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1 Introduction

Experimental trials often do not cover only one single endpoint but many correlated endpoints (see the
data of Schulte et al. (2002)). A measurement object may be related to different variables or be observed
in the course of time. Multiplicity adjustment must then take the number of endpoints into account,
too. Thus, the first strategy is to reduce the number of endpoints to the smallest possible number that
is necessary and that still provides the main information about the data. Second, it is useful to divide
the endpoints into primary and secondary ones, where the primary endpoints are most important. The
guideline on biostatistics according to the ICH E9 Expert Working Group (1999) recommends the
selection of one primary endpoint. However, this is often not sufficient from an investigator’s point
of view. The secondary endpoints are considered only after the primary objective of the trial has been
achieved. A possible objection is that such a classification of endpoints according to their importance
can be somewhat arbitrary. Like the first, this strategy also reduces the dimension of the problem,
but the question, how to handle multiple primary endpoints, remains. The statistical analysis for these
endpoints must control the FWE over all of them. On the other hand, their correlations are important.
For example, highly correlated endpoints do not give the same amount of information about the data as
uncorrelated ones. Effects may be erroneously ignored when analyzing the endpoints separately.

Multiple contrast tests (MCTs) and related simultaneous confidence intervals (SCIs) provide test
decisions and parameter estimation, respectively, for each comparison. They control the FWE at level
α, and take correlations into account. However, they had been limited to comparisons of treatments on
a single endpoint so far. This report presents some aspects concerning the power of MCTs and SCIs
for multiple endpoints according to Hasler (2009). Ratios of means are focused here, because SCIs are
then comparable also for the different endpoints, which can be assumed to have different scales.

2 Test Procedure

For h = 1, . . . , p, i = 1, . . . , k and j = 1, . . . , nh, let Xhij denote the jth observation on the ith
endpoint under the hth treatment in a one-way layout, and

∑p
h=1(nh − 1) ≥ k. Each endpoint is

hence measured for all N =
∑p

h=1 nh objects. Suppose the vectors (Xh1j , . . . , Xhkj)′ to be mutually
independent and to follow k-variate normal distributions with mean vectors µh = (µh1, . . . µhk)′ and
unknown covariance matrices Σh = (σh,ii′)i,i′ . Let the means per endpoint, µ1i, . . . , µpi, have the
same algebraic sign, i.e., sign(µ1i) = . . . = sign(µpi) (i = 1, . . . , k). Presume possibly different
variances and covariances for the endpoints but the same covariance matrices for all treatments, i.e.,
Σ1 = . . . = Σp = Σ = (σii′)i,i′ . That means

{Xhij : i = 1, . . . , k} ∼ ⊥Nk(µh,Σ) (h = 1, . . . , p, j = 1, . . . , nh).

Let X̄h = (X̄h1, . . . , X̄hk)′ and Σ̂h be the sample mean vectors and the sample covariance matrices
for the treatments, respectively. The pooled sample covariance matrix Σ̂ = (σ̂ii′)i,i′ is given by

Σ̂ =
∑p

h=1(nh − 1)Σ̂h∑p
h=1(nh − 1)
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with the estimates σ̂ii′ (1 ≤ i, i′ ≤ k) for the covariances of the different endpoints. The diagonal
elements, which are required for the following test procedure, are hence

σ̂ii = S2
i =

(n1 − 1)S2
1i + · · ·+ (np − 1)S2

pi

n1 + · · ·+ np − p
(i = 1, . . . , k)

with

S2
hi =

1
nh − 1

nh∑
j=1

(Xhij − X̄hi)2 (h = 1, . . . , p).

From the pooled sample covariance matrix Σ̂, we then derive the estimation R̂ = (ρ̂ii′)i,i′ of the
common correlation matrix of the data R = (ρii′)i,i′ . We are interested in the matrix of ratios of
contrasts,G = (γli)l,i, where

γli =
∑p

h=1 clhµhi∑p
h=1 dlhµhi

=
c′lµ,i
d′lµ,i

(l = 1, . . . , q, i = 1, . . . , k)

with µ,i = (µ1i, . . . , µpi)′. The vectors cl = (cl1, . . . , clp)′ and dl = (dl1, . . . , dlp)′ consist of real
constants and are the same for all endpoints; they do not depend on the particular value of the index
i. Endpoint-specific contrasts are also possible in principle, but we disregard this fact for simplicity.
Without loss of generality, the objective is to test the hypotheses

H0,li : γli ≤ θli (l = 1, . . . , q, i = 1, . . . , k) (1)

with contrast- and endpoint-specific relative thresholds θli ∈ (0,∞). Usually, θli = 1 for all l =
1, . . . , q and for all i = 1, . . . , k. If the test direction is reversed for some endpoints, the correspond-
ing test statistics have to be multiplied with minus one. We focus here on ratios of means to enable
comparison of the results for the different endpoints, which can be assumed to have different scales.
Related SCIs for ratios are on the same relative (e.g., per cent) scale for all contrasts and endpoints,
while SCIs for differences are not. On the other hand, for the case of θli = 1 for all l = 1, . . . , q and for
all i = 1, . . . , k, this test coincides with the difference-based one. Testing problem (1) is a UIT because
the overall null hypothesis of interest can be expressed as an intersection of the local null hypotheses,
i.e.,

H0 =
q⋂
l=1

H0l and H0l =
k⋂
i=1

H0,li.

Thus, Theorem the procedure is coherent and consonant according to Gabriel (1969).
The test statistics are given by

Tli =
∑p

h=1 (clh − θlidlh) X̄hi

Si

√∑p
h=1 (clh − θlidlh)2 /nh

=
(cl − θlidl)′ X̄ ,i

Si

√
(cl − θlidl)′M (cl − θlidl)

(l = 1, . . . , q, i = 1, . . . , k)
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where

M =

 1/n1 0
. . .

0 1/np

 .

The vectors T l = (Tl1, . . . , Tlk)′, containing the test statistics for the lth comparison on all endpoints,
can be reshaped to

T l =

(
Yl1√
U1/ν

, . . . ,
Ylk√
Uk/ν

)′
(l = 1, . . . , q),

where under H0l, the vector (Yl1, . . . , Ylk)′ follows a k-variate normal distribution with a correlation
matrix denoted byRll. The U1, . . . , Uk are dependent χ2 variables with

ν =
p∑

h=1

(nh − 1)

degrees of freedom. Note that U1, . . . , Uk are different random variables but they follow the same
distribution. Under H0l, T l is approximately k-variate t-distributed with ν degrees of freedom and
correlation matrixRll, i.e.,

T l
appr.∼ tk(ν,Rll).

The exact distribution is – strictly speaking – unknown. Consequently, under H0, the vector of all test
statistics,

T = (T ′1, . . . ,T
′
q)
′ = (T11, . . . , Tli, . . . , Tqk)′,

follows (approximately) a qk-variate t-distribution with ν degrees of freedom and a correlation matrix,
denoted by R̃, i.e.,

T
appr.∼ tqk(ν, R̃).

The correlation matrix R̃ is given by

R̃ = (Rll′)l,l′ =


R11 R12 . . . R1q

R12 R22 . . . R2q
...

...
. . .

...
R1q R2q . . . Rqq

 .

The submatrices Rll′ = (ρll′,ii′)i,i′ describe the correlations between the contrasts l and l′ for all
endpoints. Their elements are

ρll′,ii′ = ρii′

∑p
h=1 (clh − θlidlh) (cl′h − θl′i′dl′h) 1

nh√∑p
h=1 (clh − θlidlh)2 1

nh

√∑p
h=1 (cl′h − θl′i′dl′h)2 1

nh

(2)

= ρii′
(cl − θlidl)′M (cl′ − θl′i′dl′)√

(cl − θlidl)′M (cl − θlidl)
√

(cl′ − θl′i′dl′)′M (cl′ − θl′i′dl′)

(1 ≤ l, l′ ≤ q, 1 ≤ i, i′ ≤ k),
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where the ρii′ are the elements of the correlation matrixR = (ρii′)i,i′ of the data. It is obvious that for
i = i′, we recover the correlations of an MCT for ratios of means, see, e.g., Dilba et al. (2006). Hence,
the case of only one endpoint (k = 1) and several treatments may be incorporated into the present
theory rather easily. Furthermore, focusing on one fixed contrast (l = l′) and equal thresholds for
all endpoints (θli = θl ∀ i = 1, . . . , k), the structure of the correlation matrix simplifies according to
ρll′,ii′ = ρii′ andRll = R. Note that neither the matrix R̃ nor the matrixRll′ has a product correlation
structure, i.e., the elements do not factorize. Because the common correlation matrix of the data R is
not known and must be estimated, we conclude that, under H0,

T
appr.∼ tqk(ν,

ˆ̃R),

where ˆ̃R is the estimation of R̃.
The decision rule for testing problem (1) is to reject H0,li for each ratio of contrasts γli with

Tli > tlqk,1−α(ν, ˆ̃R),

where tlqk,1−α(ν, ˆ̃R) is a lower (1 − α)-quantile of a related qk-variate t-distribution. If two-sided

testing is of interest, the absolute values for Tli and quantiles ttsqk,1−α(ν, ˆ̃R) have to be taken. For
the computation of these quantiles, one may resort to the numerical integration routines of Genz and
Bretz (1999, 2002) (see also Bretz et al. (2001)) mentioned earlier, which are not restricted to special
correlation structures. The related adjusted p-values per comparison and endpoint can also be obtained,
of course.

3 Simultaneous Confidence Intervals

Let ξ = (ξ11, . . . , ξqk)′ be a point in the parameter space of γ = (γ11, . . . , γqk)′. Assuming that in-
creasing values of the data,Xhij , represent a better effect of the treatments, the (1−α)100% confidence
set for the statistical problem (1) is given by

C ((x, y)) =
{
ξ : Tli(ξli) ≤ tlqk,1−α(ν, ˆ̃R), l = 1, . . . , q, i = 1, . . . , k

}
=

{
ξ : Aliξ2li +Bliξli + Cli ≤ 0, l = 1, . . . , q, i = 1, . . . , k

}
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where

Ali =

(
p∑

h=1

dlhX̄hi

)2

−
(
tlqk,1−α(ν, ˆ̃R)

)2
S2
i

p∑
h=1

d2
lh/nh

=
(
d′lX̄ ,i

)2 − (tlqk,1−α(ν, ˆ̃R)
)2
S2
i d
′
lMdl,

Bli = −2

((
p∑

h=1

clhX̄hi

)(
p∑

h=1

dlhX̄hi

)
−
(
tlqk,1−α(ν, ˆ̃R)

)2
S2
i

p∑
h=1

clhdlh/nh

)

= −2
((
c′lX̄ ,i

) (
d′lX̄ ,i

)
−
(
tlqk,1−α(ν, ˆ̃R)

)2
S2
i c
′
lMdl

)
,

Cli =

(
p∑

h=1

clhX̄hi

)2

−
(
tlqk,1−α(ν, ˆ̃R)

)2
S2
i

p∑
h=1

c2lh/nh

=
(
c′lX̄ ,i

)2 − (tlqk,1−α(ν, ˆ̃R)
)2
S2
i c
′
lMcl. (3)

This approach is based on Fieller’s Theorem (Fieller, 1954). As is known, the correlation matrix R̃
depends here on the unknown ratios γli, ρ̂ll′,ii′ = ρ̂ll′,ii′(γli, γl′i′). Application of the plug-in approach
of Dilba et al. (2006) corresponds to the use of

γ̂li =
∑p

h=1 clhX̄hi∑p
h=1 dlhX̄hi

=
c′lX̄ ,i

d′lX̄ ,i
(l = 1, . . . , q, i = 1, . . . , k)

in Equation (2) instead of θli (similarly for index l′i′). For simplicity, we do not introduce a new symbol
for the resulting estimated correlation matrix. The lower limits of the approximate (1− α)100% SCIs
for (γ11, . . . , γqk)′ are hence given by

γ̂lowerli =
−Bli −

√
B2
li − 4AliCli

2Ali
(l = 1, . . . , q, i = 1, . . . , k).

If Ali > 0, then the solution is finite (see, e.g., Buonaccorsi and Iyer (1984) for the case of only one
endpoint). The statistical problem (1) can be decided as follows: For a specified level α, we rejectH0,li

for each contrast γli with
γ̂lowerli > θli.

For the two-sided case, we obtain

C ((x, y)) =
{
ξ : |Tli(ξli)| ≤ ttsqk,1−α(ν, ˆ̃R), l = 1, . . . , q, i = 1, . . . , k

}
=

{
ξ : Aliξ2li +Bliξli + Cli ≤ 0, l = 1, . . . , q, i = 1, . . . , k

}
,
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where theAli,Bli andCli are defined as in (3) but with quantiles ttsqk,1−α(ν, ˆ̃R) instead of tlqk,1−α(ν, ˆ̃R).
The confidence limits are given by

γ̂lowerli =
−Bli −

√
B2
li − 4AliCli

2Ali
(l = 1, . . . , q, i = 1, . . . , k),

γ̂upperli =
−Bli +

√
B2
li − 4AliCli

2Ali
(l = 1, . . . , q, i = 1, . . . , k).

For a specified level α, we reject H0,li for each contrast γli with

γ̂lowerli > θli or γ̂upper
li < θli.

4 Power Considerations

The testing problem (1) is simplified here to the case of equal thresholds, θli = θ for all l = 1, . . . , q
and i = 1, . . . , k. Let higher response values indicate better treatment effects and τ∗ denote the greatest
irrelevant ratio to the control mean which is to be detected. Define the set of indices I (τ∗) = {(l, i) :
τli > τ∗}. All ratios of contrasts with τli values greater than τ∗ are relevant. An (approximate)
expression for the complete (or all-pairs) power of the statistical problem (1) is given by

P

{
Tli > tlqk,1−α(ν, R̃)

∣∣∣∣ψli,Σ ∀(l, i) ∈ I(θ∗)
}
. (4)

An (approximate) expression for the minimal (or any-pair) power of the statistical problem (1) is given
by

P

{
Tli > tlqk,1−α(ν, R̃)

∣∣∣∣ψli,Σ for at least one (l, i) ∈ I(θ∗)
}
. (5)

The probability to reject for any contrast is defined as the global power. If one is interested only in
the global test decision for statistical problem (1), then this definition is appropriate. An (approximate)
expression for the global power of the statistical problem (1) is given by

P

{
Tli > tlqk,1−α(ν, R̃)

∣∣∣∣ψli,Σ for at least one l = 1, . . . , q and i = 1, . . . , k
}
. (6)

Because the data’s correlations are estimated, the quantiles tlqk,1−α(ν, R̃) in fact are random variables
because they depend on the sample values. Therefore, the probabilities (4), (5) and (6) are only ap-
proximate ones. The power function (6) can be calculated from a non-central qk-variate t-distribution
with ν degrees of freedom and non-centrality parameter κ = (κ11, . . . , κli, . . . , κqk)′, where

κli =
∑p

h=1 (clh − θdlh)µhi√
σii
∑p

h=1 (clh − θdlh)2 /nh

=
(cl − θdl)

′ µ,i√
σii (cl − θdl)

′M (cl − θdl)
.
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Figure 1 (2) illustrates Equation (6) for three (five) treatments and the Dunnett contrast depending
on the ratio γq1 = µp1/µ11 (where q = p−1). The remaining ratios γli are fixed and equal. The relative
thresholds against which the test is performed are θli = 1 for all l = 1, . . . , q and all i = 1, . . . , k.
Several equicorrelations (rows) for two, four and eight endpoints (columns) are considered. The total
sample size is 60 (100). Three allocations are shown each. The solid line represents the well-known
optimal allocation for the Dunnett contrast, i.e., n1 =

√
p− 1nh (h = 2, . . . , p). Hence, the sample

size for the control group is n1 = 24, 12, 6 (32, 16, 8), and the sample sizes for the non-control groups
are balanced. Although the correlations of the endpoints are taken into account, their exact influence
it is not clear from Figures 1 and 2. Therefore, this problem is presented by Figure 3 (4). Again,
Equation (6) is illustrates for three (five) treatments with a similar background, but now depending
on the correlations of the endpoints. The ratio γq1 is set here to 1.25. One-sided and two-sided tests
(rows) for two, four and eight endpoints (columns) are considered. The power indeed depends on the
correlations. The minimum is achieved for vanishing correlation and increases for increasing absolute
correlation values.

The package multtest (Pollard et al., 2007) of the statistical software R [2008] provides resampling-
based multiple hypothesis testing. Non-parametric bootstrap and permutation tests are implemented.
Tests based on t- and F -statistics are included. The main application of this package is gene selection in
microarray experiments. The function MTP performs test procedures for multiple endpoints by single-
step and step-down minP and maxT methods to control the FWE (or other error rates). Tests based on
t-tests are restricted to comparisons of two groups, e.g. a treatment and a control. A simulation study
has been performed to compare this t-test-based bootstrap approach (Boot.) with the new MCT method
(Multiv.). The single-step option method=‘‘ss.maxT’’ has been used for comparability. Hence,
only p = 2 treatment groups are simulated (and hence q = 1), and θ1i = 1 for all i = 1, . . . , k (for
more details, see Hasler (2009)). Figure 5 shows the results of the mentioned power comparison. The
rows are related to the different equicorrelations, the columns to the number of endpoints. Minimal and
complete power coincide in this case, because the treatment group differs only for the first endpoint.
A higher power of the new multivariate method is visible only for high correlations and high numbers
of endpoints. Figure 6 shows the minimal power for the case that the mean of the treatment group
was changed simultaneously for all endpoints and by the same relative amount. Except for the mini-
mal equicorrelation ρmin, the bootstrap method is better with respect to power than the new method.
This difference becomes more pronounced with increasing correlation and with increasing number of
endpoints. Figure 7 shows the complete power for the same background (simultaneously changing the
mean of the treatment group for all endpoints). The bootstrap method has slightly less power than the
multivariate method, but this difference becomes negligible for high correlations. In summary: The
power behavior of the competitors is almost equal. The gain in the minimal power for the bootstrap
approach is insignificant in view of the properties and flexibility of the new MCT method.

7



Figure 1: Global power function of one-sided MCTs for p = 3 treatments, the Dunnett contrast, several
numbers of endpoints, ratios γq1, and equicorrelations; α = 0.05.
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Figure 2: Global power function of one-sided MCTs for p = 5 treatments, the Dunnett contrast, several
numbers of endpoints, ratios γq1, and equicorrelations; α = 0.05.
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Figure 3: Global power function of MCTs for p = 3 treatments, the Dunnett contrast, several numbers
of endpoints, and equicorrelations; γq1 = 1.25, α = 0.05.

Figure 4: Global power function of MCTs for p = 5 treatments, the Dunnett contrast, several numbers
of endpoints, and equicorrelations; γq1 = 1.25, α = 0.05.
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Figure 5: Minimal and complete power function of one-sided MCTs for p = 2 treatments, the Dunnett
contrast, several numbers of endpoints, and equicorrelations; γq1 = 1, α = 0.05.
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Figure 6: Minimal power function of one-sided MCTs for p = 2 treatments, the Dunnett contrast,
several numbers of endpoints, and equicorrelations; γq1 = 1, α = 0.05.
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Figure 7: Complete power function of one-sided MCTs for p = 2 treatments, the Dunnett contrast,
several numbers of endpoints, and equicorrelations; γq1 = 1, α = 0.05.

13



5 Conclusions and recommendations

The problem of many, possibly correlated, endpoints has been investigated. MCTs and related SCIs
had been restricted to comparisons on a single endpoint so far. This methodology was extended to
the case of an arbitrary number of endpoints by deriving an approximate multivariate t-distribution.
Ratios of means have been considered for comparability of the different endpoints which may have
different scales. An approach for differences of means has not been focused explicitly, but it can easily
be obtained based on this work. If variances or correlations are assumed to differ for the different
groups, the PI procedure for heterogeneous variances of Hasler and Hothorn (2008) can be applied. The
procedures presented can be shown to maintain the FWE. The version for heterogeneous covariances
shows a slight liberalism, but it is in acceptable ranges. Test decisions (e.g., p-values) for all contrasts
and all endpoints are available as well as SCIs. For this reason, a fair power comparison with existing
methods is not feasible. A resampling-based competitor with the same features exists only for the case
of comparisons of only two groups (package multtest (Pollard et al., 2007) in R [2008]). Depending
on which power is considered, the new method has about the same power properties or it is slightly
worse. This is compensated by a gain in flexibility.
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