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1 Introduction

Some of the focus in new drug development has been shifted to develop new medicines which may
not necessarily be more effective but have some other advantages compared to currently marked drugs,
like reducing toxicity. An application, e.g., is to show safety of a new treatment on multiple endpoints
compared to a reference. A rigorous claiming is to declare global safety if and only if each endpoint is
safe. Two-sided hypotheses are appropriate for most endpoints because a direction of a harm effect is
not known a priori. This is, each endpoint both must not undershoot a given lower limit of the reference
and must not overshoot a given upper limit of this reference, respectively. Because it is often hard to
fix uniform absolute safety thresholds jointly for all endpoints, ratios (not differences) to control shall
be considered, too. The equivalence thresholds must be set a priori. But they are relative, e.g. in
percent, giving an easy interpretation. For example, the new treatment will be declared as safe if, for
each endpoint, not undershooting a lower limit of 80% of the reference and not overshooting an upper
limit of 125% of this reference, respectively.

Much work has been done on the assessment of bioequivalence or therapeutic equivalence between
two treatments on a univariate endpoint. But there is limited research on the assessment of equivalence
on multiple endpoints. The traditional way to treat this problem, the intersection-union-test (IUT), is
known to be conservative in many situations. Against the background of this problem, the question
arises whether there are tests not having this weak point. In fact, there are some improved tests based
on the IUT but most of them only hold for special cases. On the other hand, different approaches exist,
like the Hotelling’s T 2-test, using a square sum test statistic for the differences in the means to show
equivalence on multiple endpoints. A short recommendation in literature is: Bloch et al. [2], Berger
and Hsu [1], Casella and Berger [3], Hochberg and Tamhane [5], Wu et al. [8]. These tests either do
not exploit the complete type I error - they have level α, not size α - or they are not applicable for ratios.

Like the union-intersection-test (UIT) for which a multivariate t-distribution can be derived for the
global test statistic, the idea was to do the same for the intersection-union-test (IUT). The traditional
IUT becomes less conservative for high correlations and, hence, very conservative for lower or negative.
A multivariate approach, taking correlations into account, was assumed to avoid this handicap. The
expected advantage was to get a size-α test this way.

2 Union-intersection and intersection-union method

2.1 Union-intersection method

The union-intersection method (UI) of test construction might be useful when the null hypothesis can
be conveniently expressed as an intersection of a family of hypotheses, this is,

H0 =
k⋂
i=1

H0i.
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Suppose that a suitable test is available for each H0i : θ ∈ Θi versus H1i : θ ∈ Θc
i . We can then write

H0 : θ ∈
k⋂
i=1

Θi.

Say the rejection region for the test of H0i is {x : Ti(x) ∈ Ri}. Hence, according to Roy (1953), the
rejection region for the union-intersection test of H0 is

k⋃
i=1

{x : Ti(x) ∈ Ri}.

This means that the global null hypothesis H0 is rejected if and only if at least one of its component
local null hypotheses H0i is rejected. I.e., a new drug is tested and said to be hazardous if at least one
endpoint is hazardous.

Depending on the test direction the local rejection region for each of the individual tests may be

{x : Ti(x) > c}.

with a common c for each individual test. The global rejection region of the UIT is

k⋃
i=1

{x : Ti(x) > c} = {x : max
i=1,...,k

Ti(x) > c}.

Thus, the test statistic for testing H0 is

T (x) = max
i=1,...,k

Ti(x).

For the inverse test direction, the local rejection region for each of the H0i is

{x : Ti(x) < c}.

Analogical considerations lead to the test statistic

T (x) = min
i=1,...,k

Ti(x).

2.2 Intersection-union method

In contrast to the union-intersection method (IU) of test construction the intersection-union method is
useful if the null hypothesis can be conveniently expressed as an union of a family of hypotheses, this
is,

H0 =
k⋃
i=1

H0i.
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Again, supposing that a suitable test is available for each H0i : θ ∈ Θi versus H1i : θ ∈ Θc
i we can

then write

H0 : θ ∈
k⋃
i=1

Θi.

The rejection region for the test of H0i is {x : Ti(x) ∈ Ri}. Hence, the rejection region for the
intersection-union test of H0 is

k⋂
i=1

{x : Ti(x) ∈ Ri}.

This means that the global null hypothesis H0 is rejected if and only if each of its component local null
hypotheses H0i is rejected. I.e., a new drug is tested and said to be safe if each endpoint is safe.

Theorem: Let αi be the size of the test of H0i with rejection region Ri (i = 1, . . . , k). Then the IUT
with rejection region R =

⋂k
i=1Ri is a level-α test, that is, its size is at most α with

α = max
i=1,...,k

αi.

Proof: Let θ ∈
⋃k
i=1 Θi. Then θ ∈ Θi for some i and

Pθ(X ∈ R) ≤ Pθ(X ∈ Ri) = αi ≤ α.

q.e.d.

Suppose the test direction for which the local rejection region for each of the individual tests is

{x : Ti(x) > c}

with a common c for each individual test. Then the global rejection region of the IUT is

k⋂
i=1

{x : Ti(x) > c} = {x : min
i=1,...,k

Ti(x) > c}.

And thus, the test statistic for testing H0 is

T (x) = min
i=1,...,k

Ti(x).

Again, the inverse test direction leads to the local rejection region for each of the H0i, this is now,

{x : Ti(x) < c}.

And we obtain the test statistic
T (x) = max

i=1,...,k
Ti(x).
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3 Test procedure

3.1 Assumptions

For i = 1, ..., k and j = 1, ..., nX , let Xij denote the outcomes for k endpoints of an experimental
treatment. Suppose that these random variables follow a k-variate normal distribution with mean vector
µX = (µX1, . . . µXk)′ and unknown covariance matrix ΣX . In the same manner, let the outcomes Yij
of a reference treatment be k-variate normal distributed with parameters µY = (µY 1, . . . µY k)′ and ΣY .
Suppose that Xij and Yij are mutually independent and ΣX = ΣY = Σ. In this way, the experimental
and the reference treatment are presumed to have the same variation per each single endpoint. Let
X̄ = (X̄1, . . . , X̄k)′, Ȳ = (Ȳ1, . . . , Ȳk)′ and Σ̂X , Σ̂Y be the sample mean vectors and the sample
covariance matrices for both treatments, respectively, with

X̄i =
1
nX

nX∑
j=1

Xij , Ȳi =
1
nY

nY∑
j=1

Yij .

The pooled sample covariance matrix Σ̂ is given by

Σ̂ =
(nX − 1)Σ̂X + (nY − 1)Σ̂Y

nX + nY − 2

with the elements

σ̂ij = Ĉovij =
(nX − 1)Ĉov(Xi, Xj) + (nY − 1)Ĉov(Yi, Yj)

nX + nY − 2
(1 ≤ i, j ≤ k)

where Ĉov(Xi, Xj) and Ĉov(Yi, Yj) are the estimates for the covariances of the several endpoints.
This does not mean the same weighting as Bloch et al. [2] do. But this denotation results in the fact
that the diagonal elements then are

σ̂ii = σ̂2
i =

(nX − 1)S2
Xi

+ (nY − 1)S2
Yi

nX + nY − 2
(i = 1, . . . , k)

with

S2
Xi

=
1

nX − 1

nX∑
j=1

(Xij − X̄i)2, S2
Yi

=
1

nY − 1

nY∑
j=1

(Yij − Ȳi)2

which are necessary in the following test procedure. From the pooled sample covariance matrix Σ̂, we
then derive the estimation of the common correlation matrix of the data R̂.

The object is to compare the new experimental treatment with the reference, and to consider it to be
safe if each endpoint is safe. This means an intersection-union test. We first observe the one-sided,
later on, the equivalence test problem.
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3.2 Test for differences in means

The new experimental treatment is declared to be safe if and only if each endpoint does not undershoot
a given fixed limit of the reference. This results in the component local tests

H0i : µXi − µY i ≤ δi vs. H1i : µXi − µY i > δi (1)

with a relevant threshold δi. The global null hypothesis of the underlying intersection-union test (IUT)
is

H0 =
k⋃
i=1

H0i.

Figure 1 shows the parameter space of a test for the case of k = 2 endpoints. The rejection region for
the test of H0 is

k⋂
i=1

{xi, yi : Ti(xi, yi) > c}.

with the t-test statistics

Ti =
X̄i − Ȳi − δi

σ̂i

√
1
nX

+ 1
nY

, (2)

a common quantile c for each individual test and the pooled estimators σ̂2
i for σ2

i . Under the marginal
assumptions ofH0i, that is, µXi−µY i−δi = 0, the test statistics Ti are t-distributed with nX +nY −2
degrees of freedom. The global rejection region of the IUT is

k⋂
i=1

{xi, yi : Ti(xi, yi) > c} = {xi, yi : min
i=1,...,k

{Ti(xi, yi)} > c}.

And thus, the test statistic for testing H0 is

T (x, y) = min
i=1,...,k

{Ti(xi, yi)} . (3)

Under the marginal assumptions of all H0i (the intersection of them), the test statistics Ti approxima-
tively follow a joint k-variate t-distribution with nX + nY − 2 degrees of freedom and a correlation
matrix depending on the data’s correlation matrix, R. But because the global null hypothesis is a union
- and not an intersection - of its local hypotheses, the margin of this global null hypothesis is not unique
which would be necessary for deriving a joint k-variate t-distribution under H0. So, we, indeed, have
to take quantiles c = tν,1−α of a univariate t-distribution. The decision rule is to reject H0 and to
conclude global safety if

T (x, y) > tν,1−α. (4)

If safety is declared if and only if each endpoint does not overshoot a given fixed limit of the reference,
the component local tests are

H0i : µXi − µY i ≥ δi vs. H1i : µXi − µY i < δi (5)
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Figure 1: Parameter space of the test by differences for non-inferiority with k = 2 endpoints.

with a relevant threshold δi. Figure 2 shows the parameter space of a test for the case of k = 2
endpoints. The rejection region for the test of H0 is

k⋂
i=1

{xi, yi : Ti(xi, yi) < c}

with the t-test statistics according to Equation (2). The global rejection region of the IUT is

k⋂
i=1

{xi, yi : Ti(xi, yi) < c} = {xi, yi : max
i=1,...,k

{Ti(xi, yi)} < c}.

The test statistic for testing H0 is now

T (x, y) = max
i=1,...,k

{Ti(xi, yi)} . (6)

The decision rule now is to reject H0 if

T (x, y) < tν,α (7)

which corresponds with T (x, y) < −tν,1−α.
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Figure 2: Parameter space of the test by differences for non-superiority with k = 2 endpoints.

Now, the new experimental treatment is declared to be safe if and only if each endpoint both does not
undershoot a given fixed lower limit of the reference and does not overshoot a given fixed upper limit
of the reference, respectively. This results in the component local tests for

H0i : µXi − µY i ≤ δ
(1)
i or µXi − µY i ≥ δ

(2)
i vs.

H1i : µXi − µY i > δ
(1)
i and µXi − µY i < δ

(2)
i (8)

with relevant thresholds δ(1)
i < δ

(2)
i . The global null hypothesis of the underlying intersection-union

test is

H0 =
k⋃
i=1

H0i =
k⋃
i=1

{H(1)
0i ∪H(2)

0i }

with
H

(1)
0i : µXi − µY i ≤ δ

(1)
i and H

(2)
0i : µXi − µY i ≥ δ

(2)
i .

The global test on equivalence is an IUT because the null hypothesis can be expressed as a union of a
family of hypotheses. Each local test itself is an IUT, too, because made up of two one-sided tests with
contrary direction. In rewriting H0 by

H0 =
k⋃
i=1

H
(1)
0i ∪

k⋃
i=1

H
(2)
0i = H

(1)
0 ∪H(2)

0 ,
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we reorganize the test problem. H(1)
0 and H(2)

0 represent two one-sided IUT now with contrary direc-
tion we have already focused. The test for the global H0 is still an IUT because the null hypothesis is
again a union of two hypotheses. Figure 3 shows the parameter space of a test for the case of k = 2
endpoints. The rejection region for the test of H0 is

k⋂
i=1

{xi, yi : T (1)
i (xi, yi) > c(1)} ∩

k⋂
i=1

{xi, yi : T (2)
i (xi, yi) < c(2)}.

with the t-test statistics

T
(1)
i =

X̄i − Ȳi − δ
(1)
i

σ̂i

√
1
nX

+ 1
nY

, T
(2)
i =

X̄i − Ȳi − δ
(2)
i

σ̂i

√
1
nX

+ 1
nY

, (9)

the quantiles c(1) and c(2) for the individual test and the pooled estimators σ̂2
i for σ2

i . Under the marginal
assumptions of H(1)

0i , the test statistics T (1)
i are t-distributed with nX + nY − 2 degrees of freedom.

Under the marginal assumptions of H(2)
0i , the test statistics T (2)

i are t-distributed with nX + nY − 2
degrees of freedom. From the considerations above, it follows that the rejection region for this IUT is

{xi, yi : min
i=1,...,k

T
(1)
i (xi, yi) > c(1)} ∩ {xi, yi : max

i=1,...,k
T

(2)
i (xi, yi) < c(2)}.

We now rewrite the test hypotheses of Equation (8) as follows,

H0i : µXi − µY i ≤ δ
(1)
i or µY i − µXi ≤ −δ(2)i vs.

H1i : µXi − µY i > δ
(1)
i and µY i − µXi > −δ(2)

i . (10)

All the considerations above stay the same but the pair of test statistics according to Equation (9)
changes into

T
(1)
i =

X̄i − Ȳi − δ
(1)
i

σ̂i

√
1
nX

+ 1
nY

, T̃
(2)
i =

Ȳi − X̄i + δ
(2)
i

σ̂i

√
1
nX

+ 1
nY

, (11)

The test statistics T (2)
i and T̃ (2)

i now have converse test directions and hence, T (1)
i and T̃ (2)

i have the
same. Herewith, the rejection region can be transformed into

{xi, yi : min
i=1,...,k

T
(1)
i (xi, yi) > c(1)} ∩ {xi, yi : min

i=1,...,k
T̃

(2)
i (xi, yi) > −c(2)}.

As mentioned above, the test for the globalH0 is an IUT because the null hypothesis is an union of two
hypotheses. But the local null hypotheses H(1)

0i and H(2)
0i exclude each other. When H(1)

0i is true then
H

(2)
0i can not. Hence, we can not assume both the marginal assumptions of H(1)

0i and H(2)
0i . There is no

unique margin for the global null hypothesis. The following relations can be shown,

E(T (1)
i |∂H(2)

0i ) =
δ
(2)
i − δ

(1)
i

σi

√
1
nX

+ 1
nY

, (12)

E(T̃ (2)
i |∂H(1)

0i ) =
δ
(2)
i − δ

(1)
i

σi

√
1
nX

+ 1
nY

. (13)
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Figure 3: Parameter space of a test by differences on equivalence for k = 2 endpoints, the alternative
hypothesis H1 is an intersection of two one-sided alternative hypotheses H(1)

1 and H(2)
1 .

These relations are easy to see in writing the test statistics T (1)
i and −T (2)

i in terms of each other,

T
(1)
i =

X̄i − Ȳi − δ
(1)
i + δ

(2)
i − δ

(2)
i

σ̂i

√
1
nX

+ 1
nY

=
−

(
Ȳi − X̄i + δ

(2)
i

)
σ̂i

√
1
nX

+ 1
nY

+
δ
(2)
i − δ

(1)
i

σ̂i

√
1
nX

+ 1
nY

= −T̃ (2)
i +

δ
(2)
i − δ

(1)
i

σ̂i

√
1
nX

+ 1
nY

,

T̃
(2)
i =

Ȳi − X̄i + δ
(2)
i + δ

(1)
i − δ

(1)
i

σ̂i

√
1
nX

+ 1
nY

=
−

(
X̄i − Ȳi − δ

(1)
i

)
σ̂i

√
1
nX

+ 1
nY

+
δ
(2)
i − δ

(1)
i

σ̂i

√
1
nX

+ 1
nY

= −T (1)
i +

δ
(2)
i − δ

(1)
i

σ̂i

√
1
nX

+ 1
nY

.

Therefore, under the marginal assumption ofH(1)
0i , the test statistic T̃ (2)

i follows a non-central univariate
t-distribution with nX + nY − 2 degrees of freedom, non-centrality parameter

θi =
δ
(2)
i − δ

(1)
i

σi

√
1
nX

+ 1
nY

. (14)
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The test statistic T (1)
i follows the same distribution but under the marginal assumption ofH(2)

0i . For this
reason, we need two test statistics for testing H0, namely

T (1)(x, y) = min
i=1,...,k

{
T

(1)
i (xi, yi)

}
, T (2)(x, y) = min

i=1,...,k

{
T̃

(2)
i (xi, yi)

}
. (15)

Again, under the marginal assumptions of all H(1)
0i (the intersection of them), the test statistics Ti

approximatively follow a joint k-variate t-distribution with nX + nY − 2 degrees of freedom and a
correlation matrix depending on the data’s one, R. But because of the said reasons, one can not derive
a joint k-variate t-distribution under H0. So, we, have to take quantiles c = tν,1−α of a univariate
t-distribution. The decision rule is to reject H(1)

0 if

T (1)(x, y) > tν,1−α.

In the same manner, the decision rule is to reject H(2)
0 if

T (2)(x, y) > tν,1−α.

Safety can only be concluded if both

T (1)(x, y) > tν,1−α and T (2)(x, y) > tν,1−α. (16)

3.3 Test for ratios of means

Most of the results of the test for differences in means holds for the case of ratios, too. So, (1) chances
into

H0i :
µXi
µY i

≤ ψi vs. H1i :
µXi
µY i

> ψi (17)

with a relevant threshold ψi. Figure 4 shows the parameter space of a test for the case of k = 2
endpoints. The local ratio-test statistics are

Ti =
X̄i − ψiȲi

σ̂i

√
1
nX

+ ψ2
i

nY

. (18)

The test statistic for testing H0 is

T (x, y) = min
i=1,...,k

{Ti(xi, yi)} . (19)

The decision rule is to reject H0 and to conclude global safety if

T (x, y) > tν,1−α. (20)

Correspondingly, (5) chances into

H0i :
µXi
µY i

≥ ψi vs. H1i :
µXi
µY i

< ψi. (21)
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Figure 4: Parameter space of the test by ratios for non-inferiority with k = 2 endpoints.

Figure 5 shows the parameter space of a test for the case of k = 2 endpoints. The local ratio-test
statistics are the same as in Equation (18). The test statistic for testing H0 is now

T (x, y) = max
i=1,...,k

{Ti(xi, yi)} . (22)

The decision rule is to reject H0 if
T (x, y) < tν,α (23)

which corresponds with T (x, y) < −tν,1−α.

When the new experimental treatment is declared to be safe if and only if each endpoint both does not
undershoot a given relative lower limit of the reference and does not overshoot a given relative upper
limit of the reference, respectively, (8) chances into

H0i :
µXi
µY i

≤ ψ
(1)
i or

µXi
µY i

≥ ψ
(2)
i vs.

H1i :
µXi
µY i

> ψ
(1)
i and

µXi
µY i

< ψ
(2)
i (24)

with relevant thresholds ψ(1)
i < ψ

(2)
i . Figure 6 shows the parameter space of a test for the case of k = 2

endpoints. The local ratio-test statistics are

T
(1)
i =

X̄i − ψ
(1)
i Ȳi

σ̂i

√
1
nX

+ ψ
(1)2

i
nY

, T
(2)
i =

X̄i − ψ
(2)
i Ȳi

σ̂i

√
1
nX

+ ψ
(2)2

i
nY

. (25)
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Figure 5: Parameter space of the test by ratios for non-superiority with k = 2 endpoints

Figure 6: Parameter space of a test by ratios on equivalence for k = 2 endpoints, the alternative
hypothesis H1 is an intersection of two one-sided alternative hypotheses H(1)

1 and H(2)
1 .
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They will be rewritten into

T
(1)
i =

X̄i − ψ
(1)
i Ȳi

σ̂i

√
1
nX

+ ψ
(1)2

i
nY

, T̃
(2)
i =

Ȳi − 1

ψ
(2)
i

X̄i

σ̂i

√
1
nY

+ 1

ψ
(2)2

i nX

, (26)

having the same test directions now. The following relations can be shown,

E(T (1)
i |∂H(2)

0i ) =

(
1 + 1

ψ
(2)
i

)
µXi −

(
1 + ψ

(1)
i

)
µY i

σi

√
1
nX

+ ψ
(1)2

i
nY

, (27)

E(T̃ (2)
i |∂H(1)

0i ) =

(
1 + ψ

(1)
i

)
µY i −

(
1 + 1

ψ
(2)
i

)
µXi

σi

√
1
nY

+ 1

ψ
(2)2

i nX

. (28)

These relations are again easy to see in writing the test statistics T (1)
i and −T (2)

i in terms of each other,

T
(1)
i =

X̄i − ψ
(1)
i Ȳi + Ȳi − 1

ψ
(2)
i

X̄i − Ȳi + 1

ψ
(2)
i

X̄i

σ̂i

√
1
nX

+ ψ
(1)2

i
nY

=
X̄i − ψ

(1)
i Ȳi − Ȳi + 1

ψ
(2)
i

X̄i

σ̂i

√
1
nX

+ ψ
(1)2

i
nY

+
Ȳi − 1

ψ
(2)
i

X̄i

σ̂i

√
1
nX

+ ψ
(1)2

i
nY

σ̂i

√
1
nY

+ 1

ψ
(2)2

i nX

σ̂i

√
1
nY

+ 1

ψ
(2)2

i nX

=
X̄i − ψ

(1)
i Ȳi − Ȳi + 1

ψ
(2)
i

X̄i

σ̂i

√
1
nX

+ ψ
(1)2

i
nY

+ T̃
(2)
i

√√√√√√
1
nY

+ 1

ψ
(2)2

i nX

1
nX

+ ψ
(1)2

i
nY

,

T̃
(2)
i =

Ȳi − 1

ψ
(2)
i

X̄i + X̄i − ψ
(1)
i Ȳi − X̄i + ψ

(1)
i Ȳi

σ̂i

√
1
nY

+ 1

ψ
(2)2

i nX

=
Ȳi − 1

ψ
(2)
i

X̄i − X̄i + ψ
(1)
i Ȳi

σ̂i

√
1
nY

+ 1

ψ
(2)2

i nX

+
X̄i − ψ

(1)
i Ȳi

σ̂i

√
1
nY

+ 1

ψ
(2)2

i nX

σ̂i

√
1
nX

+ ψ
(1)2

i
nY

σ̂i

√
1
nX

+ ψ
(1)2

i
nY

=
Ȳi − 1

ψ
(2)
i

X̄i − X̄i + ψ
(1)
i Ȳi

σ̂i

√
1
nY

+ 1

ψ
(2)2

i nX

+ T
(1)
i

√√√√√√ 1
nX

+ ψ
(1)2

i
nY

1
nY

+ 1

ψ
(2)2

i nX

.
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Therefore, under the marginal assumption ofH(1)
0i , the test statistic T̃ (2)

i follows a non-central univariate
t-distribution with nX + nY − 2 degrees of freedom, non-centrality parameter

θ
(2)
i =

(
1 + ψ

(1)
i

)
µY i −

(
1 + 1

ψ
(2)
i

)
µXi

σi

√
1
nY

+ 1

ψ
(2)2

i nX

. (29)

Under the marginal assumption of H(2)
0i , the test statistic T (1)

i follows the same distribution but with
non-centrality parameter

θ
(1)
i =

(
1 + 1

ψ
(2)
k

)
µXk −

(
1 + ψ

(1)
k

)
µY k

σk

√
1
nX

+ ψ
(1)2

k
nY

. (30)

For this reason, we now have two test statistics for testing H0 as follows,

T (1)(x, y) = min
i=1,...,k

{
T

(1)
i (xi, yi)

}
, T (2)(x, y) = min

i=1,...,k

{
T̃

(2)
i (xi, yi)

}
. (31)

The decision rule is to reject H0 and to conclude safety if both

T (1)(x, y) > tν,1−α and T (2)(x, y) > tν,1−α. (32)

3.4 α-simulations

Simulation studies were performed for 2, 4, 8 and 20, 40, 80 endpoints with several means and vari-
ances. For each fixed number of endpoints k ∈ {2, 4, 8, 20, 40, 80}, different grades of correlation
were considered: maximal negative correlation, correlation 0, correlation 0.5 and maximal correla-
tion. For each fixed k and grade of correlation, the endpoints were equicorrelated, this is ρij = ρ
for all 1 ≤ i 6= j ≤ k. Note that the negative correlations in the left column are bounded below by
ρmin = − 1

k−1 . 100000 simulation runs were taken for 2, 4, 8 endpoints, 10000 for 20, 40, 80 end-
points. Each simulation result was obtained using a program code in the statistic software R [7] and
applying the package mvtnorm by Genz and Bretz [4].

The aim to show that using related quantiles of a k-variate t-distribution to obtain a size-α test, was
not achieved. Indeed, this approach leads to an exact size α but only for the intersection of all margins
of local null hypotheses

⋂k
i=1 ∂H0i. Quantiles of a univariate t-distribution result in very conservative

decisions for that situation. But for the case of interest (the union
⋃k
i=1 ∂H0i = ∂H0), the univariate

method keeps the α-level conservatively, while the multivariate quite fails. An example is: 4 endpoints
with correlation 0, one-sided testing (non-inferiority), balanced sample size 100, coefficient of variation
0.25, µY = (0.1, 1, 10, 100)′, µX = (0.079, 1.0, 10, 100)′, δ = (−0.02,−0.20,−2.00,−20.00)′. That
means that µX1 is inferior (unsafe), the others are non-inferior (safe). Because not each endpoint is
safe, global safety could not be declared. The related type I errors are: 0.37 (multivariate method) and
0.03 (traditional univariate IUT).

14



4 Discussion

One possibility to show bioequivalence or therapeutic equivalence between two treatments on multiple
endpoints is using an IUT for either differences in means or ratios of them. This then yields a global
tests which rejects if and only if each local test rejects. E.g., a new experimental treatment is declared
to be safe if each endpoint is safe, and safety is defined in not under-/ overshooting a given fixed limit
of a reference. The IUT is known to be very conservative in many situations. One reason is that it
does not take any correlations into account. Each endpoint will be tested separately using quantiles or
p-values from univariate t-distributions. Another reason is the nature of the margin of null hypothesis,
∂H0. So, the aim was to extend the IUT to a multivariate approach like the UIT using a multivariate
t-distribution instead of a, say Bonferroni, adjustment. The conclusion so far is that there is no such
easy equivalent multivariate-t approach for the IUT. The studied one does not keep the α-level for the
complete space of the null hypotheses.

Another noteworthy fact is that an IUT for showing equivalence between two treatments on multiple
endpoints always comes to a global decision. All endpoints together are equivalent or not. If not,
omitting the hazardous endpoints does not synonymously mean the equivalence of the remaining ones.
To demonstrate equivalence on a subset of endpoints (at least 1, . . . , k − 1 of k) and to identify those,
the procedure of Quan et al. [6] is an appropriate solution, for example.
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