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1 Introduction

Most multiple comparison procedures (MCP) for means of two or more normally distributed popula-
tions can be evaluated as multiple contrast tests (MCT) or by related simultaneous confidence intervals
(SCI). Several contrasts, representing linear functions of these means, are estimated and tested for de-
viation from 0. The many-to-one comparison of Dunnett [4] is the most famous example. The trend
test of Williams [11] is a frequently used test, too, when the experimental trail involves several treat-
ments/ doses and a control. Bretz [1] formulated this trend test as an approximate MCT. Dilba et al.
[2] dealt with MCT and SCI for ratios of means. All MCT and SCI have the basic assumption of
normal distributed data with homogeneous group variances and sufficient sample sizes. This fact is
sometimes ignored or hard to proof by the experimenter. Count data, for example, are known not to
follow a normal distribution but Poisson or binomial. These distributions imply heterogeneous group
variances automatically. Even when the data are normally distributed, variance heterogeneity may oc-
cur. E.g., dose finding studies can have the problem of heteroscedasticity because the data’s variance
depends on the dose effect (see the data in [10]). The sample size is tried to be minimized for reasons
of costs. And so, it is a common proceeding to apply these procedures without making sure whether
these assumptions hold true. When no information about the data is available (from preliminary tests)
before statistical analysis, it is advisable to use more robust test procedures, e.g. the Wilcoxon test for
non-normal distributions or the Welch test [9] for heterogeneous variances (see also [5]). Otherwise,
existing effects or negligible differences may be under- or overestimated, respectively, which leads to
wrong test decisions.

2 General assumptions and background

The following simulation studies look on the influence of sample size, heteroscedasticity, and distri-
bution misclassification on upper SCI of Dunnett and Williams type. For this purpose, let there be
i = 0, . . . , k groups of observations, where i = 0 means the control group and k = 2, 4, 8. The groups
have means µi, standard deviations σi, and sample sizes ni. The control group’s mean is µ0 = 10 for
all studies. Interest is in estimating and testing both differences δi = µi − µ0 and ratios γi = µi/µ0 to
control by one-sided (upper) SCI (i = 1, . . . , k). The simultaneous coverage probability (SCP) is sim-
ulated. The nominal level is 0.95 for all studies. Values beyond 0.961 indicate significant conservatism
while values below 0.938 liberalism. The results were obtained by 1000 simulation runs with starting
seed 100 using the statistical software R [7]. The functions glht of the packages multcomp [6] and
sci.ratio of mratios [3] are used for differences and ratios of means, respectively.

Two situations, H1 and H2, are considered for the three issues. Situation H1 always represents the
case that all groups have equal means, µ0 = · · · = µk = 10. H2 denotes that only the non-control
groups (i = 1, . . . , k) have equal means, this is: µi = µ0 + 5 = 15 for the difference based problem,
and µi = µ0 ∗ 1.5 = 15 for the ratio based one. Unlike for differences, SCI for ratios of means are
approximate. The correlation matrix R of the needed multivariate t-distribution additionally depends
on the unknown ratios γi for which the intervals are to be constructed. The method to plug in the
estimators γ̂i = µ̂i/µ̂0 (i = 1, . . . , k) instead (see [2]), is most universally valid and the default in the
R package mratios. Hence, a prior conclusion is that the SCP of the intervals for ratios γi will vary
depending on the situations (H1 or H2).
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When looking on SCI for ratios, further problems arise which do not occur for differences. If the
denominator of the ratio (mean of the control group, µ0) is not significantly greater than 0, related
SCI are not defined at all. Some of the following tables have values in parentheses giving the rates of
undefined SCI which appeared during the simulation. Coverage probabilities with such an extra value
are calculated with respect to these rates and have to be handled with care. First, they do not have 1000
simulation runs as a base like the others. And second, they are conditional to the existence of their
intervals. When all cases are taken out where the mean of the control group is not significantly greater
than 0, the remaining ratios are biased because too small. This censoring also leads to non-normally
distributed sample means for the control group. These general problems of SCI for ratios is sparely
discussed in the literature. Further simulations and conclusions on this can be read in [8].

3 Sample size

For i = 0, . . . , k, data were simulated following normal distributions with equal standard deviations
σ = 2, 4, 6 and equal sample sizes n = 2, 4, 8, 12.

Tables 1 and 2 show the results of the simulations for the SCP of upper SCI for differences of type
Dunnett and Williams, respectively. The confidence level is maintained for all sample sizes - even for
the smallest possible (n = 2) - for both types, and all numbers of comparisons (k). The chosen standard
deviations (σ) and the situations (H1 or H2) have no influence.

Tables 3 and 4 analogously show the results for upper SCI for ratios. The values in parentheses
show the rates of undefined intervals which appeared during the simulation. Because of the discussed
reasons in Section 2, the SCP very varies around the nominal level here. The cases where no undefined
SCI appeared behave good and lead to similar results as for differences above. The intervals are most
stable for small standard deviations (σ) and higher sample sizes n. The situation (H1 or H2) causes
variation but a unique influence can not be seen.

It must further be noted that the results for n = 4, k = 8, H1 and H2, and both types are obtained
with changed starting seeds (10100 for Dunnett, 1100 for Williams) to avoid instability. The used
R function sci.ratio calculates necessary quantiles numerically over an interval from 0 to 10.
Depending on the sample - but very rarely - these quantiles may realize values larger than 10 which
causes instability for the simulation. So this is just a numerical problem, not a conceptual.
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Situation σ n = 2 n = 4 n = 8 n = 12

k = 2, H1 2 0.943 0.947 0.946 0.945

k = 2, H2 0.943 0.947 0.946 0.945

k = 4, H1 0.953 0.952 0.943 0.949

k = 4, H2 0.953 0.952 0.943 0.949

k = 8, H1 0.960 0.943 0.952 0.941

k = 8, H2 0.960 0.943 0.952 0.941

k = 2, H1 4 0.943 0.947 0.946 0.945

k = 2, H2 0.943 0.947 0.946 0.945

k = 4, H1 0.953 0.952 0.943 0.949

k = 4, H2 0.953 0.952 0.943 0.949

k = 8, H1 0.960 0.943 0.952 0.941

k = 8, H2 0.960 0.943 0.952 0.941

k = 2, H1 6 0.943 0.947 0.946 0.945

k = 2, H2 0.943 0.947 0.946 0.945

k = 4, H1 0.953 0.952 0.943 0.949

k = 4, H2 0.953 0.952 0.943 0.949

k = 8, H1 0.960 0.943 0.952 0.941

k = 8, H2 0.960 0.943 0.952 0.941

Table 1: Coverage probability of upper SCI (differences) for the Dunnett procedure with several bal-
anced sample sizes n, situations, and standard deviations σ; simultaneous confidence level 0.95.
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Situation σ n = 2 n = 4 n = 8 n = 12

k = 2, H1 2 0.946 0.941 0.950 0.947

k = 2, H2 0.946 0.941 0.950 0.947

k = 4, H1 0.948 0.958 0.956 0.957

k = 4, H2 0.948 0.958 0.956 0.957

k = 8, H1 0.943 0.958 0.952 0.957

k = 8, H2 0.943 0.958 0.952 0.957

k = 2, H1 4 0.946 0.941 0.950 0.947

k = 2, H2 0.946 0.941 0.950 0.947

k = 4, H1 0.948 0.958 0.956 0.957

k = 4, H2 0.948 0.958 0.956 0.957

k = 8, H1 0.943 0.958 0.952 0.957

k = 8, H2 0.943 0.958 0.952 0.957

k = 2, H1 6 0.946 0.941 0.950 0.947

k = 2, H2 0.946 0.941 0.950 0.947

k = 4, H1 0.948 0.958 0.956 0.957

k = 4, H2 0.948 0.958 0.956 0.957

k = 8, H1 0.943 0.958 0.952 0.957

k = 8, H2 0.943 0.958 0.952 0.957

Table 2: Coverage probability of upper SCI (differences) for the Williams procedure with several bal-
anced sample sizes n, situations, and standard deviations σ; simultaneous confidence level 0.95.
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Situation σ n = 2 n = 4 n = 8 n = 12

k = 2, H1 2 0.942 (0.005) 0.945 0.946 0.945

k = 2, H2 0.937 (0.004) 0.944 0.942 0.944

k = 4, H1 0.950 0.943 0.951 0.950

k = 4, H2 0.932 0.954 0.955 0.950

k = 8, H1 0.953 0.943 0.946 0.944

k = 8, H2 0.951 0.944 0.951 0.944

k = 2, H1 4 0.939 (0.273) 0.943 (0.007) 0.946 0.943

k = 2, H2 0.940 (0.249) 0.944 (0.007) 0.941 0.944

k = 4, H1 0.954 (0.258) 0.943 (0.007) 0.957 0.942

k = 4, H2 0.951 (0.208) 0.948 (0.001) 0.942 0.936

k = 8, H1 0.958 (0.243) 0.940 (0.004) 0.963 0.946

k = 8, H2 0.949 (0.162) 0.940 (0.001) 0.953 0.941

k = 2, H1 6 0.935 (0.582) 0.960 (0.129) 0.950 (0.006) 0.941

k = 2, H2 0.935 (0.555) 0.967 (0.118) 0.944 (0.004) 0.943

k = 4, H1 0.937 (0.651) 0.958 (0.163) 0.941 (0.010) 0.939

k = 4, H2 0.955 (0.554) 0.966 (0.126) 0.947 (0.002) 0.947

k = 8, H1 0.966 (0.647) 0.980 (0.162) 0.947 (0.006) 0.933

k = 8, H2 0.977 (0.563) 0.987 (0.142) 0.933 (0.004) 0.946

Table 3: Coverage probability of upper SCI (ratios) for the Dunnett procedure with several balanced
sample sizes n, situations, and standard deviations σ; simultaneous confidence level 0.95.
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Situation σ n = 2 n = 4 n = 8 n = 12

k = 2, H1 2 0.944 (0.002) 0.941 0.949 0.946

k = 2, H2 0.946 (0.002) 0.942 0.945 0.946

k = 4, H1 0.949 0.936 0.933 0.951

k = 4, H2 0.948 0.945 0.954 0.952

k = 8, H1 0.941 0.950 0.949 0.951

k = 8, H2 0.960 0.951 0.959 0.948

k = 2, H1 4 0.951 (0.217) 0.940 (0.004) 0.948 0.944

k = 2, H2 0.957 (0.204) 0.938 (0.003) 0.945 0.946

k = 4, H1 0.948 (0.175) 0.945 (0.002) 0.952 0.953

k = 4, H2 0.942 (0.132) 0.937 (0.001) 0.947 0.960

k = 8, H1 0.963 (0.103) 0.942 0.946 0.951

k = 8, H2 0.962 (0.078) 0.949 (0.002) 0.931 0.956

k = 2, H1 6 0.953 (0.515) 0.956 (0.107) 0.951 (0.004) 0.943

k = 2, H2 0.958 (0.496) 0.963 (0.098) 0.943 (0.002) 0.946

k = 4, H1 0.966 (0.476) 0.969 (0.094) 0.954 (0.002) 0.941

k = 4, H2 0.970 (0.433) 0.974 (0.102) 0.941 (0.002) 0.941

k = 8, H1 0.983 (0.425) 0.968 (0.076) 0.931 (0.008) 0.954

k = 8, H2 0.981 (0.412) 0.974 (0.076) 0.942 (0.001) 0.942

Table 4: Coverage probability of upper SCI (ratios) for the Williams procedure with several balanced
sample sizes n, situations, and standard deviations σ; simultaneous confidence level 0.95.
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4 Heteroscedasticity

For i = 0, . . . , k, data were simulated following normal distributions. The total sample sizes were 30
(k = 2), 50 (k = 4), and 90 (k = 8). Three different settings were considered, and they are

1. balanced allocation: ni = 10 for all i = 0, . . . , k,

2. uniformly increasing sample sizes over the groups:

• k = 2: n0 = 6, n1 = 10, n2 = 14,

• k = 4: n0 = 6, n1 = 8, n2 = 10, n3 = 12, n4 = 14,

• k = 8: n0 = 6, n1 = 7, n2 = 8, n3 = 9, n4 = 10, n5 = 11, n6 = 12, n7 = 13, n8 = 14,

3. uniformly decreasing sample sizes over the groups:

• k = 2: n0 = 14, n1 = 10, n2 = 6,

• k = 4: n0 = 14, n1 = 12, n2 = 10, n3 = 8, n4 = 6,

• k = 8: n0 = 14, n1 = 13, n2 = 12, n3 = 11, n4 = 10, n5 = 9, n6 = 8, n7 = 7, n8 = 6.

Moreover, increasing standard deviations over the groups were chosen:

• k = 2: σ0 = 1, σ1 = 3, σ2 = 5,

• k = 4: σ0 = 1, σ1 = 2, σ2 = 3, σ3 = 4, σ4 = 5,

• k = 8: σ0 = 1, σ1 = 1.5, σ2 = 2, σ3 = 2.5, σ4 = 3, σ5 = 3.5, σ6 = 4, σ7 = 4.5, σ8 = 5.

Setting 1 consequently gives the same sample size to all groups. Setting 2 puts the highest sample size
to the group with the highest standard deviation, while setting 3 gives the highest sample size to the
group with the smallest standard deviation.

Tables 5 and 6 show the results of the simulations for the SCP of upper SCI for differences of type
Dunnett and Williams, respectively. For all settings, the situations (H1 or H2) have no influence. For
setting 1, conservatism can be seen for both types. This conservatism gets precarious for unbalanced
settings like setting 2. The case when small sample size meets high standard deviation (setting 3) leads
to liberal confidence intervals. The number of groups itself has also no influence in principle. But
the three settings, of course, depend on the number of groups. The differences of the sample sizes
and standard deviations between the groups vary for different group numbers. That influences the
simulation results.

Tables 7 and 8 show the analogical results for upper SCI for ratios. The conclusions are about
comparable with those above. The most important difference is that the coverage probability of SCI
for ratios of means very depends on the situations (H1 or H2) because of the discussed reasons in
Section 2. Values for H2 are always higher than for H1. So, the Dunnett intervals tend to conservatism
for setting 1 and H1, and get very conservative for H2. The Williams intervals indeed show a better
behavior for H1, but they get conservative as well for H2. Setting 2 yields even more conservative
intervals for both types and situations. Setting 3 leads to liberalism in general and especially for H1.

Generally, when the groups with the highest variation have the smallest sample size, the confidence
intervals get liberal. They are too small then, their coverage probability is too small. Tests based on
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Situation Setting 1 Setting 2 Setting 3

k = 2, H1 0.961 0.992 0.894

k = 2, H2 0.961 0.992 0.894

k = 4, H1 0.955 0.994 0.905

k = 4, H2 0.955 0.994 0.905

k = 8, H1 0.975 0.995 0.901

k = 8, H2 0.975 0.995 0.901

Table 5: Coverage probability of upper SCI (differences) for the Dunnett procedure with several settings
and situations; simultaneous confidence level 0.95.

Situation Setting 1 Setting 2 Setting 3

k = 2, H1 0.958 0.990 0.888

k = 2, H2 0.958 0.990 0.888

k = 4, H1 0.959 0.988 0.873

k = 4, H2 0.959 0.988 0.873

k = 8, H1 0.959 0.987 0.911

k = 8, H2 0.959 0.987 0.911

Table 6: Coverage probability of upper SCI (differences) for the Williams procedure with several set-
tings and situations; simultaneous confidence level 0.95.

them do not keep the familywise error rate (FWER). The converse case (highest sample size to the
highest variation) leads to conservative intervals. They are too wide, their coverage probability is too
high, and related tests do not exploit the FWER.

Further simulation results concerning heteroscedasticity can be seen in [5]. The focus there was
less in SCI but more in test procedures. There is a strict one-to-one relation between MCT and SCI
for differences of means, so their conclusions are comparable. This relation does not hold strictly for
ratios of means because the SCI are just approximate unlike the test. The conclusions for MCT must
be transfered to SCI with caution.
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Situation Setting 1 Setting 2 Setting 3

k = 2, H1 0.960 0.992 0.894

k = 2, H2 0.982 0.998 0.924

k = 4, H1 0.958 0.990 0.901

k = 4, H2 0.985 1.000 0.933

k = 8, H1 0.970 0.995 0.911

k = 8, H2 0.991 0.998 0.939

Table 7: Coverage probability of upper SCI (ratios) for the Dunnett procedure with several settings and
situations; simultaneous confidence level 0.95.

Situation Setting 1 Setting 2 Setting 3

k = 2, H1 0.958 0.990 0.886

k = 2, H2 0.980 0.996 0.918

k = 4, H1 0.944 0.992 0.904

k = 4, H2 0.983 0.999 0.920

k = 8, H1 0.944 0.982 0.897

k = 8, H2 0.978 0.998 0.927

Table 8: Coverage probability of upper SCI (ratios) for the Williams procedure with several settings
and situations; simultaneous confidence level 0.95.
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5 Distribution misclassification

For i = 0, . . . , k, data were simulated following the distributions:

• normal N(µi, σ
2) with σ = 3,

• mixed normal

– 0.5 N(µi − 2, σ2) + 0.5 N(µi + 2, σ2) for differences,

– 0.5 N(0.8µi, σ
2) + 0.5 N(1.2µi, σ

2) for ratios

with σ = 3,

• Poisson pois(λi) with λ0 = µ0,

• exponential exp(λi) with λ0 = 1/µ0.

The normal distribution (norm) was taken as a control. A mixed normal distribution (2norm) can
appear, if two groups are pooled through an oversight, or if effects overlay each other. (Note that
random numbers from two independent normal distributions have been created, not from the joint
mixed distribution.) The Poisson distribution (pois) was taken because frequently appearing, especially
for count data. It is a discrete and non-symmetric distribution. Its variance (λ) is equal to the mean
(λ). When the data follow discrete distributions, ties can appear. Problems arise when the sample
sizes are too small. In that case, it may happen that there are groups with only equal values. Then
no variances can be estimated, confidence intervals are not available and hence, no conclusions about
them. The exponential distribution (exp) is non-symmetric, too, but continuous. Its variance (1/λ2)
is equal to the squared mean (1/λ). Data related to time measurements often have this one. Both
distributions’ variances depend on their means. This implies heterogeneous variances as soon as the
means are different like under H2.

Tables 9 and 10 show the results of the simulations for the SCP of upper SCI for differences of type
Dunnett and Williams, respectively. Of course, the data for norm keep the level of the SCP indepen-
dently from the chosen sample sizes; the situations (H1 or H2) have no influence. This independence
also holds for 2norm but the intervals are all conservative. The remaining distributions differ depending
on the situations. In general, pois and exp yield good SCP for H1, where all groups have equal vari-
ances. But situation H2 causes conservatism because the non-control groups have different variances
than the control here. pois sometimes deviates from this conclusion but that is just owing to the high
variance. All the conclusions hold for both types (Dunnett and Williams).

These conclusion are also valid for the SCI for ratios in principal. Tables 11 and 12 show the results
of the simulations for the SCP for ratios. The values in parentheses show the rates of undefined SCI
which appeared during the simulation. Because of the reasons discussed in Section 2, the conclusions
differ a bit from those for differences.
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Situation n norm 2norm pois exp

k = 2, H1 10 0.953 0.982 0.961 0.939

k = 2, H2 0.953 0.982 0.946 0.968

k = 4, H1 0.944 0.979 0.962 0.955

k = 4, H2 0.944 0.979 0.965 0.977

k = 8, H1 0.947 0.983 0.942 0.941

k = 8, H2 0.947 0.983 0.966 0.966

k = 2, H1 50 0.941 0.989 0.951 0.941

k = 2, H2 0.941 0.989 0.961 0.966

k = 4, H1 0.960 0.989 0.948 0.938

k = 4, H2 0.960 0.989 0.954 0.964

k = 8, H1 0.960 0.992 0.954 0.931

k = 8, H2 0.960 0.992 0.952 0.966

k = 2, H1 100 0.941 0.974 0.949 0.957

k = 2, H2 0.941 0.974 0.949 0.968

k = 4, H1 0.945 0.980 0.959 0.952

k = 4, H2 0.945 0.980 0.970 0.975

k = 8, H1 0.955 0.986 0.961 0.946

k = 8, H2 0.955 0.986 0.965 0.970

Table 9: Coverage probability of upper SCI (differences) for the Dunnett procedure with several distri-
butions, situations, balanced sample sizes n; simultaneous confidence level 0.95.
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Situation n norm 2norm pois exp

k = 2, H1 10 0.944 0.978 0.963 0.941

k = 2, H2 0.944 0.978 0.949 0.969

k = 4, H1 0.950 0.983 0.949 0.954

k = 4, H2 0.950 0.983 0.967 0.978

k = 8, H1 0.953 0.980 0.944 0.955

k = 8, H2 0.953 0.980 0.971 0.979

k = 2, H1 50 0.955 0.980 0.943 0.943

k = 2, H2 0.955 0.980 0.971 0.970

k = 4, H1 0.952 0.982 0.953 0.958

k = 4, H2 0.952 0.982 0.967 0.985

k = 8, H1 0.954 0.978 0.950 0.955

k = 8, H2 0.954 0.978 0.974 0.986

k = 2, H1 100 0.937 0.971 0.951 0.954

k = 2, H2 0.937 0.971 0.957 0.972

k = 4, H1 0.951 0.980 0.946 0.959

k = 4, H2 0.951 0.980 0.964 0.987

k = 8, H1 0.953 0.978 0.946 0.961

k = 8, H2 0.953 0.978 0.970 0.987

Table 10: Coverage probability of upper SCI (differences) for the Williams procedure with several
distributions, situations, balanced sample sizes n; simultaneous confidence level 0.95.
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Situation n norm 2norm pois exp

k = 2, H1 10 0.949 0.981 0.960 0.959 (0.082)

k = 2, H2 0.946 0.990 0.955 0.996 (0.296)

k = 4, H1 0.949 0.985 0.946 0.975 (0.133)

k = 4, H2 0.949 0.994 0.949 0.998 (0.425)

k = 8, H1 0.944 0.989 0.947 0.982 (0.189)

k = 8, H2 0.936 0.990 0.973 1.000 (0.588)

k = 2, H1 50 0.940 0.987 0.950 0.939

k = 2, H2 0.946 0.993 0.966 0.974

k = 4, H1 0.952 0.983 0.945 0.945

k = 4, H2 0.952 0.995 0.967 0.967

k = 8, H1 0.950 0.988 0.944 0.939

k = 8, H2 0.952 0.997 0.966 0.973

k = 2, H1 100 0.941 0.974 0.948 0.953

k = 2, H2 0.941 0.982 0.960 0.982

k = 4, H1 0.937 0.982 0.950 0.938

k = 4, H2 0.948 0.994 0.971 0.975

k = 8, H1 0.950 0.989 0.944 0.950

k = 8, H2 0.953 0.997 0.972 0.976

Table 11: Coverage probability of upper SCI (ratios) for the Dunnett procedure with several distribu-
tions, situations, balanced sample sizes n; simultaneous confidence level 0.95.
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Situation n norm 2norm pois exp

k = 2, H1 10 0.943 0.978 0.962 0.966 (0.066)

k = 2, H2 0.942 0.988 0.956 0.993 (0.253)

k = 4, H1 0.930 0.978 0.942 0.959 (0.074)

k = 4, H2 0.951 0.986 0.963 0.994 (0.327)

k = 8, H1 0.943 0.974 0.953 0.972 (0.091)

k = 8, H2 0.935 0.990 0.957 0.998 (0.370)

k = 2, H1 50 0.954 0.980 0.938 0.940

k = 2, H2 0.949 0.992 0.973 0.979

k = 4, H1 0.947 0.978 0.947 0.956

k = 4, H2 0.959 0.993 0.960 0.987

k = 8, H1 0.949 0.981 0.947 0.955

k = 8, H2 0.942 0.988 0.979 0.976

k = 2, H1 100 0.937 0.971 0.947 0.954

k = 2, H2 0.934 0.982 0.962 0.983

k = 4, H1 0.943 0.976 0.938 0.946

k = 4, H2 0.951 0.991 0.964 0.978

k = 8, H1 0.958 0.980 0.943 0.952

k = 8, H2 0.942 0.990 0.977 0.989

Table 12: Coverage probability of upper SCI (ratios) for the Williams procedure with several distribu-
tions, situations, balanced sample sizes n; simultaneous confidence level 0.95.
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6 Conclusions and recommendations

When applying confidence intervals as well as statistical tests, the user must always make assumptions
on the data. In practice, it is hard to decide whether these assumptions and necessary conditions are
really fulfilled or not. Hence, violation appears very often. This simulation study had a look on the
influence of sample size, heteroscedasticity, and distribution misclassification on upper SCI of Dunnett
and Williams type. In principle, SCI for ratios of means have the weak point of not being defined if
the denominator is not significantly different from 0. Furthermore, they are just approximate which
sometimes leads to a higher sensitivity for violation of data assumptions. Apart from these points, their
behavior is quite similar to the intervals for differences.

Generally, the sample size itself has no critical influence on both intervals if existing. The smallest
possible sample size per group is n = 2. Although, small sample size is not advisable because it can
additionally intensify problems with heteroscedasticity and distribution misclassification.

The effect of heteroscedasticity is diverse. Depending on the allocation, conservatism or liberal-
ism appears, respectively. When the data are heteroscedastic and the sample sizes are balanced, the
confidence intervals get conservative. They are too wide, their coverage probability is too high. The
intervals for ratios are more conservative when the non-control groups differ from the control. When
groups with high variation have high sample size, the confidence intervals get conservative, too. The
intervals for ratios are also more conservative when the non-control groups differ from the control.
When groups with high variation have small sample size, the confidence intervals get liberal. They are
too small then, their coverage probability is too small. The intervals for ratios are more liberal when
the non-control groups do not differ from the control. If this situation is expected, it is advisable to
use more robust intervals based on Bonferroni adjusted Welch t-test [9] or MCT, which account for
heteroscedasticity (see [5]).

Distribution misclassification is the most critical point. If the variance of the real underlying distri-
bution depends on the mean (like Poisson and exponential), heteroscedasticity is additionally present.
Then both effects can compound or annul each other. When the data do not follow a normal distribution
but a mixed normal, the confidence intervals get conservative. For Poisson or exponential distribution,
the confidence intervals yield good coverage probabilities when the non-control groups do not differ
from the control, and get conservative when they do. This is because additional unequal group vari-
ances then. Furthermore, the above conclusions about heteroscedasticity can be transfered, especially
for unbalanced sample sizes which were not simulated here. So it is recommended to use SCI which are
stable against heteroscedasticity if a mild violation is expected, and intervals related to non-parametric
test procedures (e.g.Bonferroni-adjusted Wilcoxon tests) else.
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