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1 Introduction

1.1 Distributional assumptions for count data

If the effect of novel agricultural treatments on the fauna is to be assessed, usually abundance data are
collected. Here, abundance is measured by counting the number of individuals in certain unit of time
and space. Counts randomly occurring with a fixed expectation in a certain unit of time and space can
be assumed to follow the Poisson distribution. For a random variable Y following Poisson distribution,
the probability of observing y is

P (Y = y) = e−mmy/y! (1)

A random variable Y following the Poisson distribution has the property E (Y ) = m = V (Y ). How-
ever, if the expectation differs between subunit in time or space, the count follows a mixture of Poisson
distributions, with the property E (Y ) ≥ V (Y ) This is usually the case for field data of insect abun-
dance. A common distribution to model such data is the negative binomial distribution.

P (Y = y) =
(
k + y − 1
k − 1

)(
k

m+ k

)k ( m

m+ k

)y
(2)

Here, 1/k is a dispersion parameter, and m is the expectation of Y . In the Negative Binomial
distribution, the variance is a quadratic function of the expectation and the dispersion parameter 1/k:
V (Y ) = m + m2

k . As k → ∞, the Poisson distribution results. In the following we will denote the
Negative binomial distribution NB (m, k).

1.2 Proof of Equivalence

We consider a single species only. We consider only two treatments, Novum and Standard, where
E (Y1) = m1 denotes the mean abundance in Novum and E (Y0) = m0 denotes the mean abundance
in Standard. The parameter of interest is the ratio of mean abundances ρ = m1/m0. To perform a
proof of safety, we are interested in rejecting the null hypothesis

H0 : m1/m0 ≤ θl ∪m1/m0 ≥ θu (3)

in favor of the alternative hypothesis:

H0 : m1/m0 > θl ∩m1/m0 < θu (4)

where θl, θu are the lower and upper limits of change in mean abundance which is considered as
non-relevant. Preserving a type I error of α = 0.05, a proof of safety can be performed using a lower
95% confidence limit and an upper 95% confidence limit for m1/m0. Lower and upper confidence
limits will be denoted ρ̂l,0.95, ρ̂u,0.95. One can reject H0, if

ρ̂l,0.95 > ρl ∩ ρ̂u,0.95 < ρu (5)

i.e., if and only if the lower and upper confidence limit estimated for the parameter ρ are both
included in the range of

[
θl, θu

]
of non-relevant change Wellek (2003).
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1.3 Objectives

This report investigates different methods to construct confidence intervals for ρ. Special attention
is paid to the two-sided coverage probability of such intervals (since they may serve as a tool for
inference as well as estimation), on the minimum coverage probability of the lower and upper limit,
since this will lead to maximal type-I-error for a two-sided proof of safety, and the coverage probability
of lower limits, since they might serve to proof savety one-sided, if it is only of interest to show that
the abundance of a species is not relevantly decreased.

2 Methods

We consider the setting of independent observations Yij ∼ NB (mi, k). Such data might be derived
from trials comprising two treatments i = 0, 1 and ni, j = 1, ..., ni replications of each treatment,
arranged in a completely randomized design.

The following Sections describe confidence limits
[
ρ̂l,0.95, ρ̂u,0.95

]
for ρ and the available software

implementations in R.

2.1 Asymptotic confidence interval from a glm with log-link, assuming Poisson distri-
bution (GLMP)

In a generalized linear model with log-link, we assume that effects are additive on the scale of the log:

E (log (E (Y ))) = E (η) = Xβ (6)

i.e.,

E (Y ) = exp (Xβ) (7)

where X denotes the (N × p) design matrix, N =
∑2

i=1 ni, p = 2. We assume Poisson distri-
bution for the fit. For details, see McCullagh and Nelder (1989). From the model fit we can obtain
estimators η̂1− η̂0 for η1−η0 and estimates for the standard error of this estimator, σ̂η̂1−η̂0 . Asymptotic
lower and upper confidence limits for ρ can be obtained using:[

ρ̂l,0.95; ρ̂l,0.95
]

=
[
exp

(
η̂1 − η̂0 ± z0.95

√
σ̂η̂1−η̂0

)]
(8)

with z0.95 the 95% quantile of the standard normal distribution. In the simulation study, we used
the function glm in the stats package of R to fit the model.

2.2 Asymptotic confidence interval from a glm with log-link, assuming using Quasi-
poisson method (GLMQP)

A model can be fitted according to Equation 7 using the quasipoisson method McCullagh and Nelder
(1989), estimators are equivalently obtained, but additionally depend on the variance estimated from
the data, assuming V (Y ) = φmi, where φ = 1/k is a common dispersion parameter. Analogously,
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Equation 8 is used to calculate confidence limits. In the simulation study, we used the function glm in
the stats package of R to fit the model.

2.3 Asymptotic confidence interval from a glm with log-link, assuming Negative bino-
mial distribution (GLMNB)

A model can be fitted according to Equations 7 using the likelihood of the negative binomial distribu-
tion McCullagh and Nelder (1989), estimators and confidence limits are analogously obtained. The
problem of fitting glms with negative binomial assumptions, is that the dispersion parameter 1/k has
to be estimated from the data. For this problem, different estimators exist. We used the implementation
glm.nb by Venables and Ripley (2002) in the R package MASS to fit the negative binomial model.
Additionally, the algorithm of Rigby and Stasinopoulos (2005) was used as provided in the R-package
gamlss and is denoted GLMNBI.

2.4 Asymptotic confidence interval for the ratio of means assuming lognormal distri-
bution (LN)

Often, strictly non-negative random variables with positively skewed distribution, as are count data, are
approximated by assuming lognormal distribution. Chen and Zhou (2006) compare interval estimators
for the difference and ratio of means of two independent lognormal samples.
Let Yij , j = 1, ..., ni, i = 1, 2 denote two samples of log-normal distributions, and Zij = log (Yij).
The ratio of means ρ = E (Y1) /E (Y0) = µ1/µ0 is to be estimated, and Ψ = log (µ1/µ0). Let the ζ̂i
denote the estimated mean and σ̂i the estimated standard deviation of samples Zij . The MLE for Ψ is
Ψ̂ = ζ̂1 − ζ̂0 + 1

2 (σ̂1 − σ̂0), and the maximum likelihood estimator of the ratio of means µ1/µ0 of the

Yij then is: exp
(

Ψ̂
)

. A large sample confidence interval can be constructed using τ̂ =
√
V̂
(

Ψ̂
)

. An

estimator for τ̂ is
√

σ1
n1

+ σ2
1

2n1
− σ0

n0
− σ2

0
2n0

. The confidence interval then is:[
ρ̂l,0.95; ρ̂l,0.95

]
=
[
exp

(
Ψ̂± z0.95τ̂

)]
(9)

However, the assumption of continuous data which is included in the assumption of lognormal
distribution is violated for count data. Moreover, for low mean abundances the frequent occurrence of
Y = 0 is a numerical problem for the above confidence interval. Here, Y is replaced by Y + 0.1 in case
that Y = 0 occurs.

2.5 Fieller type confidence interval for ratio of normal means (N)

Tamhane and Logan (2004) proposed a test for the ratio of means of two normal populations in the
presence of heteroscedasticity, using the Satterthwaite approximation for the degrees of freedom. The
test can be inverted approximately using the method applied by Fieller (1954).

[
ρ̂l,0.95; ρ̂l,0.95

]
=

[
−B
2A
±
√

(B/2)2 −AC
A

]
(10)
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, with

A = s0
t2dfS,1−α
n0

− µ̂2
0

B = 2µ̂1µ̂0

C = s1
t2dfS,1−α
n1

− µ̂2
1

where si =

√∑ni
j=1(yij−µ̂i)

2

ni−1 , µ̂i =
∑ni

j=1 yi

ni
, and tdfS,1−α being a quantile from the t-distribution

with df = dfS, and dfS = (ρ̂2s20/n0+s20/n0)2

ρ̂4s40/n
2
0(n0−1)+s40/n

2
0(n1−1)

.

This interval can be contructed for A > 0, not otherwise. In case that A < 0, we define

2.6 Non-parametric confidence interval for the ratio of locations (HL)

A non-parametric confidence interval for the difference of location parameters has been described by
Hodges and Lehmann (1963) and Bauer (1972). This interval is conditional to the sample. It is
based on the assumption that two independent samples y1j , y0j′ , with j = 1, ..., n1, j′ = 1, ..., n0 are
distributed F (Y ) andG(Y ) = F (Y/ρ), where F (Y ) is a continuous distribution, and ρ is the unknown
parameter of interest.

Hothorn and Munzel (2002) show that an exact confidence interval for ρ can be constructed by
first calculating all pairwise ratios rjj′ = y1j

y0j′
, j = 1, ..., n1, j

′ = 1, ..., n0, second order rjj′ according
to their magnitude, resulting in ordered sample of pairwise ratios r(1) < r(2) < ... < r(n1n0). A 0.95
lower and upper confidence limits can now be constructed by taking the 0.05- and 0.95-quantile of the
Wilcoxon distribution with parameters denoted w0.05,n1,n0 and w0.95,m1,n0 . The confidence interval is:

[ρ̂L, ρ̂L] =
[
r(w0.05,n1,n0 ), r(w0.95,n1,n0 )

]
.

If the distribution is not continuous and ties occur in the data, the authors recommend the use of a
conditional approach based on the Streitberg-Röhmel algorithm.

An implementation of the Hodges-Lehmann interval Hodges and Lehmann (1963) for the differ-
ence in locations based on the ordered sample of pairwise differences d(1) < d(2) < ... < d(n1n0),
with djj′ = y1j − y0j′ , j = 1, ..., n1, j

′ = 1, ..., n0 is available in the R-package exactRankTests.
Since ordering ldjj′ = log (y1j) − log

(
y0j′
)

results in exactly the same order as ordering the rjj′ .
Then, applying the exponential function to the interval constructed based on the ordered sample of
ld(1) < ld(2) < ... < ld(n1n0), results in the interval described by Hothorn and Munzel. However, if
the above interval shall be applied to count data, one has to deal with the occurrence of zeros in the
samples y1 and y0. In case that zeros occur in only one of the samples, setting

ld = log (0)− log (ε) = −∞⇔ r = 0/ε = 0,

and
ld = log (ε)− log (0) =∞⇔ r = ε/0 =∞,
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for ε > 0 we can numerically deal with the problem of ordering ldjj′ and finally construct a confidence
interval. There is no reasonable numerical replacement for r = 0/0 or ld = log(0) − log(0), hence
such values are omitted from the ordered sample of lds. If the samples n1, n0 and the mean abundances
are small, frequently all observations of at least one sample xij = 0∀j, for i = 1 or i = 2. Then, the
all rjj′ or ldjj′ have the same value and the confidence interval degenerates to a point. In this case, we
formally define the interval to be [ρ̂L, ρ̂L] = [0,∞].

In the context of log-transformation in parametric analyses, the problem of occurring zeros is often
solved by using the transformation log (y + ε). However, the intervals discussed here are based on the
stochastical order between the samples y1 and y0. By simple numerical examples it can be shown that
result of ordering ld∗jj′ = log (y1j + ε)− log

(
y0j′ + ε

)
may markedly differ from ordering rjj′ . More-

over, the resulting confidence interval for ld∗ can not be back transformed into a confidence interval for
ρ. If the exponential function is applied to the confidence bounds for ld∗, the resulting values of con-
fidence bounds ρ̂∗ differ markedly depending on the choice of ε. For these reasons, the nonparametric
confidence interval is not recommended for use, if abundance is low and samples are small.

Nevertheless, this interval was included in the simulation study under the acronym HL, based on
ld∗jj′ = log (y1j + ε)− log

(
y0j′ + ε

)
, with ε = 0.1. Since it is based on Permutation, the exact solution

using the Streitberg-Röhmel algorithm is only available for limited sample size. Here, for more than
n0 + n1 > 50 observations an asymptotic version is computed.

Note, that the parameter ρ as defined for the HL interval differs from the definition of ρ = E (Y1) /E (Y0)
for the methods explicitly assuming a certain distribution. It can not be interpreted as the ratio of loca-
tion parameters, but as a parameter of changing scale.

3 Conclusions

If the negative binomial distribution (of which the Poisson distribution is a special case) can be rea-
sonably assumed for the data, constructing confidence intervals based on the fit of a GLM with family
negative binomial or quasipoisson is recommended. Fits based on the Poisson assumption lead to un-
acceptably liberal confidence intervals also for modest overdispersion k = 10. If the ratio of mean
abundance is extreme, i.e. ρ = 0.1, 10 the quasipoisson method might be conservative, but if the mean
abundances are about equal, ρ is close to 1, the quasipoisson approach performs acceptable, also for
data following the negative binomial distribution. If the model fit assumes the negative binomial distri-
bution, the algorithm of Rigby and Stasinopoulos (2005) appears preferable in the considered settings,
being slightly less liberal the implementation of Venables and Ripley (2002). However, it should be
noted, that none of the methods is close to the nominal level for all considered situations. In a proof of
safety with nominal 5% error probability, actual error probabilities of up to 8% may occur.
If the data indeed follow a negative binomial distribution, basic assumptions of the LN, HL and N
method are violated. The LN method performs mostly acceptable if situations with low mean abun-
dance (i.e. high discreteness of the distribution and frequent occurrence of zeros) are avoided. Adding
a small number to the observed counts avoids numerical problems but the confidence interval described
in this report should not be interpreted as intervals for ρ = E (Y1) /E (Y0). The same comes true for the
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HL method. In many situations, it does not cover the parameter ρ = E (Y1) /E (Y0) with acceptable
probability. It should be noted that the comparison of the HL method with the GLM based methods
might be rather unfair, since we assume a certain distribution and compare methods that are not based
on these assumptions with others which are based on that assumptions. It is then very likely that the
latter perform better. Based on this report, the HL method can not be recommended because the un-
derlying distributional assumptions differ substantially from the properties of count data (discreteness,
frequent occurrence of zeros), and because the parameter ρ as defined by Hothorn and Munzel (2002)
can not interpreted as the ratio of expectations or ratio of medians, but rather is a parameter of change
in scale between two distributions. This is a problem the easy interpretation of the parameters is impor-
tant to define the safety margins when objective is to perform a proof of safety. However, it should be
investigated whether the HL method outperforms the GLMQP, GLMNB, or GLMNBI method for dis-
tributions which show the typical properties of count data, but are not following the negative binomial
distribution.

4 Simulation study

Objective of the simulation study is to investigate the coverage probabilities of the above confidence
interval methods, with special respect to the

1. two-sided coverage probability Cts = P
(
ρ ∈

[
ρ̂l, ρ̂u

])
,

2. the minimum coverage probability of the upper and the lower boundCmin = min
(
P
(
ρ ≥ ρ̂l

)
, P (ρ ≤ ρ̂u)

)
,

3. and the coverage probability of the lower bound, Cl = P
(
ρ ≥ ρ̂l

)
.

4.1 Assumption of the Negativ Binomial distribution

Samples were drawn from the family of negative binomial distribution Yi ∼ NB (µi, k), i.e. assuming
equal overdispersion parameters in both samples.

The following parameter settings were considered:

m0 = 1, 5, 10, 50,

ρ = 0.1, 0.5, 0.8, 1, 1.25, 2, 10,

n0 = n1 = 5, 10, 20, 50.

The dispersion parameter was set to:

k = 1000, 10, 1

where k = 1000 practically corresponds to a Poisson distribution.
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4.2 Results

4.2.1 Overview

From Figures 1, 3, and 2 it is obvious, that if data in fact follow a Poisson distribution, the GLMP,
GLMQP, and GLMNB methods are acceptable options. If data follow a negative binomial distribution
with marked overdispersion k = 10, or k = 1, only the GLMQP and GLMNB methods perform accept-
able. All other methods severely fail to cover the true parameter in at least a few cases.

Summarizing over all considered parameter settings, severe violations of the nominal confidence
level of the lower bound, here defined as Cl < 0.93, occurred in 52% of the cases for GLMP, in 4% of
the cases for GLMNB, never for GLMNBI and GLMQP, and in 14%, 12%, and 16% of the cases for the
HL, LN, and N method, respectively. Severely lowered minimal coverage probabilities, here defined
as Cmin < 0.93, occured in 52% of the cases for GLMP, in 7% of the case for GLMNB, never for
GLMNBI and GLMQP, in 29% of the cases for the HL method, and in 21% and 22% for the LN and N
method, respectively.
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Figure 1: Coverage probabilities of nominal 95% lower confidence limits

Figure 2: Minimal coverage probabilities of nominal 95% lower and upper confidence limits

8



●●●

●●●
●

●

●
●●●●
●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●
●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●●

G
LM

P
G

LM
Q

P
G

LM
N

B
G

LM
N

B
I

LN N H
L

0.0

0.2

0.4

0.6

0.8

1.0

V(x)=mi ++ 0.001mi
2

C
ov

er
ag

e 
pr

ob
ab

ili
ty

 o
f t

w
o−

si
de

d 
0.

9−
in

te
rv

al
s

●
●●
●
●
●●

●
●●

●

●

●●●●●●●
●

●

●●

●

●

●
●●●●●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●
●
●

●●●

●●●●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●

●

●

●

G
LM

P
G

LM
Q

P
G

LM
N

B
G

LM
N

B
I

LN N H
L

0.0

0.2

0.4

0.6

0.8

1.0

V(x)=mi ++ 0.1mi
2

C
ov

er
ag

e 
pr

ob
ab

ili
ty

 o
f t

w
o−

si
de

d 
0.

9−
in

te
rv

al
s

●
●●
●●●
●●
●

●●●

●
●●

●

●

●
●●
●●
●
●●

●

●

●

●

●●
●
●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
G

LM
P

G
LM

Q
P

G
LM

N
B

G
LM

N
B

I
LN N H

L

0.0

0.2

0.4

0.6

0.8

1.0

V(x)=mi ++ 1mi
2

C
ov

er
ag

e 
pr

ob
ab

ili
ty

 o
f t

w
o−

si
de

d 
0.

9−
in

te
rv

al
s

Figure 3: Coverage probabilities of nominal 90% two-sided confidence intervals

9



4.2.2 Detailed results for GLMQP and GLMNB

In Figures 4, 5, 6, 7, the coverage probabilities of lower 95% bounds of the GLMNB, and GLMQP are
summarized. The GLMNB method becomes liberal for marked overdispersion and small sample size.
The GlmQP method becomes conservative for large overdispersion and extreme values of ρ, due to
mis-specification of the variance-mean-relation. In other cases, using the GLMQP method for negative
binomial data has no severe effect on the coverage probability.
If the intervals are used to estimate lower bounds for ρ one has to expect coverage probabilities as low
as 92% for nominal 95% limits if large overdispersion is present (k = 1) and sample size is small
(ni = 5). For sample sizes of ni = 10, one has to expect coverage probabilities of about 94% for
nominal 95% confidence intervals.
Using the GLMNB for a proof of non-inferiority with margins rL = 0.8, 0.5, will have type-I-error
rates up to 0.08, 0.065, 0.06 if overdispersion is large (k = 1) and sample sizes are n = 5, 10, 20,
respectively. Using the GLMQP method in the same situations, the type-I-error rate will rarely be
higher than 0.06. Hence, if interest is in assessing non-inferiority one should be aware of the slightly
liberal performance.
If interest is in a proof of equivalence the minimal coverage of the lower and upper 95% bounds is the
criterion for recommendation. Figures 8, 9, 10, and 11 summarize this criterion for the GLMNB and
GLMQP method. As can be expected, the situation is slightly worse than for the lower bounds alone.
Using the GLMNB method, one has to be aware that the actual type-I-errors can be as low as 0.08 for
ni = 5 and large overdispersion (k = 1). Also for sample sizes n1 = 10, 20, the actual type-I- error
can be markedly lower than 0.05 but in the here considered situations was not lower than 0.65. For
ni = 20, actual type-I-errors below 0.06 did not occur in the present simulation study.
Using the GLMQP method with margins rL = 0.8, 0.5 and rU = 1.25, 2.0, also results in slightly
liberal performance. For ni = 5, the actual type-I-errors as low as 6.5% were occasionally observed.
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Coverage probabilities of lower 0.95−limits of the GLMNB method

Figure 4: Coverage probabilities of nominal 95% lower confidence limits of the GLMNB method, in
dependence of the sample size n0 = n1
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Figure 5: Coverage probabilities of nominal 95% lower confidence limits of the GLMNB method, in
dependence of the true ratio ρ = m1/m0
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Figure 6: Coverage probabilities of nominal 95% lower confidence limits of the GLMQP method, in
dependence of the sample size n0 = n1
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Figure 7: Coverage probabilities of nominal 95% lower confidence limits of the GLMQP method, in
dependence of the true ratio ρ = m1/m0
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Figure 8: Minimal coverage probabilities of nominal 95% lower and upper confidence limits of the
GLMNB method, in dependence of n0 = n1
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Figure 9: Minimal coverage probabilities of nominal 95% lower and upper confidence limits of the
GLMNB method, in dependence of the true ratio ρ = m1/m0
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Figure 10: Minimal coverage probabilities of nominal 95% lower and upper confidence limits of the
GLMNB method, in dependence of n0 = n1
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Figure 11: Minimal coverage probabilities of nominal 95% lower and upper confidence limits of the
GLMNB method, in dependence of the true ratio ρ = m1/m0
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Figure 12: Coverage probabilities of nominal 95% lower confidence limits of the GLMQP method, in
dependence of the true ratio ρ = m1/m0
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Figure 13: Minimal coverage probabilities of nominal 95% lower and upper confidence limits of the
GLMQP method, in dependence of n0 = n1
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4.3 Comparison of two algorithms to fit the negative binomial distribution

Two algorithms of Venables and Ripley (2002) (GLMNB) and Rigby and Stasinopoulos (2005)
(GLMNBI) were available for estimation of means and overdispersion parameters of the negative bi-
nomial distribution. Figures 14, 15, and 16 show, that using the algorithm of Rigby and Stasinopoulos
(2005) (GLMNBI) leads to about equal or slightly higher coverage probability than using the implemen-
tation of Venables and Ripley (2002) (GLMNB) in all considered cases. Especially, for the situations
with high overdispersion, where the confidence intervals generally are too liberal, GLMNBI is markedly
less liberal than GLMNB.
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Figure 14: Comparison of coverage probabilities of nominal 95% lower confidence limits of the
GLMNB and the GLMNBI method
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Figure 15: Minimal coverage probabilities of nominal 95% lower and upper confidence limits of the
GLMNB and the GLMNBI method
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Figure 16: Coverage probabilities of nominal 90% two-sided confidence limits of the GLMNB and the
GLMNBI method
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4.4 Detailed results for the HL method

The performance of the HL method is complicated to describe. For lower 95% limits, severe violations
do not occur if m0 = 50, ρ = 1, OR! n = 5. Severe violations of the nominal levels may occur when
m0 = 1, 5, ρ = 0.5, 0.8, 2, 10, n = 20, 100, but they do not occur in the majority of these situations.

Cl m1 m0 n0 = n1 k ρ

1 0.239 0.50 1 100 1000 0.50
2 0.133 0.80 1 100 1000 0.80
3 0.851 10.00 1 100 1000 10.00
4 0.783 2.50 5 100 1000 0.50
5 0.924 4.00 5 100 1000 0.80
6 0.856 50.00 5 100 1000 10.00
7 0.922 5.00 10 100 1000 0.50
8 0.924 20.00 10 100 1000 2.00
9 0.871 100.00 10 100 1000 10.00

10 0.914 500.00 50 100 1000 10.00
11 0.201 0.50 1 100 10 0.50
12 0.119 0.80 1 100 10 0.80
13 0.776 10.00 1 100 10 10.00
14 0.821 2.50 5 100 10 0.50
15 0.883 50.00 5 100 10 10.00
16 0.912 5.00 10 100 10 0.50
17 0.903 100.00 10 100 10 10.00
18 0.555 0.10 1 100 1 0.10
19 0.037 0.50 1 100 1 0.50
20 0.026 0.80 1 100 1 0.80
21 0.529 10.00 1 100 1 10.00
22 0.827 2.50 5 100 1 0.50
23 0.878 4.00 5 100 1 0.80
24 0.896 50.00 5 100 1 10.00
25 0.906 5.00 10 100 1 0.50
26 0.925 100.00 10 100 1 10.00

Table 1: Situations for which the coverage probability of lower 95% confidence limits of the HL meth-
ods was lower than 0.93 and n0 = n1 = 5, 10, 20
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Cl m1 m0 n0 = n1 k ρ

1 0.239 0.50 1 100 1000 0.50
2 0.133 0.80 1 100 1000 0.80
3 0.851 10.00 1 100 1000 10.00
4 0.783 2.50 5 100 1000 0.50
5 0.924 4.00 5 100 1000 0.80
6 0.856 50.00 5 100 1000 10.00
7 0.922 5.00 10 100 1000 0.50
8 0.924 20.00 10 100 1000 2.00
9 0.871 100.00 10 100 1000 10.00

10 0.914 500.00 50 100 1000 10.00
11 0.201 0.50 1 100 10 0.50
12 0.119 0.80 1 100 10 0.80
13 0.776 10.00 1 100 10 10.00
14 0.821 2.50 5 100 10 0.50
15 0.883 50.00 5 100 10 10.00
16 0.912 5.00 10 100 10 0.50
17 0.903 100.00 10 100 10 10.00
18 0.555 0.10 1 100 1 0.10
19 0.037 0.50 1 100 1 0.50
20 0.026 0.80 1 100 1 0.80
21 0.529 10.00 1 100 1 10.00
22 0.827 2.50 5 100 1 0.50
23 0.878 4.00 5 100 1 0.80
24 0.896 50.00 5 100 1 10.00
25 0.906 5.00 10 100 1 0.50
26 0.925 100.00 10 100 1 10.00

Table 2: Situations for which the coverage probability of lower 95% confidence limits of the HL meth-
ods was lower than 0.93 and n0 = n1 = 100
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4.5 Detailed results for the LN method

In the overview, the LN method showed a conservative performance for a large proportion of the situ-
ations, but severely liberal performance for a small proportion of situations. The Figures 17, 18, and
19 display, that severe violations of the nominal confidence level occur mainly in situations, where the
mean abundance in the control groupm0 is low, hence the overall mean abundance is low. In cases with
high mean abundance in both treatments, the LN method does not show coverage probabilities which
are markedly lower than the nominal confidence level. The Tables 4.5, 4.5, and 4.5, show the parameter
settings, for which the coverage probability of lower 95% limits (Table 4.5) and the minimum coverage
probability of lower and upper 95% limits (Tables 4.5 and 4.5) was lower than 0.93. Violations occur
for m0 = 1, and mainly for large or small values of rho = 0.1, 10, but never for intermediate values of
ρ = 1. If m0 > 1 (Table 4.5), violations mainly occur for low mean abundances in the sample 1, i.e. in
situtions where m1 = 0.1, 0.5, 1, or in situations where ρ has extreme values, i.e. ρ = 0.1, 10.
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Figure 17: Coverage probabilities of nominal 95% lower confidence limits of the LN method, in de-
pendence of m1
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Figure 18: Minimum coverage probabilities of nominal 95% lower and upper confidence limits of the
LN method, in dependence of m1
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Figure 19: Minimum coverage probabilities of nominal 95% lower and upper confidence limits of the
LN method, in dependence of m1
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Cl m1 m0 n0 = n1 k ρ

1 0.774 0.10 1 5 1000 0.10
2 0.603 0.10 1 10 1000 0.10
3 0.318 0.10 1 20 1000 0.10
4 0.000 0.10 1 100 1000 0.10
5 0.922 2.00 1 5 1000 2.00
6 0.912 2.00 1 10 1000 2.00
7 0.900 2.00 1 20 1000 2.00
8 0.726 2.00 1 100 1000 2.00
9 0.863 10.00 1 5 1000 10.00

10 0.777 10.00 1 10 1000 10.00
11 0.594 10.00 1 20 1000 10.00
12 0.025 10.00 1 100 1000 10.00
13 0.829 50.00 5 100 1000 10.00
14 0.755 0.10 1 5 10 0.10
15 0.575 0.10 1 10 10 0.10
16 0.287 0.10 1 20 10 0.10
17 0.000 0.10 1 100 10 0.10
18 0.921 2.00 1 5 10 2.00
19 0.915 2.00 1 10 10 2.00
20 0.906 2.00 1 20 10 2.00
21 0.789 2.00 1 100 10 2.00
22 0.869 10.00 1 5 10 10.00
23 0.801 10.00 1 10 10 10.00
24 0.647 10.00 1 20 10 10.00
25 0.055 10.00 1 100 10 10.00
26 0.852 50.00 5 100 10 10.00
27 0.628 0.10 1 5 1 0.10
28 0.404 0.10 1 10 1 0.10
29 0.134 0.10 1 20 1 0.10
30 0.000 0.10 1 100 1 0.10
31 0.929 0.50 1 20 1 0.50
32 0.861 0.50 1 100 1 0.50
33 0.912 10.00 1 5 1 10.00
34 0.914 10.00 1 10 1 10.00
35 0.908 10.00 1 20 1 10.00
36 0.854 10.00 1 100 1 10.00
37 0.924 10.00 5 100 1 2.00
38 0.930 50.00 5 10 1 10.00
39 0.913 50.00 5 20 1 10.00
40 0.840 50.00 5 100 1 10.00
41 0.890 100.00 10 100 1 10.00

Table 3: Situations for which the coverage probability of lower 95% confidence limits of the LN meth-
ods was lower than 0.93
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Cmin m1 m0 n0 = n1 k ρ

1 0.774 0.10 1 5 1000 0.10
2 0.603 0.10 1 10 1000 0.10
3 0.318 0.10 1 20 1000 0.10
4 0.000 0.10 1 100 1000 0.10
5 0.922 2.00 1 5 1000 2.00
6 0.912 2.00 1 10 1000 2.00
7 0.900 2.00 1 20 1000 2.00
8 0.726 2.00 1 100 1000 2.00
9 0.863 10.00 1 5 1000 10.00

10 0.777 10.00 1 10 1000 10.00
11 0.594 10.00 1 20 1000 10.00
12 0.025 10.00 1 100 1000 10.00
13 0.755 0.10 1 5 10 0.10
14 0.575 0.10 1 10 10 0.10
15 0.287 0.10 1 20 10 0.10
16 0.000 0.10 1 100 10 0.10
17 0.921 2.00 1 5 10 2.00
18 0.915 2.00 1 10 10 2.00
19 0.906 2.00 1 20 10 2.00
20 0.789 2.00 1 100 10 2.00
21 0.869 10.00 1 5 10 10.00
22 0.801 10.00 1 10 10 10.00
23 0.647 10.00 1 20 10 10.00
24 0.055 10.00 1 100 10 10.00
25 0.628 0.10 1 5 1 0.10
26 0.404 0.10 1 10 1 0.10
27 0.134 0.10 1 20 1 0.10
28 0.000 0.10 1 100 1 0.10
29 0.929 0.50 1 20 1 0.50
30 0.861 0.50 1 100 1 0.50
31 0.912 10.00 1 5 1 10.00
32 0.914 10.00 1 10 1 10.00
33 0.908 10.00 1 20 1 10.00
34 0.854 10.00 1 100 1 10.00

Table 4: Situations with m0 = 1 for which the minimum coverage probability of lower and upper 95%
confidence limits of the LN methods was lower than 0.93
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Cmin m1 m0 n0 = n1 k ρ

1 0.819 0.50 5 5 1000 0.10
2 0.765 0.50 5 10 1000 0.10
3 0.633 0.50 5 20 1000 0.10
4 0.060 0.50 5 100 1000 0.10
5 0.749 2.50 5 100 1000 0.50
6 0.829 50.00 5 100 1000 10.00
7 0.859 1.00 10 5 1000 0.10
8 0.775 1.00 10 10 1000 0.10
9 0.601 1.00 10 20 1000 0.10

10 0.026 1.00 10 100 1000 0.10
11 0.815 5.00 50 100 1000 0.10
12 0.840 0.50 5 5 10 0.10
13 0.805 0.50 5 10 10 0.10
14 0.705 0.50 5 20 10 0.10
15 0.161 0.50 5 100 10 0.10
16 0.928 2.50 5 20 10 0.50
17 0.772 2.50 5 100 10 0.50
18 0.852 50.00 5 100 10 10.00
19 0.870 1.00 10 5 10 0.10
20 0.794 1.00 10 10 10 0.10
21 0.638 1.00 10 20 10 0.10
22 0.052 1.00 10 100 10 0.10
23 0.847 5.00 50 100 10 0.10
24 0.921 0.50 5 5 1 0.10
25 0.921 2.50 5 100 1 0.50
26 0.924 10.00 5 100 1 2.00
27 0.930 50.00 5 10 1 10.00
28 0.913 50.00 5 20 1 10.00
29 0.840 50.00 5 100 1 10.00
30 0.912 1.00 10 5 1 0.10
31 0.916 1.00 10 10 1 0.10
32 0.910 1.00 10 20 1 0.10
33 0.852 1.00 10 100 1 0.10
34 0.920 5.00 10 100 1 0.50
35 0.890 100.00 10 100 1 10.00
36 0.913 5.00 50 20 1 0.10
37 0.830 5.00 50 100 1 0.10

Table 5: Situations with m0 > 1 for which the minimum coverage probability of lower and upper 95%
confidence limits of the LN methods was lower than 0.93
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5 Discussion
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