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1 Simultaneous confidence intervals for multiple contrasts

1.1 Approximate confidence intervals for a single linear combination of proportions

Let Yi be independent binomial random variables Yi ∼ Bin (ni, πi), i = 1, ..., I , with point estimators
pi = Yi/ni. Let C = (c1, ..., cI) be a vector of contrast coefficients fulfilling the constraint

∑I
i=1 ci =

0. Then the contrast is a linear combination L =
∑I

i=1 ciπi which can be understood as difference of
weighted averages of proportions, with the simple difference of two proportions as a special case. The
point estimator for L is L̂ =

∑I
i=1 cipi and a Wald interval for L is: I∑

i=1

cipi ± z1−α/2

√√√√ I∑
i=1

c2
i V̂ (pi)

 (1)

with V̂ (pi) = pi (1− pi) /ni. Wald intervals for binomial proportions are known to keep the (1− α)
coverage only for asymptotically large sample sizes. Even for single contrasts no exact confidence
intervals are available. Improved Wald interval for the difference of two proportions by adding two
successes and two failures has been proposed [14]. Bonett and Price [11], extended this interval to
linear combinations of I proportions. In this approach, pi in Equation (1) is replaced by p̃i = Yi+2/g

ni+4/g ,

and V̂ (pi) by p̃i (1− p̃i) / (ni + 4/g), with g the number of non-zero contrast coefficients. In another
format of this method, pi in Equation (1) is replaced by p̃i = Yi+1

ni+2 , and V̂ (pi) by p̃i (1− p̃i) / (ni + 2).
Both intervals are the Agresti and Caffo interval for the difference of two binomials if the contrast has
only two non-zero coefficients. Price and Bonett [11], investigated the performance of their methods in
a simulation study for different types of single contrasts. A better coverage for the improved intervals
compared to the Wald interval has been revealed.

1.2 Approximate simultaneous confidence intervals for multiple contrasts

Interest lies in simultaneous estimation of confidence intervals for several, possibly correlated linear
combinations of total order restricted proportions πi. Then, we define M contrasts Cm = (cm1, · · · , cmI),
m = 1, · · · ,M resulting in M linear combinations L = (L1, · · · , LM ). Approximate simultaneous
confidence intervals for the elements of L can be constructed. I∑

i=1

cimp̃i ± qM,R,1−α

√√√√ I∑
i=1

c2
imṼ (pi)

 (2)

With respect to the approaches of Agresti and Caffo [14] and Price and Bonett [11], based on
adding different numbers of successes and failures, several types of improved simultaneous intervals
have been investigated. Table 1 summarizes parameters for p̃i and Ṽ (pi), where g is the number of non
zero contrast coefficients in a single contrast. These parameters can be inserted in Equation 2, leading
to approximate intervals. In the following these intervals are named corresponding to the notations in
Table 1.

Notation p̃i Ṽ (pi)
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Wald Yi/ni pi (1− pi) /ni

add-1 Yi + 0.5/ni + 1 p̃i (1− p̃i) / (ni + 1)
add-2 Yi + 1/ni + 2 p̃i (1− p̃i) / (ni + 2)
add-2/g Yi + 1

g/ni + 2
g p̃i (1− p̃i) /

(
ni + 2

g

)
add-4/g Yi + 2

g/ni + 4
g p̃i (1− p̃i) /

(
ni + 4

g

)
Table 1: Parameters for p̃i and Ṽ (pi) in Equation 2

In Equation 2, qM,R,1−α is the equicoordinate (1 − α) quantile of a M -variate normal distribution
with correlation matrix R with CDF ΦM (q;0, R) = P (|Z| ≤ q) for all elements of the M -variate
normal random vector Z. Most care implies total order restricted one-sided intervals, and therefore
ΦM (q;0, R) = P (Z ≤ q) is used instead. Since the quantiles are chosen such that P (|Z| ≤ q) =
1 − α for all elements of Z, the probability that at least one of the M values of L is excluded by the
confidence intervals is α if n →∞.
Following Bretz and Hothorn [6] the correlation matrix R is

R =


1 ρ12 . ρ1M

ρ21 1 . .
. . 1 .

ρM1 . . 1

 (3)

where

ρmm‘ =
∑I

i=1 cmicm‘iV (pi)√
(
∑I

i=1 c2
miV ( pi))(

∑I
i=1 c2

m‘iV (pi))
(4)

Further, following Piegorsch [17] we replace V (pi) by the parameter Ṽ (pi).
Notice, in the normal mode and under the assumption of equal variances the ρmm‘s depend only on
sample sizes ni and the contrast coefficients cmi.

1.3 Williams-type contrasts

In the examples presented, interest might be in a test of the null hypothesis of equal proportions H0 :
π0 = π1 = · · · = πI against an ordered alternative H1 : π0 ≤ π1 ≤ · · · ≤ πI , with at least one
strict inequality π1 < πi, i = 2, · · · , I . For this purpose, one-sided multiple contrast tests ([9], [6]) or
lower simultaneous confidence limits can be used. The contrasts are chosen such that the global null
hypothesis of equality of all proportions is represented by H0 :

⋂M
m=1 Lm ≤ 0, while the alternative is

H1 :
⋃M

m=1 Lm > 0, i.e. a Union-Intersection Test is performed for the M linear combinations. Bretz
[9], showed that the Williams trend test can be expressed as multiple contrast test. Then, the M = I−1
contrasts are defined in the following matrix:

CM×I =


−1 0 · · · 0 0 1
−1 0 · · · 0 nI−1

nI−1+nI

nI
nI−1+nI

...
... · · ·

...
...

...
−1 n2

n2+···+nI
· · · nI−2

n2+···+nI

nI−1

n2+···+nI

nI
n2+···+nI

 (5)
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In this multiple contrast the highest dose group is compared with the control, in the next single contrast
the highest dose group and the next lower dose group are pooled, until all treatment groups are pooled
and compared with the control. One can conclude for a trend in the proportions π1, · · · , πI if at least
one of the M lower confidence limits excludes the value 0. Additionally to the decision of the global
hypothesis, the confidence intervals display the difference between the control group i = 1 and the
weighted average of proportions of higher dose groups.

2 Simulation study

We investigated the coverage probability of the simultaneous confidence intervals by a simulation study
with focus on small to moderate sample sizes and ni = 100 for nearly asymptotic behavior. The num-
ber of groups has been varied by I = 3, 4, 6, 10, with balanced sample sizes ni = 10, 20, 40, 60, 100.
To assess the methods performance for the whole parameter space, 10.000 combinations {π1, · · · , πI}
were sampled from independent uniform distributions [0, 1]. For each of this combinations and set-
tings, 10.000 random samples {y1, · · · , yI} were drawn from binomial distributions Bin(ni, πi). The
intervals were considered to cover the true value, if all estimated confidence intervals included their
corresponding true linear combination L. For this main part of the simulation study the known values
of πi were used to calculate the correlation matrix, instead of using p̃i. Further the coverage probability
of the lower confidence bounds for some unbalanced situations has been investigated.
Additionally to the simulation study shown above, we simulated the coverage probabilities of intervals
with the correlation matrix estimated from the samples. This was done for a small subset of situations
to show whether the above simulations appropriately characterize the proposed methods. Like in the
main study, for a balanced sample size of 40 and 4 groups, combinations {π1, · · · , πI} where drawn
from uniform distribution and for each combination random samples have been generated. The cov-
erage probability of each interval and method of computing the correlation was calculated, resulting
in a negligible difference in coverage probability in the second position after the decimal point. To
illustrate the oscillating behavior of the coverage probability for discrete intervals a third simulation
study was performed. Here we investigated the coverage probability for 4 groups, one control group
and three treatment groups. The πis for the treatment groups were set to fixed value of 0.5 and 500
equally spaced values between 0 and 0.5 were chosen for π0. A balanced sample size 50 was chosen.
For each setting of π0 again 10.000 simulation steps had been performed. We calculated the coverage
probability of the lower confidence bounds for all investigated interval types. The results of this study
are shown in Figure 1.
Taking the ideas of Agresti and Coull [15] and Brown and Li [16] into account, the coverage proba-

bility should be close to the nominal level. Therefore a proportion of coverage probability in a close
range of let us say 94% to 96% around the nominal level is considered as main criterion for recommen-
dation. This criterion is also sensible due to the oscillating behavior of the discrete confidence intervals
as shown in Figure 1. Additionally, the mean coverage probabilities are given in brackets. The mean
coverage probabilities give information wether the coverage probabilities lie mainly beyond or beneath
the nominal level. The results for nominal 95%-confidence lower confidence limits are summarized in
Table 2, while Table 3 displays the results for unbalanced situations.
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Figure 1: Coverage probability of the five investigated intervals for varying values of π0 and fixed πis
of 0.5 for the treatment groups in a balanced four group design

I n Wald add-1 add-2 add-2/g add-4/g
3 10 0.208 (0.913) 0.506 (0.951) 0.234 (0.959) 0.481 (0.948) 0.315 (0.957)
3 20 0.359 (0.933) 0.700 (0.950) 0.359 (0.955) 0.676 (0.949) 0.463 (0.954)
3 40 0.502 (0.942) 0.832 (0.950) 0.492 (0.953) 0.827 (0.949) 0.617 (0.952)
3 60 0.600 (0.945) 0.884 (0.950) 0.576 (0.952) 0.880 (0.949) 0.702 (0.952)
3 100 0.722 (0.947) 0.931 (0.950) 0.688 (0.951) 0.933 (0.950) 0.797 (0.951)
4 10 0.202 (0.908) 0.487 (0.951) 0.269 (0.959) 0.385 (0.944) 0.433 (0.954)
4 20 0.320 (0.930) 0.674 (0.950) 0.394 (0.956) 0.540 (0.946) 0.598 (0.952)
4 40 0.436 (0.941) 0.814 (0.950) 0.541 (0.953) 0.717 (0.948) 0.748 (0.951)
4 60 0.519 (0.944) 0.875 (0.950) 0.632 (0.952) 0.813 (0.948) 0.813 (0.951)
4 100 0.641 (0.946) 0.925 (0.950) 0.740 (0.951) 0.900 (0.949) 0.882(0.950)
6 10 0.198 (0.902) 0.440 (0.951) 0.324 (0.960) 0.317 (0.938) 0.418 (0.950)
6 20 0.295 (0.927) 0.584 (0.950) 0.461 (0.956) 0.422 (0.943) 0.594 (0.950)
6 40 0.394 (0.939) 0.744 (0.950) 0.620 (0.954) 0.547 (0.946) 0.772 (0.950)
6 60 0.458 (0.943) 0.827 (0.950) 0.705 (0.953) 0.641 (0.950) 0.841 (0.947)
6 100 0.559 (0.946) 0.903 (0.950) 0.797 (0.952) 0.772 (0.948) 0.908 (0.950)

10 10 0.180 (0.894) 0.364 (0.950) 0.379 (0.961) 0.254 (0.928) 0.316 (0.941)
10 20 0.263 (0.923) 0.467 (0.949) 0.535 (0.957) 0.326 (0.938) 0.432 (0.944)
10 40 0.339 (0.936) 0.622 (0.949) 0.693 (0.954) 0.435 (0.943) 0.578 (0.947)
10 60 0.397 (0.941) 0.681 (0.949) 0.769 (0.953) 0.512 (0.945) 0.681 (0.948)
10 100 0.492 (0.945) 0.836 (0.949) 0.848 (0.952) 0.617 (0.947) 0.802 (0.949)
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I n Wald add-1 add-2 add-2/g add-4/g
Table 2: Proportion of situations with coverage probability be-
tween 94% to 96% and mean coverage probability for one-sided
95% confidence intervals

In case of 3, 4, or 6 groups, the add-1 and add-2/g interval achieve the highest proportions of cov-
erage probabilities between 94% and 96%. For small sample sizes and large number of groups, these
methods tend to be liberal. In these situations, the add-2 or add-4/g method are the better choice, if
conservative performance is acceptable. As known, the Wald interval is more liberal than all other
methods in all simulated situations. For the unbalanced four group designs, the add-2 and add-4/g

n1, · · · , nI Wald add-1 add-2 add-2/g add-4/g
64,32,32,32 0.513 (0.941) 0.864 (0.950) 0.509 (0.953) 0.862 (0.948) 0.723 (0.952)
80,40,30,10 0.280 (0.910) 0.503 (0.947) 0.467 (0.955) 0.474 (0.945) 0.664 (0.954)
10,30,40,80 0.147 (0.903) 0.312 (0.951) 0.608 (0.961) 0.241 (0.941) 0.497 (0.952)
20,30,50,60 0.228 (0.930) 0.494 (0.950) 0.645 (0.956) 0.367 (0.945) 0.736 (0.951)
60,50,30,20 0.382 (0.934) 0.800 (0.950) 0.495 (0.953) 0.765 (0.947) 0.717 (0.952)

Table 3: Proportion of situations with coverage probability between 94% to 96% and mean coverage
probability for one-sided 95% confidence intervals in unbalanced situations

intervals approach the highest proportions of coverage probability between 94% and 96%. The add-1
intervals tends to be closest to the nominal level. Especially if the control group sample size is low, the
perfomance of all intervals becomes weak.
If interest lies in two-sided confidence intervals, results of a simulation study for nominal 95% two-
sided confidence intervals are summarized in Table 4.

I n Wald add-1 add-2 add-2/g add-4/g
3 10 0.001 (0.878) 0.410 (0.947) 0.573 (0.960) 0.263 (0.941) 0.595 (0.957)
3 20 0.007 (0.917) 0.738 (0.947) 0.746 (0.956) 0.628 (0.944) 0.794 (0.953)
3 40 0.342 (0.935) 0.937 (0.948) 0.883 (0.953) 0.926 (0.947) 0.910 (0.952)
3 60 0.692 (0.940) 0.973 (0.949) 0.938 (0.952) 0.973 (0.948) 0.954 (0.951)
3 100 0.902 (0.944) 0.990 (0.949) 0.971 (0.951) 0.992 (0.949) 0.976 (0.951)
4 10 0.000 (0.869) 0.287 (0.946) 0.532 (0.961) 0.129 (0.934) 0.432 (0.952)
4 20 0.001 (0.913) 0.637 (0.946) 0.702 (0.956) 0.338 (0.940) 0.764 (0.951)
4 40 0.196 (0.932) 0.929 (0.948) 0.859 (0.953) 0.860 (0.944) 0.921 (0.950)
4 60 0.567 (0.944) 0.973 (0.950) 0.919 (0.952) 0.958 (0.948) 0.962 (0.951)
4 100 0.866 (0.943) 0.993 (0.949) 0.969 (0.951) 0.992 (0.948) 0.983 (0.950)
6 10 0.000 (0.857) 0.166 (0.944) 0.505 (0.961) 0.075 (0.922) 0.090 (0.943)
6 20 0.000 (0.906) 0.463 (0.945) 0.671 (0.957) 0.107 (0.934) 0.479 (0.945)
6 40 0.117 (0.929) 0.888 (0.947) 0.810 (0.954) 0.584 (0.941) 0.901 (0.947)
6 60 0.425 (0.936) 0.963 (0.948) 0.883 (0.953) 0.865 (0.944) 0.961 (0.948)
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I n Wald add-1 add-2 add-2/g add-4/g
6 100 0.762 (0.942) 0.989 (0.948) 0.951 (0.952) 0.980 (0.946) 0.987 (0.949)

10 10 0.000 (0.842) 0.099 (0.942) 0.474 (0.961) 0.049 (0.904) 0.040 (0.927)
10 20 0.000 (0.898) 0.259 (0.943) 0.667 (0.957) 0.047 (0.924) 0.094 (0.936)
10 40 0.075 (0.925) 0.796 (0.946) 0.797 (0.954) 0.341 (0.936) 0.617 (0.942)
10 60 0.347 (0.933) 0.927 (0.947) 0.856 (0.953) 0.619 (0.941) 0.844 (0.945)
10 100 0.656 (0.940) 0.980 (0.948) 0.918 (0.952) 0.864 (0.944) 0.972 (0.947)

Table 4: Proportion of situations with coverage probability be-
tween 94% to 96% and mean coverage probability for two-sided
95% confidence intervals

Here the highest proportion of coverage probability between 94% and 96% is achieved by the
two-sided add-2 interval. This interval is more conservative, but for small sample sizes its coverage
probability is closest to the nominal level. The most liberal interval is again the Wald, which has in
all simulated settings lower coverage probability compared to the other methods. The add-2/g and the
add-4/g method perform comparable to the add-1 and add-2 for situations with 3 and 4 groups. With
an increasing number of groups both methods get more liberal.

3 Approximative power calculation

Unless our main focus is confidence interval estimation, users might be interested in power calculation
for the proposed global test. Bretz and Hothorn [6] derive an approximative calculation for the any-
pairs power of contrast tests for binary data. Their approach differs from the above version by using
the maximum likelihood estimators for variance estimation instead of the adjustments proposed in this
paper, and by using a pooled variance estimator under the null hypothesis. Under the alternative, we
assume true proportions πi and sample sizes ni. Then, for large ni, a single test statistic follows a
normal distribution with expectation

E (Tm) =
∑I

i=1 cimπ̃∗i√∑I
i=1 c2

imπ̃∗i (1− π̃∗i ) /ñ∗i

(6)

and variance V (Tm) = 1, where π̃∗i = (niπi + 0.5) / (ni + 1) and n∗i = ni + 1, e.g. for the add-1
adjustment. The M test statistics jointly follow an M -variate normal distribution with e the vector of
expectations with elements E (Tm), and correlation matrix R as defined in Equations (3), and (4). The
power to reject the global null hypothesis is the probability that at least one Tm exceeds the equico-
ordinate critical value qM,R,1−α. Therefore, it can be calculated using: 1 − ΦM (qM,R,1−α; e,R) or
equivalently by using a central multivariate normal distribution after subtracting the vector of expected
values from the quantiles: 1−ΦM (qM,R,1−α − e;0,R).Clearly, this power calculation gives mislead-
ing results in situations where the normal approximation fails, i.e. for small sample sizes and extreme
small and large proportions. Note further, that due to the discreteness of the binomial distribution, the
true power in dependence of ni, πi is a non-monotone function and thus necessarily deviates from any
approximation by monotone functions. A simulation study was performed for 150 different settings of
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increasing (H1 :
⋃M

m=1 Lm > 0) and decreasing (H2 :
⋃M

m=1 Lm < 0) trends with 0.05 ≤ π1 ≤ 0.95,
balanced sample sizes and 10.000 simulation steps for each setting. To summarize the results, the ab-
solute difference between calculated and simulated power is presented. In Table 5 the percentage of
settings for which the absolute difference is smaller than 0.02 is shown, additionally the maximal ab-
solute difference is given in italics. The maximal absolute differences usually occurred for π1 = 0.95
with H11 and π1 = 0.05 with H12. Thus for sample sizes smaller than 40 and expected proportions
close to 0 or 1, simulation of power is recommended instead of using the approximation above.
In Table 6, approximate power calculation is compared to simulated power (10.000 replications) for

ni H1, Wald H1, add-1 H1, add-2 H2, Wald H2, add-1 H2, add-2
20 0.527 (0.163) 0.533 (0.148) 0.527 (0.125) 0.547 (0.164) 0.527 (0.146) 0.54 (0.125)
40 0.707 (0.196) 0.773 (0.153) 0.720 (0.159) 0.693 (0.198) 0.780 (0.156) 0.713 (0.163)
60 0.780 (0.125) 0.793 (0.096) 0.767 (0.156) 0.773 (0.121) 0.793 (0.100) 0.800 (0.153)

100 0.887 (0.045) 0.847 (0.058) 0.827 (0.067) 0.880 (0.043) 0.853 (0.052) 0.833 (0.061)
200 0.940 (0.081) 0.940 (0.072) 0.92 (0.074) 0.933 (0.080) 0.947 (0.072) 0.92 (0.075)

Table 5: Absolute difference between approximative and simulated power: percentage of 150 settings

with absolute difference ≤ 0.02, and maximal absolute difference in italics

tests on increasing trend with nominal level α = 0.05, using the add-1 adjustment. Three different dose
response shapes are assumed, which could be underlying the data in Table ??; power is calculated for
balanced samples sizes ni = 30, 40, 50.

π1 π2 π3 π4 ni Approximate power Simulated power
0.15 0.15 0.15 0.4 30 0.6263 0.6436
0.15 0.15 0.15 0.4 40 0.7485 0.7586
0.15 0.15 0.15 0.4 50 0.8371 0.8452
0.1 0.1 0.15 0.4 30 0.8199 0.8229
0.1 0.1 0.15 0.4 40 0.9134 0.9130
0.1 0.1 0.15 0.4 50 0.9603 0.9576
0.1 0.25 0.25 0.25 30 0.5924 0.5951
0.1 0.25 0.25 0.25 40 0.7117 0.7036
0.1 0.25 0.25 0.25 50 0.8007 0.7911

Table 6: Approximate and simulated power of tests for increasing trend (α = 0.05) using add-1 adjust-
ment

Note, that for such small sample sizes the approximate power calculation might show larger de-
viations from true power than the examples in Table 6 reveal. However, taking the uncertainty in
assuming π1, · · · , πI into account, it can be considered as a helpfull tool in experimental design for
moderate sample sizes.
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