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0.1 Notations

Assume that animals are randomly assigned to I treatment groups. In the begin of the study, each
treatment group contains n; animals, where ¢ = 2, - - - , I are the dose groups, and ¢ = 1 is the control
group. Let ¢;; denote the time of death of the jth animal in the ¢th group, where j = 1,--- ,n;, and
let ,,4, denote the maximal time of death among all animals, usually the time of the final sacrifice at
the end of the observation period. Further y;; is the tumor status of the jth animal in the ¢th treatment
group at time of death, with y;; = 0 if no tumor is present and y;; = 1 otherwise.

0.2 Survival adjustment

Further, the observed proportion of tumor bearing animals over the whole period of observation p; =
Y. /ng, with ;. = Z;“Zl Yij» 1s a crude estimator measuring the carcinogenic effect of the compound.
This estimator does not take into account, that the time under risk might differ systematically depending
on the treatment level. To account for censoring due to treatment-specific mortality, Bailer and Portier
(1988) proposed the poly-3 adjustment. Let T' denote a continuous random variable, representing the
time to the events tumor onset Y (¢) = 1 or death without tumor Y (¢) = 0. Under this assumption
the tumor incidence rate and the treatment mortality rate can be expressed as event specific hazard
functions (Peddada et al., 2005), where

Ai(t) = l%{P(t <T<t+eY(T)=1T>1t)/e)}
is the tumor incidence rate and

Bi(t) = lijr%){P(t <T<t+eY(T)=0T=>t)/e)}
is the mortality rate.

The observable parameter is the proportion of animals that develop a tumor during the study, which
can be expressed as a function of the two hazard rates.

t=tmazx s=t
pi = Ni(t)exp | — [ (Ni(s) + Bi(s))ds| dt
t=/0‘ sz/O

To adjust for the confounding factor of different mortality over the treatment groups Bailer and
Portier (1988) introduced individual weights w;;, taking the different times under risk into account.
The weight takes the value w;; = 1, if an animal survives until the final sacrifice (¢;; = t,,4,) or dies
during the study with a tumor present. In cases where animals die prior to the terminal sacrifice and no
tumors are present, the weight has the value w;; = (t;;/ tmaw)k. Bailer and Portier fixed the exponent
of the weight k to 3, because it was found that tumors often occur at the rate of a third- to fifth-order
polynomial in time (Portier et al., 1986). Summing up, the weights result in an adjusted group sample
size n} = Z;‘;l w;j. An adjusted estimator for the tumor rate per group then is p; = y;/n;, which
can be interpreted as estimator for the uncensored tumor incidence rate );. Note, that the validity of
the following methods depends on the appropriateness of the poly-k adjustment.



0.3 Global hypotheses for trend tests

We are interested in testing the global null hypothesis of equal tumor incidence rates over the I treat-
ment groups:
Hy: M\ ==\ (D)

against the one-sided alternative of increasing tumor rates:
Hy: M\ << Af (2)

We consider one-sided hypotheses and therefore one-sided tests and one-sided confidence limits
only, because only increasing tumor rates is of interest. Two-sided procedures result in higher false
negative rates, which should avoided in toxicological risk assessment.

Bretz (2006) showed, how the Williams test for trend among I ordered means (i1, 2, ..., iy of Gaussian
random variables can be decomposed to a multiple contrast test of M = I — 1 contrasts in the general
unbalanced case. Hothorn and Bretz (2000) and Bretz and Hothorn (2003) demonstrated the availability
of other trend tests if hypotheses are expressed in terms of multiple contrasts, and extended these
methods to binomial data (Bretz and Hothorn, 2002). The hypotheses in (1) and (2) can be decomposed
to tests of M linear contrasts L,,, = Zle cmiAi- The coefficients c¢,,; of all single contrasts fulfill the
condition Zle ¢mi = 0. Moreover, we will choose ¢,,; such that the condition ). o<1 lemil =
Zi: epi>1 Cmi = 1 is fulfilled. Then, the contrast L,, can be interpreted as difference of weighted
averages of A;. The global null hypothesis then is expressed as ﬂf\r/{zl Ly, = 0, while the alternative is
Un]\le Ly, > 0. As an example, in Table 1 the M = 3 contrasts of a Williams-type contrast test are
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shown, for I = 4 treatments “control”, "low”, “medium”, and ’high” and with equal sample sizes n;.

comparison contrast coefficients | control low medium high

high vs. control Ci1 -1 0 0 1
high, medium vs. control Ci2 -1 0 0.5 0.5
high, medium, low vs. control i3 -1 0.3 0.3 0.3

Table 1: Williams contrasts for a control and 3 dose groups for balanced sample sizes

Using the same framework, other multiple contrasts are available. For the detection of difference
between dose levels, a change-point contrast can be used (Hirotsu and Marumo, 2002). Notice, this is
a basic contrast, since several multiple contrast tests on trend can be reformulated as the change-point
contrast (Hirotsu et al., 2007).

In some long term carcinogenicity studies a downturn effect in the proportion of tumor bearing
animals in the higher dose groups can be observed. This downturn effect may be due to increased treat-
ment mortalities in the high dose groups, but it may still be present after the survival-adjustment. In
such cases, the monotonicity assumption of order restricted approaches is violated. A multiple contrast
which takes such possible downturns into account is the Williams-type downturn-protected contrast
(Bretz and Hothorn, 2003).



In situations where the monotonicity assumption is violated, a Dunnett-type contrast (Dunnett,
1955) is a robust alternative to trend tests. Its global null hypothesis is rejected if any of the dose
or treatment groups leads to an increased tumor rate. Moreover, it can be of interest to quantify the
differences in tumor rates between the dose groups and the control, indicating the use of simultaneous
confidence intervals. Moreover, Dunnett procedure belongs to the most used statistical approaches
(Ryan and Woodall, 2005) and is widely used for the evaluation of continuous endpoints in repeated
toxicity studies. Therefore, a Dunnett-type poly-3 adjusted procedure can be recommended for routine
evaluation of long-term carcinogenicity studies as well.

0.4 Approximate simultaneous confidence intervals

The point estimator for the mth linear combination is Ly = 21‘1:1 CmiD; . Assuming normality for

large sample sizes, simultaneous lower (1 — «)-confidence limits for Ly, - - - , Lj; can be constructed
as:
I
YoV @) 3)
i=1

where V (py) is the variance estimator of p!, where different versions are discussed in section 0.5.
The value zps g1« is the equicoordinate (1 — «)-quantile of an M -variate normal distribution with
correlation matrix R and CDF @, (z; 4, R) = P (Zn < z;0, R) for all elements in Zng. Zy is a M-
variate normal random vector with expectation vector O of length M, and R is an M x M correlation
matrix. Such critical values can be computed using the function gqmvnorm in the R-package mvtnorm
(Hothorn et al., 2001)

The correlation between two linear combinations L,,, and L,,, depends on the known contrast coeffi-
cients ¢; and ¢4, as well as the unknown variance V' (p}). Here, we estimate elements p,,,,,, of the
correlation matrix R, using the sample estimates for the variance:

A~

I
N i=1 CmiCm/ 4 Z(
Pmm! = Z 1 (p ) (4)

V(S v 60) (S b 6)

Choosing zpr, r,1—q results in confidence limits which asymptotically contain all true values L1, --- , Lys
with coverage probability 1 — a.. The global null hypothesis is rejected with an approximate familywise
error rate «, if the lower limit for at least one contrast excludes 0.

0.5 Variance estimators and adjustment for small sample sizes

There are different ways to derive the sample estimates for variance of p; needed in the equations (3)
to (4). Bailer and Portier (1988) apply the Cochran-Armitage test for binomial data on the adjusted
tumor rates. Following their ideas, we use V (p) = p¥ (1 — p) /n}. Confidence intervals using this
variance estimator in the equations (3) to (4) will be denoted BP-Wald method.



Bieler and Williams (1993) introduced an improved variance estimator

g

V() = (nif (i = 1)) Y (diy — di)*,

Jj=1

with d;; = (yij — piwij) / n;; and d; = Z?;l d;j/n;. Using this estimator in the equations (3) to (4)
leads to methods referred to as BW-Wald in the following. The BP-Wald variance estimator has value 0
in cases that y;, = 0 or y;. = n; is observed and therefore leads to situations where Z,,, and the elements
of R are not defined and confidence intervals of length O result for certain contrasts. For the BW-Wald
method this holds true if y;, = 0. To use the BP-Wald and BW-Wald estimators in the simulation study,
we modified their variance estimator such that p; = 0.5/n] in case that y; = 0 is observed. Further in
cases that y; = n; is observed we adjusted the BP-Wald estimator by p = (n; — 0.5) /n}.

For the difference of binomial proportions, Wald-type confidence intervals have too low coverage
probabilities, especially for low proportions and moderate to small sample (Agresti and Caffo, 2000;
Price and Bonett, 2004). Since poly-3 adjusted tumor rates share some properties of binomial propor-
tions, we propose to use similar adjustments for small sample sizes. Using

p; = (yi +0.5)/ (nj +1)

and

A

Vpi)=pi 1=p;)/(ni +1)
in equations (3) to (4) will be referred to as Add-1 method, using

pi = Wi+1)/(nj +2)

in combination with

Vipi) =pi 1=p;)/(ni +2)
will be called Add-2 method. Both adjustment shift the group wise point estimates to 0.5 and increases
the group wise variance estimators for small proportions, resulting in wider intervals with a more
conservative behavior. The second approach follows the ”adding 1 failure and 2 successes” idea of
Agresti and Caffo (2000) for the two sample case. Its adaptation for a linear combination of more than
two proportion has been investigated by Price and Bonett (2004). Both methods lead to well performing
confidence intervals for binomial data, with coverage probability close to the nominal level.

0.6 Simulation study

The simulation study was performed for the commonly used design n; = 50, I = 4. Daily records
of death and tumor presence were simulated assuming a study period of 730 days. The probabil-
ity P (T; <t) to onset an irreversible tumor until time ¢, and the probability P (7, < t) to die for
any reason until time ¢, are assumed to follow independent Weibull distributions P(7; < t) = 1 —
exp(—(t/b:)*), and P(T,, <t) =1 — exp(—(t/bs)*") using the notation of Johnson et al. (1994).
This simplification of the natural process which includes at least three hazard rates, is justified by the
facts that no cause of death information is included and an animal dying with presence of a tumor
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contributes with weight w;; = 1 to the sample estimator, irrespective of its time of death ¢;; (Peddada
et al., 2005). The scale parameters b; and b,,, of the two Weibull distributions were chosen to mimic
different mortality patterns at ¢ = t,,4, and different dose-response shapes for the tumor onset. The
shape parameters were fixed a; = a,,, = 3. As reported by Bailer and Portier (1988), mortality rates of
30% in the control group were considered as usual in long-term gavage experiments.

The Tables shown in this section present estimates for the coverage probability based on 10000
simulation runs for each parameter setting. The nominal confidence level was chosen 95%, the si-
multaneous coverage probability is defined as the probability that each true value L,, falls beyond
the corresponding lower bound for all M elements of L. The column mortality rates (3; present the
expected proportions of dead animals at time of the final sacrifice P (¢ = 730) in the four treatment
groups, the column tumor rate displays the parameter )\; in the four treatment groups ¢ = 1,--- ,4.
In the following, we will display the results for the BP-Wald, BW-Wald, Add-1 and Add-2 methods
using the Williams contrast (Table 2) in situations with equal and increasing tumor incidence rates and
different mortality patterns. Additionally, we present similar results for the change-point (Table 3) , the
Dunnett-type contrast (Table 4) and the Williams-type downturn-protected contrast (Table 5).

mortality rates (; tumor rates \; BP-Wald | BW-Wald | Add-1 | Add-2
0.3,0.3,0.3,0.3 | 0.05,0.05, 0.05, 0.05 0.890 0.891 0.950 | 0.971
0.3,0.4,0.5,0.6 | 0.05,0.05,0.05, 0.05 0.894 0.897 0.946 | 0.975
0.3,0.5,0.6,0.7 | 0.05,0.05,0.05, 0.05 0.902 0.910 0.951 | 0.973
0.5,0.4,0.3,0.2 | 0.05,0.05, 0.05, 0.05 0.849 0.856 0.946 | 0.981
0.3,0.3,0.3,0.3 0.1,0.1,0.1,0.1 0.928 0.931 0.941 | 0.957
0.3,0.4,0.5,0.6 0.1,0.1,0.1, 0.1 0.933 0.935 0.947 | 0.957
0.3,0.5,0.6,0.7 0.1,0.1,0.1,0.1 0.935 0.938 0.946 | 0.957
0.5,0.4,0.3,0.2 0.1,0.1,0.1, 0.1 0.920 0.913 0.939 | 0.953
0.3,0.3,0.3,0.3 0.2,0.2,0.2,0.2 0.935 0.937 0.944 | 0.953
0.3,0.4,0.5,0.6 0.2,0.2,0.2,0.2 0.950 0.941 0.952 | 0.953
0.3,0.5,0.6,0.7 0.2,0.2,0.2,0.2 0.945 0.944 0.951 | 0.957
0.5,0.4,0.3,0.2 0.2,0.2,0.2,0.2 0.931 0.930 0.942 | 0.949
0.3,0.3,0.3,0.3 0.3,0.3,0.3,0.3 0.944 0.942 0.947 | 0.949
0.3,0.4,0.5,0.6 0.3,0.3,0.3,0.3 0.948 0.946 0.953 | 0.951
0.3,0.5,0.6,0.7 0.3,0.3,0.3,0.3 0.953 0.965 0.952 | 0.957
0.5,0.4,0.3,0.2 0.3,0.3,0.3,0.3 0.939 0.938 0.946 | 0.950
0.3,0.3,0.3,03 0.05,0.1,0.15,0.2 0.942 0.941 0.963 | 0.976
0.3,0.4,0.5,0.6 0.05,0.1,0.15,0.2 0.947 0.946 0.967 | 0.974
0.3,0.5,0.6,0.7 0.05,0.1,0.15,0.2 0.949 0.953 0.970 | 0.976
0.6,0.5,0.4,0.3 0.05,0.1,0.15,0.2 0.929 0.929 0.962 | 0.984
0.3,0.3,0.3,0.3 0.1,0.25,0.3,0.3 0.940 0.941 0.954 | 0.967
0.3,0.4,0.5,0.6 0.1,0.25,0.3,0.3 0.948 0.946 0.962 | 0.975
0.3,0.5,0.6,0.7 0.1,0.25,0.3,0.3 0.958 0.950 0.964 | 0.972
0.6,0.5,0.4,0.3 0.1,0.25,0.3,0.3 0.930 0.931 0.952 | 0.972
0.3,0.3,0.3,0.3 0.2,0.2,0.25,0.4 0.937 0.939 0.949 | 0.955
0.3,0.4,0.5,0.6 0.2,0.2,0.25,04 0.948 0.945 0.958 | 0.964
0.3,0.5,0.6,0.7 0.2,0.2,0.25,0.4 0.954 0.951 0.961 | 0.968




mortality rates (3; tumor rates \; BP-Wald | BW-Wald | Add-1 | Add-2
0.6,0.5,0.4,0.3 0.2,0.2,0.25,0.4 0.936 0.932 0.945 | 0.957
0.3,0.3,0.3,03 0.1,0.2,0.3,04 0.940 0.936 0.959 | 0.970
0.3,0.4,0.5,0.6 0.1,0.2,0.3,0.4 0.950 0.951 0.965 | 0.973
0.3,0.5,0.6,0.7 0.1,0.2,0.3,04 0.958 0.954 0.970 | 0.977
0.6,0.5,04,0.3 0.1,0.2,0.3,04 0.939 0.933 0.955 | 0.969

Table 2: Coverage probabilities of lower 95% confidence intervals

for the Williams contrast in settings with equal and increasing tu-

mor rates and different mortality patterns
mortality rates (; tumor rates \; BP-Wald | BW-Wald | Add-1 | Add-2
0.3,0.3,0.3,0.3 | 0.05,0.05,0.05,0.05 | 0.899 0.907 0.955 | 0.981
0.3,0.4,0.5,0.6 | 0.05,0.05,0.05,0.05 | 0.908 0.902 0.957 | 0.977
0.3,0.5,0.6,0.7 | 0.05,0.05,0.05,0.05 | 0915 0.912 0.960 | 0.981
0.5,0.4,0.3,0.2 | 0.05,0.05,0.05,0.05 | 0.864 0.858 0.960 | 0.989
0.3,0.3,0.3,0.3 0.1,0.1,0.1, 0.1 0.925 0.932 0.944 | 0.959
0.3,0.4,0.5,0.6 0.1,0.1,0.1, 0.1 0.939 0.937 0.947 | 0.962
0.3,0.5,0.6,0.7 0.1,0.1, 0.1, 0.1 0.940 0.945 0.952 | 0.965
0.5,04,0.3,0.2 0.1,0.1,0.1, 0.1 0.918 0.920 0.944 | 0.967
0.3,0.3,0.3,0.3 0.2,0.2,0.2,0.2 0.940 0.937 0.949 | 0.952
0.3,0.4,0.5,0.6 0.2,0.2,0.2,0.2 0.945 0.947 0.953 | 0.956
0.3,0.5,0.6,0.7 0.2,0.2,0.2,0.2 0.946 0.946 0.956 | 0.957
0.5,0.4,0.3,0.2 0.2,0.2,0.2,0.2 0.937 0.935 0.947 | 0.953
0.3,0.3,0.3,03 0.3,0.3,0.3,0.3 0.942 0.943 0.948 | 0.951
0.3,0.4,0.5,0.6 0.3,0.3,0.3,0.3 0.947 0.949 0.958 | 0.957
0.3,0.5,0.6,0.7 0.3,0.3,0.3,0.3 0.951 0.962 0.960 | 0.958
0.5,04,0.3,0.2 0.3,0.3,0.3,0.3 0.938 0.938 0.946 | 0.951
0.3,0.3,0.3,0.3 0.05, 0.1, 0.15, 0.2 0.942 0.943 0.962 | 0.977
0.3,04,0.5,0.6 | 0.05,0.1,0.15,0.2 0.950 0.951 0.965 | 0.978
0.6,0.5,04,0.3 0.05,0.1, 0.15, 0.2 0.930 0.926 0.968 | 0.983
0.6,0.5,04,0.3 0.05, 0.1, 0.15, 0.2 0.907 0911 0.955 | 0.979
0.3,0.3,0.3,03 0.1,0.25,0.3,0.3 0.940 0.942 0.955 | 0.967
0.3,0.4,0.5,0.6 0.1,0.25,0.3,0.3 0.952 0.946 0.962 | 0.970
0.3,0.5,0.6,0.7 0.1,0.25,0.3,0.3 0.954 0.950 0.966 | 0.975
0.6,0.5,04,0.3 0.1,0.25,0.3,0.3 0.931 0.935 0.953 | 0.969
0.3,0.3,0.3,0.3 0.2,0.2,0.25,04 0.941 0.940 0.948 | 0.960
0.3,0.4,0.5,0.6 0.2,0.2,0.25,0.4 0.954 0.946 0.957 | 0.967
0.3,0.5, 0.6, 0.7 0.2,0.2,0.25,04 0.955 0.954 0.966 | 0.969
0.6,0.5,04,0.3 0.2,0.2,0.25,0.4 0.936 0.935 0.949 | 0.960
0.3,0.3,0.3,03 0.1,0.2,0.3,04 0.940 0.938 0.958 | 0.968
0.3,0.4,0.5,0.6 0.1,0.2,0.3,0.4 0.951 0.951 0.964 | 0.975
0.3,0.5,0.6,0.7 0.1,0.2,0.3,04 0.957 0.953 0.968 | 0.979




mortality rates (3; tumor rates \; BP-Wald | BW-Wald | Add-1 | Add-2
0.6,0.5,0.4,0.3 0.1,0.2,0.3,0.4 0.934 0.931 0.958 | 0.972

Table 3: Coverage probabilities of lower 95% confidence intervals

for the Changepoint contrast in settings with equal and increasing

tumor rates and different mortality patterns
mortality rates (3; tumor rates \; BP-Wald | BW-Wald | Add-1 | Add-2
0.3,0.3,0.3,0.3 | 0.05,0.05, 0.05, 0.05 0.972 0.975 0.980 | 0.992
0.3,0.4,0.5,0.6 | 0.05,0.05, 0.05, 0.05 0.970 0.979 0.985 | 0.990
0.3,0.5,0.6,0.7 | 0.05,0.05, 0.05, 0.05 0.970 0.976 0.988 | 0.992
0.5,04,0.3,0.2 | 0.05,0.05, 0.05, 0.05 0.954 0.971 0.982 | 0.993
0.3,0.3,0.3,0.3 0.1,0.1,0.1, 0.1 0.954 0.959 0.963 | 0.972
0.3,0.4,0.5,0.6 0.1,0.1,0.1, 0.1 0.955 0.960 0.968 | 0.975
0.3,0.5,0.6,0.7 0.1,0.1,0.1, 0.1 0.963 0.962 0.973 | 0.980
0.5,0.4,0.3,0.2 0.1,0.1,0.1, 0.1 0.944 0.944 0.962 | 0.977
0.3,0.3,0.3,0.3 0.2,0.2,0.2,0.2 0.948 0.949 0.954 | 0.957
0.3,0.4,0.5,0.6 0.2,0.2,0.2,0.2 0.953 0.953 0.959 | 0.962
0.3,0.5,0.6,0.7 0.2,0.2,0.2,0.2 0.959 0.954 0.962 | 0.968
0.5,04,0.3,0.2 0.2,0.2,0.2,0.2 0.944 0.943 0.953 | 0.961
0.3,0.3,0.3,0.3 0.3,0.3,0.3,0.3 0.946 0.949 0.954 | 0.951
0.3,0.4,0.5,0.6 0.3,0.3,0.3,0.3 0.954 0.950 0.959 | 0.956
0.3,0.5,0.6,0.7 0.3,0.3,0.3,0.3 0.958 0.966 0.957 | 0.963
0.5,0.4,0.3,0.2 0.3,0.3,0.3,0.3 0.943 0.945 0.952 | 0.955
0.3,0.3,0.3,0.3 0.05, 0.1, 0.15, 0.2 0.969 0.970 0.976 | 0.984
0.3,0.4,0.5,0.6 | 0.05,0.1,0.15,0.2 0.974 0.971 0.978 | 0.984
0.3,0.5,0.6,0.7 0.05,0.1,0.15, 0.2 0.973 0.972 0.982 | 0.988
0.6,0.5,04,0.3 0.05, 0.1, 0.15, 0.2 0.963 0.961 0.981 | 0.988
0.3,0.3,0.3,0.3 0.1,0.25,0.3,0.3 0.951 0.950 0.965 | 0.973
0.3,0.4,0.5,0.6 0.1,0.25,0.3,0.3 0.960 0.953 0.971 | 0.976
0.3,0.5,0.6,0.7 0.1,0.25,0.3,0.3 0.962 0.955 0.970 | 0.976
0.6,0.5,0.4,0.3 0.1,0.25,0.3,0.3 0.952 0.947 0.964 | 0.977
0.3,0.3,0.3,0.3 0.2,0.2,0.25,0.4 0.947 0.946 0.955 | 0.963
0.3,0.4,0.5,0.6 0.2,0.2,0.25,04 0.954 0.953 0.962 | 0.965
0.3,0.5,0.6,0.7 0.2,0.2,0.25,04 0.961 0.952 0.965 | 0.972
0.6,0.5,04,0.3 0.2,0.2,0.25,04 0.942 0.941 0.955 | 0.964
0.3,0.3,0.3,0.3 0.1,0.2,0.3,0.4 0.953 0.952 0.965 | 0.972
0.3,0.4,0.5,0.6 0.1,0.2,0.3,0.4 0.960 0.953 0.971 | 0.975
0.3,0.5, 0.6, 0.7 0.1,0.2,0.3,04 0.963 0.958 0.974 | 0.978
0.6,0.5,0.4,0.3 0.1,0.2,0.3,04 0.948 0.946 0.965 | 0.977




mortality rates (3; ‘ tumor rates \; ‘ BP-Wald ‘ BW-Wald ‘ Add-1 ‘ Add-2

Table 4: Coverage probabilities of lower 95% confidence intervals

for the Dunnett contrast in settings with equal and increasing tumor

rates and different mortality patterns
mortality rates (3; tumor rates \; BP-Wald | BW-Wald | Add-1 | Add-2
0.3,0.3,0.3,0.3 | 0.05,0.05, 0.05, 0.05 0.862 0.866 0.962 | 0.988
0.3,04,0.5,0.6 | 0.05,0.05, 0.05, 0.05 0.860 0.854 0.959 | 0.988
0.3,0.5,0.6,0.7 | 0.05,0.05, 0.05, 0.05 0.859 0.861 0.964 | 0.986
0.5,04,0.3,0.2 | 0.05,0.05, 0.05, 0.05 0.825 0.823 0.960 | 0.993
0.3,0.3,0.3,0.3 0.1,0.1,0.1, 0.1 0.908 0.913 0.946 | 0.969
0.3,0.4,0.5,0.6 0.1,0.1,0.1, 0.1 0.918 0.917 0.951 | 0.968
0.3,0.5,0.6,0.7 0.1,0.1,0.1, 0.1 0.923 0.917 0.952 | 0.967
0.5,0.4,0.3,0.2 0.1,0.1,0.1, 0.1 0.899 0.905 0.949 | 0.969
0.3,0.3,0.3,0.3 0.2,0.2,0.2,0.2 0.924 0.927 0.945 | 0.957
0.3,0.4,0.5,0.6 0.2,0.2,0.2,0.2 0.932 0.932 0.952 | 0.960
0.3,0.5,0.6,0.7 0.2,0.2,0.2,0.2 0.934 0.933 0.952 | 0.963
0.5,04,0.3,0.2 0.2,0.2,0.2,0.2 0.925 0.918 0.946 | 0.959
0.3,0.3,0.3,0.3 0.3,0.3,0.3,0.3 0.938 0.935 0.944 | 0.953
0.3,0.4,0.5,0.6 0.3,0.3,0.3,0.3 0.938 0.936 0.945 | 0.955
0.3,0.5, 0.6, 0.7 0.3,0.3,0.3,0.3 0.938 0.943 0.949 | 0.959
0.5,0.4,0.3,0.2 0.3,0.3,0.3,0.3 0.927 0.931 0.944 | 0.955
0.3,0.3,0.3,0.3 0.05,0.1,0.15, 0.2 0911 0.923 0.961 | 0.984
0.3,04,0.5,0.6 | 0.05,0.1,0.15,0.2 0.917 0.921 0.966 | 0.983
0.3,0.5,0.6,0.7 | 0.05,0.01,0.15,0.2 0.924 0.924 0.969 | 0.986
0.6,0.5,0.4,0.3 | 0.05,0.01,0.15,0.2 0.899 0.896 0.967 | 0.989
0.3,0.3,0.3,0.3 0.1,0.25,0.3,0.3 0.927 0.925 0.949 | 0.974
0.3,0.4,0.5,0.6 0.1,0.25,0.3,0.3 0.931 0.928 0.958 | 0.974
0.3,0.5, 0.6, 0.7 0.1,0.25,0.3,0.3 0.930 0.933 0.959 | 0.976
0.6,0.5,0.4,0.3 0.1,0.25,0.3,0.3 0.912 0.912 0.950 | 0.975
0.3,0.3,0.3,0.3 0.2,0.2,0.25,04 0.932 0.925 0.945 | 0.960
0.3,04,0.5,0.6 0.2,0.2,0.25,04 0.931 0.929 0.948 | 0.965
0.3,0.5,0.6,0.7 0.2,0.2,0.25,04 0.939 0.936 0.955 | 0.965
0.6,0.5,0.4,0.3 0.2,0.2,0.25,0.4 0.921 0.921 0.943 | 0.960
0.3,0.3,0.3,0.3 0.1,0.2,0.3,0.4 0.929 0.925 0.954 | 0.970
0.3,0.4,0.5,0.6 0.1,0.2,0.3,0.4 0.929 0.930 0.959 | 0.979
0.3,0.5,0.6,0.7 0.1,0.2,0.3,04 0.931 0.928 0.963 | 0.978
0.6,0.5,0.4, 0.3 0.1,0.2,0.3,0.4 0.908 0.909 0.950 | 0.977

Table 5: Coverage probabilities of lower 95% confidence intervals
for the Williams-type downturn-protected contrast in settings with
equal and increasing tumor rates and different mortality patterns




The results in Table 2 show that in situations where equal tumor incidence rates exist the Add-1
interval has coverage probability closest to the nominal level. For increasing tumor incidence rates the
interval shows a slightly conservative performance. The Add-2 interval usually exceeds the nominal
level. Both, the BP-Wald and BW-Wald interval are liberal in cases of equal tumor incidence rates
and especially for very small rates. In situations of increasing incidence rates the coverage probability
of the Wald intervals approach the nominal level. In most cases, the BW-Wald interval has coverage
probability closer to the nominal level, but in general the difference to the BP-Wald interval is negli-
gible. We found similar results for other multiple contrast types except for the Dunnett-type contrast.
In this case all proposed methods are conservative, even under the null and especially for small tumor
incidence rates.

In order to study the performance of the lower Add-1 confidence limits in situations with smaller
sample sizes, a second simulation study was performed. Here, a balanced sample size of 35 for I = 4
groups was considered. Table 6 shows the results for different contrast types.



mortality rates (; tumor rates \; Dunnett | Williams | Changepoint
0.3,0.3,0.3,03 | 0.05,0.1,0.15,0.2 | 0.979 0.970 0.971
0.3,0.4,0.5,0.6 | 0.05,0.1,0.15,0.2 | 0.982 0.971 0.972
0.3,0.5,0.6,0.7 | 0.05,0.1,0.15,0.2 | 0.984 0.974 0.975
0.3,0.3,0.3,03 | 0.1,0.25,0.3,0.3 0.964 0.956 0.955
0.3,04,0.5,0.6 | 0.1,0.25,0.3,0.3 0.968 0.961 0.962
0.3,0.5,0.6,0.7 | 0.1,0.25,0.3,0.3 0.974 0.965 0.967
0.3,0.3,03,03 | 0.2,0.2,0.25,04 | 0.956 0.944 0.949
0.3,04,0.5,0.6 | 0.2,0.2,0.25,04 | 0.963 0.956 0.956
0.3,0.5,0.6,0.7 | 0.2,0.2,0.25,04 | 0.965 0.960 0.963
0.3,0.3,0.3,0.3 0.1,0.2,0.3,0.4 0.971 0.957 0.950
0.3,04,0.5,0.6 | 0.1,0.2,0.3,04 0.970 0.965 0.965
0.3,0.5,0.6, 0.7 0.1,0.2,0.3,0.4 0.973 0.972 0.968

Table 6: Coverage probabilities of the lower 95% Add-1 confidence limits under different alternatives
and different multiple contrasts

The results for the Williams contrast in Table 6 compared with the results of Table 2 show, that

the coverage probability of the Add-1 interval is slightly conservative for small sample sizes. The
coverage probabilities of the Add-1 interval for the Williams-type and the change-point contrast are
almost similar. In case of the Dunnett-type contrast the coverage probability of the Add-1 interval
strongly exceeds the nominal level.
Summarizing, for the typical NTP design with a control and three dose groups and balanced sample
sizes of 50, Wald-type approaches should be avoided because of their serious liberality, whereas the
simple Add-1 approximation can be recommended for one-sided tests and confidence limits in several
multiple contrasts.

0.7 Extension of the Williams contrast by single linear contrast

In order to get a more sensitive performance for linear dose response relationships we recommend
an expansion of the Williams contrast by an additional single linear contrast. This corresponds to the
considerations of Peddada and Kissling, to combine a linear trend test with a Williams type test. For the
multiple contrast in a balanced 4 group design described in equation 1, this additional single contrast
has the following form ¢4 = —0.75, —0.25,0.25,0.75. Note that for this multiple contrast the number
of single contrasts is M = I.

To examine the power to reject the null hypothesis, a second simulation study with the same settings
was performed. The power is defined as the probability that at least one interval excludes zero. Table 7
and Table 8 present the results of the simulation study compared with the results for a regular Williams
contrast. BP-Wald denotes the Wald type interval with the variance estimator suggested by Bailer and
Portier, while BW-Wald is the Wald interval with the variance estimator of Bieler and Williams. Add-1
and Add-2 are the intervals suggested for small sample sizes, both use the variance estimator of Bailer
and Portier.
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[ settings Williams Williams+linear
mortality rates (3; tumor rates \; BP-Wald | BW-Wald | Add-1 | Add-2 BP-Wald | BW-Wald | Add-1 | Add-2
0.3,0.3,0.3,0.3 0.05, 0.05, 0.05, 0.05 0.890 0.891 0.950 0.971 0.883 0.889 0.947 0.975
0.3,0.4,0.5,0.6 0.05, 0.05, 0.05, 0.05 0.894 0.897 0.946 0.975 0.899 0.905 0.955 0.973
0.3,0.5,0.6,0.7 0.05, 0.05, 0.05, 0.05 0.902 0.910 0.951 0.973 0.904 0.917 0.957 0.972
0.5,0.4,0.3,0.2 0.05, 0.05, 0.05, 0.05 0.849 0.856 0.946 0.981 0.853 0.863 0.949 0.983
0.3,0.3,0.3,0.3 0.1,0.1,0.1, 0.1 0.928 0.931 0.941 0.957 0.930 0.925 0.943 0.953
0.3,0.4,0.5,0.6 0.1,0.1,0.1, 0.1 0.933 0.935 0.947 0.957 0.936 0.937 0.948 0.961
0.3,0.5,0.6,0.7 0.1,0.1,0.1, 0.1 0.935 0.938 0.946 0.957 0.941 0.935 0.953 0.959
0.5,0.4,0.3,0.2 0.1,0.1,0.1, 0.1 0.920 0.913 0.939 0.953 0.919 0.916 0.941 0.959
0.3,0.3,0.3,0.3 0.2,0.2,0.2,0.2 0.935 0.937 0.944 0.953 0.938 0.941 0.948 0.948
0.3,04,0.5,0.6 0.2,0.2,0.2,0.2 0.950 0.941 0.952 0.953 0.945 0.940 0.951 0.952
0.3,0.5,0.6,0.7 0.2,0.2,0.2,0.2 0.945 0.944 0.951 0.957 0.951 0.945 0.950 0.953
0.5,04,0.3,0.2 0.2,0.2,0.2,0.2 0.931 0.930 0.942 0.949 0.933 0.930 0.940 0.952
0.3,0.3,0.3,0.3 0.3,0.3,0.3,0.3 0.944 0.942 0.947 0.949 0.940 0.941 0.944 0.951
0.3,0.4,0.5,0.6 0.3,0.3,0.3,0.3 0.948 0.946 0.953 0.951 0.952 0.947 0.952 0.954
0.3,0.5,0.6,0.7 0.3,0.3,0.3,0.3 0.953 0.965 0.952 0.957 0.951 0.968 0.957 0.960
0.5,0.4,0.3,0.2 0.3,0.3,0.3,0.3 0.939 0.938 0.946 0.950 0.938 0.936 0.940 0.946
0.3,0.3,0.3,0.3 0.05,0.1,0.15,0.2 0.942 0.941 0.963 0.976 0.935 0.945 0.959 0.975
0.3,0.4,0.5,0.6 0.05, 0.1, 0.15,0.2 0.947 0.946 0.967 0.974 0.951 0.949 0.964 0.978
0.3,0.5,0.6,0.7 0.05, 0.1, 0.15,0.2 0.949 0.953 0.970 0.976 0.955 0.951 0.966 0.979
0.6,0.5,0.4,0.3 0.05, 0.1, 0.15,0.2 0.929 0.929 0.962 0.984 0.928 0.933 0.966 0.984
0.3,0.3,0.3,0.3 0.1,0.25,0.3,0.3 0.940 0.941 0.954 0.967 0.939 0.940 0.955 0.968
0.3,0.4,0.5,0.6 0.1,0.25,0.3,0.3 0.948 0.946 0.962 0.975 0.948 0.942 0.964 0.973
0.3,0.5,0.6,0.7 0.1,0.25,0.3,0.3 0.958 0.950 0.964 0.972 0.955 0.946 0.966 0.973
0.6,0.5,0.4,0.3 0.1,0.25,0.3,0.3 0.930 0.931 0.952 0.972 0.928 0.931 0.954 0.972
0.3,0.3,0.3,0.3 0.2,0.2,0.25,0.4 0.937 0.939 0.949 0.955 0.941 0.940 0.948 0.959
0.3,0.4,0.5,0.6 0.2,0.2,0.25,0.4 0.948 0.945 0.958 0.964 0.950 0.948 0.958 0.964
0.3,0.5,0.6,0.7 0.2,0.2,0.25,0.4 0.954 0.951 0.961 0.968 0.956 0.951 0.962 0.968
0.6,0.5,0.4,0.3 0.2,0.2,0.25,0.4 0.936 0.932 0.945 0.957 0.934 0.933 0.948 0.957
0.3,0.3,0.3,0.3 0.1,0.2,0.3,04 0.940 0.936 0.959 0.970 0.941 0.944 0.959 0.970
0.3,0.4,0.5,0.6 0.1,0.2,0.3,04 0.950 0.951 0.965 0.973 0.953 0.948 0.965 0.976
0.3,0.5,0.6,0.7 0.1,0.2,0.3,0.4 0.958 0.954 0.970 0.977 0.959 0.956 0.966 0.979
0.6,0.5,0.4,0.3 0.1,0.2,0.3,04 0.939 0.933 0.955 0.969 0.932 0.932 0.957 0.975

Table 7: Coverage probabilities of lower 95% confidence intervals of the Williams contrast and the
Willimas contrast extended by a single linear contrast in settings with equal and increasing tumor rates
and different mortality patterns

The presented results show that in many cases the Wald type intervals have coverage probability
below the nominal level. Further the difference between the different variance estimators used for the
Wald intervals is in most cases negligible. The coverage probability of the Add-2 interval is too con-
servative. Therefore we recommend the Add-1 interval which tends to be a little conservative but has
most frequently coverage probability nearest to the nominal level. Compared to the regular Williams
contrast we found both methods to perform almost equal in terms of coverage probability.
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[ settings Williams Williams+linear
mortality rates (3; tumor rates \; BP-Wald | BW-Wald | Add-1 | Add-2 BP-Wald | BW-Wald | Add-1 | Add-2
0.3,0.3,0.3,0.3 0.05, 0.05, 0.05, 0.05 0.121 0.120 0.050 0.029 0.120 0.118 0.049 0.025
0.3,0.4,0.5,0.6 0.05, 0.05, 0.05, 0.05 0.116 0.115 0.051 0.032 0.112 0.116 0.049 0.028
0.3,0.5,0.6,0.7 0.05, 0.05, 0.05, 0.05 0.109 0.109 0.048 0.027 0.105 0.109 0.048 0.026
0.5,0.4,0.3,0.2 0.05, 0.05, 0.05, 0.05 0.156 0.148 0.056 0.021 0.155 0.149 0.050 0.016
0.3,0.3,0.3,0.3 0.1,0.1,0.1, 0.1 0.071 0.072 0.056 0.046 0.071 0.071 0.058 0.042
0.3,0.4,0.5,0.6 0.1,0.1,0.1, 0.1 0.066 0.073 0.050 0.048 0.068 0.066 0.057 0.041
0.3,0.5,0.6,0.7 0.1,0.1,0.1, 0.1 0.065 0.064 0.055 0.047 0.062 0.066 0.048 0.042
0.5,0.4,0.3,0.2 0.1,0.1,0.1, 0.1 0.086 0.084 0.059 0.043 0.083 0.076 0.060 0.043
0.3,0.3,0.3,0.3 0.2,0.2,0.2,0.2 0.064 0.062 0.055 0.048 0.064 0.063 0.053 0.049
0.3,04,0.5,0.6 0.2,0.2,0.2,0.2 0.060 0.057 0.051 0.045 0.056 0.059 0.054 0.048
0.3,0.5,0.6,0.7 0.2,0.2,0.2,0.2 0.056 0.054 0.048 0.046 0.054 0.052 0.053 0.044
0.5,04,0.3,0.2 0.2,0.2,0.2,0.2 0.068 0.069 0.062 0.053 0.068 0.069 0.056 0.048
0.3,0.3,0.3,0.3 0.3,0.3,0.3,0.3 0.058 0.056 0.053 0.049 0.057 0.059 0.052 0.054
0.3,0.4,0.5,0.6 0.3,0.3,0.3,0.3 0.051 0.054 0.044 0.044 0.048 0.050 0.049 0.047
0.3,0.5,0.6,0.7 0.3,0.3,0.3,0.3 0.048 0.050 0.047 0.041 0.042 0.046 0.044 0.040
0.5,0.4,0.3,0.2 0.3,0.3,0.3,0.3 0.060 0.066 0.059 0.053 0.066 0.065 0.056 0.048
0.3,0.3,0.3,0.3 0.05,0.1,0.15,0.2 0.738 0.786 0.698 0.665 0.742 0.791 0.702 0.674
0.3,0.4,0.5,0.6 0.05, 0.1, 0.15,0.2 0.697 0.688 0.659 0.632 0.691 0.696 0.668 0.644
0.3,0.5,0.6,0.7 0.05, 0.1, 0.15,0.2 0.651 0.662 0.639 0.613 0.669 0.659 0.641 0.614
0.6,0.5,0.4,0.3 0.05, 0.1, 0.15,0.2 0.692 0.695 0.635 0.586 0.708 0.710 0.653 0.597
0.3,0.3,0.3,0.3 0.1,0.25,0.3,0.3 0.878 0.869 0.866 0.845 0.864 0.875 0.860 0.847
0.3,0.4,0.5,0.6 0.1,0.25,0.3,0.3 0.841 0.844 0.835 0.826 0.837 0.839 0.828 0.821
0.3,0.5,0.6,0.7 0.1,0.25,0.3,0.3 0.826 0.827 0.819 0.808 0.816 0.825 0.808 0.808
0.6,0.5,0.4,0.3 0.1,0.25,0.3,0.3 0.828 0.826 0.797 0.793 0.825 0.828 0.803 0.777
0.3,0.3,0.3,0.3 0.2,0.2,0.25,0.4 0.590 0.599 0.577 0.556 0.627 0.624 0.598 0.592
0.3,0.4,0.5,0.6 0.2,0.2,0.25,0.4 0.513 0.520 0.509 0.501 0.547 0.561 0.533 0.533
0.3,0.5,0.6,0.7 0.2,0.2,0.25,0.4 0.482 0.497 0.478 0.462 0.510 0.527 0.510 0.488
0.6,0.5,0.4,0.3 0.2,0.2,0.25,0.4 0.553 0.562 0.551 0.514 0.594 0.597 0.567 0.552
0.3,0.3,0.3,0.3 0.1,0.2,0.3,04 0.959 0.958 0.954 0.953 0.965 0.964 0.963 0.958
0.3,0.4,0.5,0.6 0.1,0.2,0.3,04 0.939 0.940 0.937 0.936 0.945 0.945 0.943 0.932
0.3,0.5,0.6,0.7 0.1,0.2,0.3,0.4 0.927 0.934 0.923 0.920 0.922 0.935 0.921 0.923
0.6,0.5,0.4,0.3 0.1,0.2,0.3,04 0.942 0.940 0.928 0.922 0.951 0.954 0.937 0.930

Table 8: Simulated power of lower 95% confidence intervals of the Williams contrast and the Willimas
contrast extended by a single linear contrast within settings with equal and increasing tumor rates and
different mortality patterns

The results for the power simulation in Table 8 show,that in most cases the usage of the extended
Williams contrast results in a little gain in power compared to the regular Williams contrast. In case
of plateau shape in the true tumor incidence rates (0.1, 0.25,0.3,0.3), the power for intervals based
on the regular Williams contrast is in most cases higher. As already shown in Table 7, under the null
hypothesis the Add-1 interval has coverage probablity nearest to the nominal level of 0.05.
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