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1 Introduction

General purpose: define upper limits of measurements for a ’non-responder’ population based on as-
says for ADA (’cutpoint’) Experimental background: laboratory experiments are run that measure ADA
with some assay system, where ADA-positive samples (’responders’) tend to high measurements and
ADA-negative samples (’non-responders’) tend to low values in the laboratory experiments, there are
two types structures that need to be addressed in the analysis: 1) there are biological samples (rep-
resenting sera of different laboratory animals, or of different patients, etc.) and 2) structures related
to the assay system, e.g. assay run on different days, by different analysts, with different plates, etc.
Problem: given that the biological sample consists of ’non-responders’ only (or, that a population of
’non-responders’ has been identified within the sample under investigation), the estimation of a cut-
point should take experimental structures (biological samples, time, analysts, devices, plates, etc.) into
account.

Following Hoffman and Berger (2011), we define the ’cutpoint’ as an upper prediction limit that
contains a single future observation with probability (1− α). The computation of such intervals is de-
scribed for simple experimental layouts Hahn and Meeker (1991), and some special cases Satterthwaite
(1941); Hoffman and Berger (2011). The purpose of this report is to formally describe these methods
for a set of special cases, which may be relevant for experimental designs in laboratory experiments
concerning ADA.

A major problem of available example data sets is that the experimental designs were unclear or
fundamentally ill-designed, such that variance components of interest were confounded, or, at least,
standard ANOVA models were not applicable. As a result, the set of necessary experimental layouts
and corresponding models of potential interest is still unclear. The experimental layout and model
underlying the methods in the initial reference Hoffman and Berger (2011) and all experimental layouts
and models discussed in the following are considerably more simple than what might have lead to the
real data that have been available so far.

In the following, along with a formal definition of statistical models, examples of corresponding
experimental designs are described.

2 Models and corresponding experimental layout

2.1 One-way layout (h1)

yij = µ+ ai + ej(i)
ai ∼ N(0, σ2a), i = 1, ..., I
ej(i) ∼ N(0, σ2e), j(i) = 1(i), ..., J(i)

(1)

This model may be adequate for analyzing the following experimental design:

• a random sample of IJ patients is obtained and is randomly split into I subsets, i = 1, ..., I , each
of size J ,

• each subset i is assigned to one of I plates; within plate i, the jth patients sample is identified by
j(i),
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i.e., patient j is NOT repeatedly analyzed at more than one plate, but each patient is analyzed only
once at only one plate. Thus σ2a is the between plate variance, while σ2e contains the between patient
variance as well as other variances within plate (e.g., spatial effects on the plate). This model with
the application drafted above will not be able to cover the multitude of potential environmental effects.
Thus, it has low practical relevance. However, it might still be used if I is chosen large, and the I
levels are not just a number of plates, but a representative random sample of ’experimental runs’ taken
to cover all relevant environmental conditions (e.g. a random sample covering different labs, analysts,
machines/devices/plates, days/times, climatic conditions etc.), given that the normality assumption is
reasonable for such a combination of several effects. Moreover, this models is included because it has
been used in basic references concerning the topic of prediction intervals.

2.2 Two-way hierarchical layout (h2)

yijk = µ+ ai + bj(i) + ek(ij)
ai ∼ N(0, σ2a), i = 1, ..., I
bj(i) ∼ N(0, σ2b ), j(i) = 1(i), ..., J(i)

ek(ij) ∼ N(0, σ2e), k(ij) = 1(ij), ...,K(ij)

(2)

This model may be adequate for analyzing the following experimental design:

• a random sample of IJ patients is obtained and is randomly split into I subsets, i = 1, ..., I , each
of size J ,

• each subset i is assigned to one of I plates; within plate i the jth patients sample is identified by
j(i),

• each patient j(i) is repeatedly analyzed K times, k = 1, ...,K, but only at the assigned plate i,
not across different plates.

Details for estimation of µ, and variance components in an ANOVA setting can be found in (Sahai and
Ageel, 2000, p.352, Tab. 6.2; p.358).

2.3 Balanced two-way completely cross-classified, no replication per cell (c1)

yij = µ+ ai + bj + eij
ai ∼ N(0, σ2a), i = 1, ..., I
bj ∼ N(0, σ2b ), j = 1, ..., J
eij ∼ N(0, σ2e)

(3)

This is the model considered in Hoffman and Berger (2011), details for ANOVA, mean squares and
variance of the general mean can be found in (Sahai and Ageel, 2000, p.134, Tab. 3.2; p.140-141). It
may by adequate for analyzing the following experimental design:

• a random sample of I patients is obtained

• analysis is performed by (a random sample of) J operators

• each patient i = 1, ..., I , is analyzed by each operator j = 1, ..., J exactly once, i.e. one obser-
vation yij is available for each patient from each operator
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Of course, patients i = 1, ..., I might be other random samples from the populations of interest,
and what is called operator j = 1, ..., J might be plates, days, analytical devices or whatever. Sam-
ples i = 1, ..., I should be analyzed in a new random sequence over time (allocated in a new spatial
randomization on plates) within each operator/plate/day j = 1, ..., J , such that errors associated with
time course or spatial effects on plates are analyzed in σ2e ; otherwise, the between patient variance σ2a
may be confounded with any error structure associated with time within day, learning effects within
operators, or spatial effects on the plates.

2.4 Two-way completely cross-classified, with replication per combination (c2)

yijk = µ+ ai + bj + (ab)(ij) + eijk
ai ∼ N(0, σ2a), i = 1, ..., I
bj ∼ N(0, σ2b ), j = 1, ..., J
(ab)ij ∼ N(0, σ2ab)
eijk ∼ N(0, σ2e)

(4)

This model may be adequate for analyzing the following experimental design:

• a random sample of I patients is obtained

• analysis is performed by J operators

• each patient i = 1, ..., I is analyzed by each operator j = 1, ..., J exactly K times

where the sequence of the individual observations ijk is randomized over time or with respect to
the spatial allocation on plates/devices. Again, if the sequence of patients is not randomized within
operator j (but all operators analyze the patients in the same sequence), the estimated between patient
variability σ2a will be confounded by consistent temporal effects (due to effects associated with time,
learning) within operators. Similarly, bj are J plates, not J operators: if the spatial allocation of patients
on the plates is the same on all plates, the between patient variance estimate σ2a will be confounded by
consistent spatial effects on the plates. If the K replications per patient i are not randomized over the
possible positions on plates j, but are all allocated next to each other on a given plate, spatial effects
on the plate will confound the estimated variance component σ2ab. For details of estimating mean and
variance components in this design, see (Sahai and Ageel, 2000, p.194, Tab. 4.2; p.208, Eq.(4.8.5)).

2.5 Three-way layout with two factors crossed, and one nested (ch3, Shankar)

• samples of K patients are split and each patient is analyzed by each of I analysts (such that
patient and analyst are cross-classified, i.e., it is reasonable to assume that systematic differences
between the analyst effect all patients additively)

• each analyst analyses each patient at J different plates, such that patient is also crossed with
plate, but plate is nested within analyst (i.e. it is reasonable to assume that systematic differences
between plate carries to all patients, whereas it is not reasonable to assume that plate j = 1 in
analyst i = 1 shares a common effect with plate j = 1 in analyst i = 2),

• finally, for each patient and each plate (within analyst), L technical replications are obtained

3



yijkl = µ+ ai + bj(i) + ck + acik + bcjk(i) + el(ijk)
ai ∼ N(0, σ2a), i = 1, ..., I
bj(i) ∼ N(0, σ2b(a)), j = 1(i), ..., J(i)

dk ∼ N(0, σ2d), k = 1, ...,K
adik ∼ N(0, σ2ad)
bdjk(i) ∼ N(0, σ2bd(a))

el(ijk) ∼ N(0, σ2e), l(ijk) = 1(ijk), ..., L(ijk)

(5)

I.e., σ2a is the overall between-analyst variance, σ2b(a) is the between-plate variance (i.e., mean
deviation of plates w.r.t. each analysts overall mean), σ2d is the overall between-patient variance. σ2ad
is the variance due to lack of additivity between overall analyst and overall patients effects (i.e, due
to ’inconsistency’ of patients effects between analysts), σ2bd(a) is the variance due to inconsistency of
patients effects between plates within a given analyst. The residual error (the deviation of technical
replicates from a given mean of patient k in plate j of analyst i) is estimated by σ2e . For the details for
sum of squares, expected mean squares (allowing to derive estimates for the variance components and
variance of the grand mean etsimator) see (Sahai and Ageel, 2000, p.431-435, Tab. 8.1, p.436).

3 Prediction intervals for a single future observation

Based on mean squares of a classical analysis of variance, (e.g. Satterthwaite, 1941; Hoffman and
Berger, 2011) describe prediction intervals. Hoffman and Berger (2011) do not give a reference or an
analysis/discussion of the small sample performance of this method. Hoffman and Berger (2011) do
not state what exactly this interval is supposed to cover (a single (M=1) future observation, mean of a
M future observations, all of M future observations (compare Hahn and Meeker, 1991, p.61-63)).

This section recalls simple methods to construct prediction intervals that are supposed to cover a
single future observation, y∗, with probability (1− α). They have the general form

µ̂± t1−α/2,dfS
√
V̂ (y∗) + V̂ (µ̂) (6)

where

• µ̂ is the estimate for the general mean µ,

• t1−α,dfS is the (1−α) quantile of a t-distribution with Satterthwaite degree of freedom, dfS , that
is to be specified below,

• V̂ (y∗) is estimated variance of a new observation y∗ (from the same population) with respect to
µ, usually the sum of variance components in the model of interest, and

• V̂ (µ̂) is the estimated variance of the estimated general mean, µ̂, with respect to the true mean
µ; it is usually the sum of variance components, weighted by the corresponding sample size
components of the validation experiment.
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For example, based on model c1 (Eq.3) considered by Hoffman and Berger (2011), the variance
term of the prediction intervals is

V̂ (y∗) + V̂ (µ̂) =
[
σ̂2a + σ̂2b + σ̂2e

]
+
[
σ̂2a/I + σ̂2b/J + σ̂2e/(IJ)

]
V̂ (y∗) + V̂ (µ̂) = σ̂2a(1 + 1/I) + σ̂2b (1 + 1/J) + σ̂2e(1 + 1/(IJ)).

Obviously,

• as the sample size components I and J increase, the contribution due to the variance of the gen-
eral mean, V̂ (µ̂), decreases. Then, a (1−α) upper prediction limit will become close the (1−α)
quantile of the estimated normal density, N(µ̂, σ̂2 = (σ̂2a + σ̂2b + σ̂2e)); particularly, if the domi-
nating variance components are associated with large corresponding sample size components.

• the variance term is weighted sum of variance components, where the single variance compo-
nents are associated with different degrees of freedom, suggesting the Satterthwaite approxima-
tion of the overall df. The weights of the individual components approach 1 if the sample size
components, I, J increase.

3.1 Classical analysis of variance

Unfortunately, in an ANOVA setting, only σ̂2e is directly estimated via the mean square error, MSE .
The estimators of the remaining variance components are already weighted linear combinations of the
mean squares from the analysis of variances. Satterthwaite (1941); Hoffman and Berger (2011) derive
the approximated degree of freedom directly from the mean squares, not from the estimators of the
variance components. Following this approach for the models above leads to the following estimators:

where c = 1, ..., C is the index of variance components in a given model. Note that MS∗ denotes
mean squares without the constant sample size weights they normally contain in ANOVA tables, i.e.,
those MS marked with ∗ are not directly written in the usual ANOVA tables.

Using these mean squares and the corresponding weights, the variance term of the prediction inter-
val is

(V̂ (y∗) + V̂ (µ̂)) =
C∑
c=1

wcMSc (7)

and the corresponding Satterthwaite approximation of the degree of freedom is

dfS =

(∑C
c=1wcMSc

)2
∑C

c=1
(wcMSc)2

dfc

, (8)

Equation (6) with Model h1 (Eq. 1) and the corresponding mean squares and weights is already
given in (Satterthwaite, 1941, p.314-315). It is a generalization of the prediction interval supposed to
contain a single future observation with probability (1 − α) as provided by (Hahn and Meeker, 1991,
p.61, Eq.(4.2)) given a single, unstructured random sample.
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3.2 Using estimates from a mixed model fit

Assume that the models above are fitted in a mixed model and estimates for the general mean, µ̂, and
the variance components σ̂2c are available. One may obtain the same variance term for the prediction
interval by a weighted linear combination of the variance components estimates,

V̂ (y∗) + V̂ (µ̂) =
C∑
c=1

wcσ̂
2
c , (9)

using the weights in Table 1. Using a similar equation to obtain degrees of freedom,

dfS =

(∑C
c=1wcσ̂

2
c

)2
∑C

c=1
(wcσ̂2

c )
2

dfc

, (10)

results in slightly different weighting of the components, and hence in a slightly different degree of
freedom, dfS . Thus, using this approach leads to different approximate degree of freedom as compared
to Satterthwaite (1941) for model h1 and Hoffman and Berger (2011) for model c1.
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Model MSc dfc wc

h1 MSE =
∑

i

∑
j (yij−ȳi.)

2

IJ−I IJ − I (1− 1/J)

MS∗
A =

∑
i (ȳi.−ȳ..)

2

I−1 I − 1 (1 + 1/I)

h2 MSE =
∑

i

∑
j

∑
k (yijk−ȳij.)

2

IJK−IJ IJK − IJ (1− 1/K)

MS∗
B(A) =

∑
i

∑
j (ȳij.−ȳi..)

2

IJ−I IJ − I (1− 1/J)

MS∗
A =

∑
i (ȳi..−ȳ...)

2

I−1 I − 1 (1 + 1/I)

c1 MSE =
∑

i

∑
j (yij−(ȳi.+ȳ.j−ȳ..))

2

(I−1)(J−1) (I − 1)(J − 1) (1− 1/I − 1/J − 1/(IJ))

MS∗
B =

∑
j (ȳj.−ȳ..)

2

J−1 J − 1 (1 + 1/J)

MS∗
A =

∑
i (ȳi.−ȳ..)

2

I−1 I − 1 (1 + 1/I)

c2 MSE =
∑

i

∑
j

∑
k (yijk−ȳij.)

2

IJ(K−1) IJ(K − 1) (1− 1/K)

MS∗
AB =

∑
i

∑
j (ȳij.−(ȳi..+ȳ.j.−ȳ...))

2

(I−1)(J−1) (I − 1)(J − 1) (1− 1/I − 1/J − 1/(IJ))

MS∗
B =

∑
j (ȳ.j.−ȳ...)

2

J−1 J − 1 (1 + 1/J)

MS∗
A =

∑
i (ȳi..−ȳ...)

2

I−1 I − 1 (1 + 1/I)

c2h1 MSE =
∑

i

∑
j

∑
k

∑
l (yijkl−ȳijk.)

2

IJK(L−1) IJK(L− 1) (1− 1/L)

Shankar MS∗
BD(A) =

∑
i

∑
j

∑
k (ȳijk.−(ȳij..+ȳi.k.−ȳi...))

2

I(J−1)(K−1) I(J − 1)(K − 1) (1− 1/J − 1/K + 1/(JK))

MS∗
AD =

∑
i

∑
k (ȳi.k.−(ȳi...+ȳ..k.−ȳ....))

2

(I−1)(K−1) (I − 1)(K − 1) (1− 1/I − 1/K − 1/(IK))

MS∗
B(A) =

∑
i

∑
j (ȳij..−ȳi...)

2

I(J−1) I(J − 1) (1− 1/(IJ))

MS∗
D =

∑
k (ȳ..k.−ȳ....)

2

K−1 K − 1 (1 + 1/K)

MS∗
A =

∑
i (ȳi...−ȳ....)

2

I−1 I − 1 (1 + 1/I)
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Table 1: Variance components, degrees of freedom, and weights for the linear combination of variance
components in Eq. 9

Model σ2c dfc wc
Model h1, σ2a I − 1 1 + 1/I
Eq.(1) σ2b IJ − I 1 + 1/IJ

Model h2, σ2a I − 1 1 + 1/I
Eq.(2) σ2b IJ − I 1 + 1/IJ

σ2e IJK − IJ 1 + 1/IJK

Model c1, σ2a I − 1 1 + 1/I
Eq.(3) σ2b J − 1 1 + 1/J

σ2e (I − 1)(J − 1) 1 + 1/IJ

Model c2 , σ2a I − 1 1 + 1/I
Eq.(4) σ2b J − 1 1 + 1/J

σ2ab (I − 1)(J − 1) 1 + 1/IJ
σ2e IJK − IJ 1 + 1/IJK

Model c2h1 , σ2a I − 1 1 + 1/I
Eq.(4) σ2b(a) I(J − 1) 1 + 1/(IJ)

σ2d K − 1 1 + 1/K
σ2ad (I − 1)(K − 1) 1 + 1/(IK)
σ2bd(a) I(J − 1)(K − 1) 1 + 1/(IJK)

σ2e IJK(L− 1) 1 + 1/(IJKL)
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4 Validation of software

To roughly check the correctness of underlying R code and to compare the different types of degrees of
freedom (based on estimates of variance components from mixed model fits (lmer) , and the published
way based on ANOVA mean squares) a very limited simulation study has been run:

• For each model (h1, h2, c1, c2, Shankar), the number of replications (a, b, d, n) and the corre-
sponding variance components (σ2a,..., σ2e ) have been fixed at different values

• given a single model and parameter setting:

– draw realizations of all the random components of a given model with the given number of
replications, leading to a vector of observations y...

– compute an upper 0.95 prediction limit as described above: yu = µ̂+t0.95,dfS

√
V̂ (y∗) + V̂ (µ̂)

– draw a new, single realization of all random components of a given model, leading to a
single new obseravtion y∗

– check whether the new observation is in the prediction interval, y∗ ≤ yu

• repeat this 1000 times, leading to an estimate for the probability that a single future observation
is contained in the prediction interval

4.1 Results

For the few considered settings, the observed proportion of cases, where a future single observation
is below the upper 0.95 prediction limit, varies around the pre-specified value 0.95, and rarely falls
outside the rejection region of a two-tailed binomial test with n = 1000 for H0 : proportion = 0.95.
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Figure 1: Observed proportion of cases where a single future observation is covered by a upper 0.95
prediction limit, for normal distributed data from models h1, h2, c1, c2. Proportions estimated from
1000 simulation runs for each model and parameters setting, dotted lines circumscribe the range of
observed proportions for whichH0 : proportion 6= 0.95 can not be rejected in a two-tailed test at level
α0.05, i.e. if a method would be exact, 95% of the simulation results fall between the two dotted lines.
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Figure 2: Observed proportion of cases where a single future observation is covered by a upper 0.95
prediction limit, for log normal distributed data from models h1, h2, c1, c2. Proportions estimated
from 1000 simulation runs for each model and parameters setting, dotted lines circumscribe the range
of observed proportions for which H0 : proportion 6= 0.95 can not be rejected in a two-tailed test at
level α0.05, i.e. if a method would be exact, 95% of the simulation results fall between the two dotted
lines.
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Figure 3: Observed proportion of cases where a single future observation is covered by a upper 0.95
prediction limit, for normal distributed data from model ch3, i.e., the ’Shankar’ design. Proportions
estimated from 1000 simulation runs for each parameters setting, dotted lines circumscribe the range
of observed proportions for which H0 : proportion 6= 0.95 can not be rejected in a two-tailed test at
level α0.05, i.e. if a method would be exact, 95% of the simulation results fall between the two dotted
lines. Strings pd, ps, ad, as, un correspond to different variance components settings: pd: patient
dominating; ad: analyst + plate dominating; as: analyst+plate nearly absent, ps: patient nearly absent;
un: nearly absent, unreliable technical device and analyst + noise, i.e., interaction variance components
large
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5 Open problems in application to ADA cutpoint definition

Prediction intervals for an empirically defined subpopulation

To include the uncertainty of classification, T. Jaki suggested to sample from the population of non-
responders, depending the posterior probabilities to be a non-responder from the classification process.
As an heuristic approach to include this uncertainty in the estimation of prediction intervals, one might
include the posterior probabilities as weights during fitting the model. As a consequence, individuals
from the overlap between responders and non-responders would be included when estimating the model
for non-responders, but would be down-weighted depending on the estimated uncertainty of belonging
to the non-responders. The background of the problem is the following:

The data sets available so far suggest, that the control population consists of two subpopulations (on
the level of patient/subject/sample): a larger part of non-responders, with low mean, low variance and
limited right-skewness, and a smaller subpopulation of responders, showing higher mean, higher vari-
ance and considerably right skewed distribution. Depending on the objective of applying the prediction
interval, one might be interested in

• an upper (1−α) bound for the population of non-responders. This might be used in a screen for
substances: if a single new substance exceeds this upper bound, it is considered hazardous. The
probability to erroneously considering a non-hazardous substance to be hazardous is controlled
via (α) of the upper bound for non-responders.

• a lower (1 − α) bound for the population of responders. This might be used to classify a single
new subjects: a single new subject might be considered a non-responder if it is below this lower
bound. The probability to erroneously classify a responder as a non-responder, is controlled via
(α) of the lower bound for the responders.

Applying the prediction intervals to define upper or lower bounds in this situations requires to
distinguish the subpopulations of responders and non-responders. If the two populations show a con-
siderable overlap (as was the case in the data sets analyzed so far), there is considerable uncertainty in
assigning the upper tail of responders and the lower tail of non-responders. If such two subpopulations
are divided by a simple cut-off, the upper tail of responders and lower tail of non-responders are too
short. As a consequence, estimated variance components may be too small, and means of the non-
responders and responders may be biased negatively and positively, respectively. Then, the prediction
intervals will be liberal for those tails that are of interest in the decision.

Effect of responder/non-responder selection on balancedness of designs

Assume that patients are randomized w.r.t. further structures in the experimental design. A selec-
tion of responders and non-responders at the patient level and subsequent consideration of only the
non-responders may cause hierarchical designs (h1, h2 or higher hierarchical) to be at least slightly
unbalanced. Then, the above formulas for the estimation of prediction intervals are not directly ap-
plicable. If responder/non-responder selection takes place strictly at the patient level, and patients are
crossed with the remaining effects, as in designs c1, c2, c2h1(Shankar), considering the non-responders
only does not lead to unbalanced designs.

13



Inconsistency of software solutions for non-responders/responder selection and prediction inter-
vals

For fitting mixture distributions so far only methods are available, that allow random effects at the
patient level, and nesting structures within patients. With the crossed designs c1, c2, c2h1(Shankar),
this assumption is violated. Using the available flexmix code might be justified after normalization on
the levels of those random effects crossed with patients.

Prediction intervals for a mean of future technical replications

Consider models h2, or c2 which contain technical replications, e.g. k = 2 observations of, say,
patient i at plate j. In a future process, a given patient i∗ on plate j∗ might again be analyzed with
K = 2 technical replications. If the mean of the K future technical replications, ȳ∗ =

∑
k yi∗j∗k/K,

is to be used for decision, a prediction interval for a future mean of the technical replicates would be
appropriate.

For model h2, e.g., the variance term of such an interval, V̂ (µ̂) + V̂ (ȳ∗) should than consist of the
variance of the estimated general mean as above,

V̂ (µ̂) = (σ̂2a/I, σ̂
2
b/(IJ), σ̂2e/(IJK)),

and the variance of a future mean of the K technical replicates,

V̂ (ȳ∗) = (σ̂2a, σ̂
2
b , σ̂

2
e/K),

That is, while the patient and plate variance, σ̂2a, σ̂2b contribute as above, the weight of the residual
variance, σ2e , will decrease depending on K.

If this is correct, the above formulas can be used to estimate prediction intervals for future means
of technical replicates: only the weights wc for computing error terms and degrees of freedom have to
be changed accordingly. Not yet implemented or validated.

6 Annex: Parameter settings of the simulation study
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