 /day 4 0.544 

<0.0001 

 
Table 1modified: PCA and coffee consumption 
 
The coke oven emission data in Table 2 reveals at weak change point at q=2 with a 
classification rate of only 43%. Because the observed power is rather high (0.999), a 
change point model seems to be not appropriate for these data. The maximum simultaneous 
lower confidence limit is for the sub-set [5 vs. {4,3,2,1}] and with 0.030 medically relevant 
small. This finding disagrees with the estimation of the change point. 
 

Exposure 
/mg/m3-mo 

j ˆ jπ  CI 

Unexposed 1 0.008 {5,4,3,2} vs.1 .003 
1-199 2 0.014 {5,4,3} vs.{1,2} .012 
200-399 3 0.022 {5,4} vs.{3,2,1} .022 
400-599 4 0.030 5 vs.{4,3,2,1} .030 
>599 5 0.045 

p 
 
 
<0.0001 

 
Table 2modified: Respiratory cancer and PAH 
 
The magnet field cancer data in Table 3 reveal a change point q=8 with a classification rate 
of 0.74 (observed power 0.999). The false classification is nearly concentrated on q=7 
(0.26) . 
The maximum simultaneous lower confidence limit is for the sub-set [10 vs. 
{1,2,3,4,5,6,7,8,9}] and with 0.563 medically relevant large. This finding disagrees with 
the estimation of the change point. 
 

Exposure 
μTesla. 

j ˆ jπ  p CI  

0-0.05 1 0.263 {10,9,8,7,6,5,4,3,2} vs.1 -.716 
0.051-0.101 2 0 {10,9,8,7,6,5,4,3} vs.{1,2} -.410 
0.101-0.15 3 0.4 

0.002 

{10,9,8,7,6,5,4} vs.{1,2,3} -.327 
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0.151-.20 4 0.25 {10,9,8,7,6,5} vs.{1,2,3,4} -.246 
0.201-0.25 5 0.25 {10,9,8,7,6} vs.{1,2,3,4,5} -.139 
0.251-0.30 6 0 {10,9,8,7} vs.{1,2,3,4,5,6} .108 
0.301-0.35 7 0 {10,9,8} vs.{1,2,3,4,5,6,7} .343 
0.351-0.85 8 0.5 {10,9} vs.{1,2,3,4,5,6,7,8} .534 
0.851-1.6 9 1 10 vs.{1,2,3,4,5,6,7,8,9} .563 
>1.61 10 1  

  
Table 3modified: Child cancer and magnetic fields 
 
The hypoglycemia data in Table 4 reveal a change point q=1 with a classification rate of 
0.55 already at the lowest level of insulin. Because the observed power is not too high 
(0.84) this change point model may be relevant, i.e. for insulin levels over 0.25 
hypoglycemia is present. The maximum simultaneous lower confidence limit is for the 
sub-set [{5,4,3,2} vs. 1] and with 0.044 medically not too large. This finding agrees with 
the estimation of the change point. 
 

Insulin level j ˆ jπ  p CI 
<.25 1 0.091 {5,4,3,2} vs.1 .044 
0.251-0.49 2 0.221 {5,4,3} vs.{1,2} .003 
0.5-0.74 3 0.322 {5,4} vs.{3,2,1} -.066 
0.75-0.99 4 0.366 5 vs.{4,3,2,1} -.198 
>1 5 0.207 

0.018

-.149 
Table 4modified: Percentage hypoglycemia and daily insulin level 
 
The abortion data in Table 5 reveal a change point q=3 with a classification rate of 0.999 
(observed power 0.968). I.e. for the 20-25 years old women a clearly increased risk of 
abortion exists if the man is older than 34 years. The maximum simultaneous lower 
confidence limit is for the sub-set [4 vs. {3,2,1}] and with 0.424 medically relevant large. 
This finding agrees with the estimation of the change point. 
 

Males age j ˆ jπ  p CI 
<25 1 0.127 {4,3,2} vs.1 -.215 
25-29 2 0.103 {4,3} vs.{1,2} -.063 
30-34 3 0.047 4 vs.{3,2,1} .424 
35-39 4 0.583

<.0001

 
Table 5modified: Abortion rate and male age  
 
The respiratory cancer data in Table 6 reveal a change point q=2 with a classification rate 
of 0.70 (observed power 0.92). The maximum simultaneous lower confidence limit is for 
the sub-set [{6,5,4,3,2} vs. 1] and with 0.058 medically not too large. This finding 
disagrees with the estimation of the change point. 
 

Sulfidic nickel 
exposure 

j ˆ jπ  p CI 

Unexposed 1 0.149 {6,5,4,3,2} vs.1 .058 
Low 2 0.225 

0.0031
{6,5,4,3} vs.{1,2} .044 

π
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Low-medium 3 0.336 {6,5,4} vs.{3,2,1} -.019 
Medium 4 0.313 {6,5} vs.{4,3,2,1} -.046 
Medium-high 5 0.299 6 vs.{5,4,3,2,1} -.080 
High 6 0.329   

Table 6modified: Lung cancer and cumulative exposure to sulfidic nickel 
 
The mental retardation data in Table 7 reveal a clear change point at q=4 with a 
classification rate of 0.94 (observed power 0.999). I.e. severe mental retardation occurs 
only at rather high doses over 0.995 Gy. The maximum simultaneous lower confidence 
limit is for the sub-set [5 vs. {4,3,2,1}] and with 0.434 medically relevant large. This 
finding agrees with the estimation of the change point. 
 

Radiation Dose /Gy j ˆ jπ  p CI 

<0.005 1 0.008 {5,4,3,2} vs.1 -.025 
0.005-0.095 2 0.014 {5,4,3} vs.{1,2} .017 
0.095-0.495 3 0.009 {5,4} vs.{3,2,1} .203 
0.495-0.995 4 0.093 5 vs.{4,3,2,1} .434 
>0.995 5 0.462 

<0.0001 

  
Table 7modified: Severe mental retardation and organ specific radiation dose 
 
The eye cataract data in Table 8 reveal a clear change point at q=3 with a classification rate 
of 0.998 (observed power 0.999). I.e. severe eye cataracts occurs at doses over 0.995 Gy, 
the same change point like for the mental retardation data in Table 7. The maximum 
simultaneous lower confidence limit is for the sub-set [{7,6} vs. {1,2,3,4,5}] and with 
0.496 medically relevant large. This finding disagrees with the estimation of the change 
point. 
 
 
Radiation Dose /Gy j ˆ jπ  p CI 

<0.005 1 0.000 {7,6,5,4,3,2} vs.1 .082 
0.005-0.494 2 0.027 {7,6,5,4,3} vs.{1,2} .191 
0.495-0.994 3 0.088 {7,6,5,4} vs.{1,2,3} .369 
0.995-1.994 4 0.376 {7,6,5} vs.{1,2,3,4} .488 
1.995-2.994 5 0.628 {7,6} vs.{1,2,3,4,5} .496 
2.995-3.994 6 0.711 7 vs.{1,2,3,4,5,6} .460 
>3.995 7 0.690 

<0.0001 

  
Table 8modified: Severe cataracts depending on DS86 eye organ dose 
 
 
 

9. CONCLUSIONS 
 
In this report the analysis of 2 by k tables from epidemiological exposure studies is 
described. Although a likelihood ratio test is available, multiple contrast tests approximate 
its power with the advantage of simple distribution under the null- and alternative 
hypothesis. Not only the global decision for or against a trend is of interest. Information on 
the particular type of the alternative is welcome. For the multiple contrast test the best 
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contrast approach can be used for identification of the type of alternative, whereas a 
parametric bootstrap is suitable for estimation that variability. For the total order 
alternative at least for dimensions k > 3 miss-identification occurs, particularly for the 
linear shape. It seems to be more difficult to identify a linear shape compared with step 
shape (Fairley et al. (1987)45). For step alternatives the bootstrapped best contrast behaves 
quite well for different dimensions, non-centralities, samples sizes, and rate of the 
unexposed group (due to the asymmetry in binomial testing). The alternative model 
selection approach using the information criterion under order restriction was investigated. 
Although both approach are different – e.g. the best contrast approach controls the false 
positive error rate, while this is not an issue in model selection, both approaches behave 
quite similar for several conditions for the design k=3.   
 
A close expression for the general unbalanced design is available. The consequences of 
rather unbalanced designs, i.e. large number in the unexposed or low exposed groups but 
rare number in the high exposed groups can be calculated dependent on the expected 
shape. Simultaneous confidence intervals for the step alternative are available, too.  
A R-algorithm for calculating the global trend test (p-value), the model identification rates, 
the power, the confidence interval and the model selection percentages (k=3 only) is 
available. 
 
Finally the relation between the multiple contrast test and the score test in a logistic model 
was shown to allow correction for additional confounders. 
 
The suitability of such a simple change point alternative in epidemiological exposure 
studies should be critically discussed in the near future, although some data examples seem 
to be appropriate. 
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Appendix: Analysis of the data example according to Weinmann et al. (1997)11 (PCA 
and coffee consumption) using the R program bindosres 
 
1. Generate an ASCII file 
 
library(bindosres) 
sink("C:\\temp\\weimann.txt") 
 
###### CALCULATION BEST CONTRAST BOOTSTRAP APPROACH 
 
set.seed(177908751) 
NSim <- 5000 
 
## Example weimann 
p <- c(0.346, 0.322, 0.391, 0.544) 
n <- c(228,149,322,158) 
bp <-simulations(p, n, NSim = NSim, status = FALSE, type = "para", 
                 ctype = "Changepoint", sigonly = TRUE, B=1000, usequant=TRUE) 
bp 
 
#######CALCULATION SIMULTANEOUS CONFIDENCE INTERVALS 
### example weimann 
x <- c(79,48,126,86) 
n <- c(228,149,322,158) 
mytest <- bindosres.test(x, n) 
mytest 
confint(mytest) 
 
 
######CALCULATION POWER FOR A RELATED EXPECTED VALUE AND 
SAMPLE SIZE PATTERN 
p <-c(0.34,0.34,0.4,0.55) 
n <-c(230,150,320,160) 
power.bindosres(n,p,type=("Changepoint")) 
 
sink() 
 
 
 
2. Interpretation of the output 
 
Simulations with  para  bootstrap 
valid random samples:  5000  
success rates:  
[1] 0.346 0.322 0.391 0.544 
sample sizes:  
[1] 228 149 322 158 
Power:  0.9936   ← asymptotic power  
Naive estimation:  
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          1           2           3  
0.003824477 0.138687601 0.857487923  
Bootstrap estimation:  
          1           2           3  
0.003623188 0.135466989 0.860909823  ← identification rates  
 
 
[1]  79  48 126  86 
[1] 228 149 322 158 
 
 Asymptotical Test for Dose-Response Relationship using Changepoint 
 contrasts 
 
data:   
T = 4.2337, p-value = 3.085e-05      ← p-value 
sample estimates: 
Estimated dose response relationship : 
Contrast number  
              3     ← estimated best contrast 
     Dose0      Dose1      Dose2      Dose3  
-0.3261803 -0.2131617 -0.4606581  1.0000000  
 
           5 % 0 % 
C1  0.10445797 Inf   ← lower limit CI (in reverese order) 
C2  0.03544768 Inf 
C3 -0.02190627 Inf 
[1] 0.994058 
attr(,"error") 
[1] 1.447143e-05 
attr(,"msg") 
[1] "Normal Completion" 
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