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1 Introduction

Almost every agricultural experiment includes more than two groups. Common are com-

parisons such as several groups against a control or comparisons where all groups are tested

against each other. To analyze such multiple comparisons correctly, in view of the false

positive rate, Westfall et al. (1999) provide two SAS macros, %SimTests and %SimInter-

vals. The aim of this thesis is to show their applications for common agricultural designs.

Compared to the SAS procedures MIXED, GLM and MULTTEST the two macros have

several advantages. Both macros perform contrast tests. They analyze and control the

familywise error for all these tests over all factors simultaneously. The above mentioned

SAS procedures compute contrasts tests, too. However there is no option to adjust the

p-values for multiplicity in PROC GLM and PROC MIXED except for single step proce-

dures. Although we can analyze contrast test and control the familywise error rate with

e.g. bootstrap with PROC MULTTEST, this procedure does not allow more than one fac-

tor in the class statement. However it is possible but difficult to analyze more than one

factor simultaneously with PROC MULTTEST, therefore a single factor has to be created

where all desired combinations of the levels of the factors appear. Some SAS procedures

calculate simultaneous confidence intervals only for all-pairs and many-to-one tests. How-

ever the simultaneous confidence intervals are not available for any other contrasts in SAS;

the %SimIntervals macro calculates these intervals. The %SimTests macro performs the

closed testing procedure. With PROC MULTTEST this is available for SAS, too. But SAS

uses only the less powerful unconstrained step-down method of Holm, whereas %SimTests

uses the unconstrained step-down method of Holm and the logical constraint method of

Shaffer. And again it is difficult to analyze more than one factor simultaneously with

PROC MULTTEST.

In section 2 we give a brief explanation of multiple comparisons. We introduce two error

rates, the model and the estimates, which are used in the further sections. After that

several multiple comparisons procedures are shown. Section 3 provides the introduction

and invocation of the macros %SimTests and %SimIntervals. The analysis via these two
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macros for the agricultural designs are given in section 4. Finally four examples are ana-

lyzed in section 5. Every invocation and all data sets used in this thesis are provided on

disk.

The macros %SimTests and %SimIntervals are programmed for the SAS System. Accord-

ing to Westfall et al. (1999) the macros run not in versions prior to version 7 of the SAS

System. In this thesis version 8.0 is used.
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2 Explanation of multiple comparisons

As described in the introduction multiple comparisons appear in many experiments. To

control the type I error (α) multiple comparisons procedures (MCPs) have to be used. In

this section the comparisonwise error rate and the familywise error rate will be introduced.

Then a general model and the estimates for multiple comparisons will be shown. Afterwards

there will be a brief introduction to the multiple comparisons procedures which are used

later in this thesis.

2.1 Error rates

To show the control of the multiplicity effect for pairwise comparisons we consider a family

of t null hypotheses (further on H is used as an abbreviation for any null hypothesis).

We assume that from these hypothesis H1, . . . , Hm are true and Hm+1, . . . , Ht are wrong.

For some unknown m ≤ t the probability P to reject a true null hypotheses is called type

I error α or false positive rate. When a single true null hypothesis Hi (i = 1, . . . ,m) is

tested on significance its rejection probability is called comparisonwise error rate (CER)

irrespective of the other hypothesis and their rejection. Thus, CER is defined as:

CER = P (Reject Hi|Hi is true), i = 1, . . . ,m.

Equivalently in terms of confidence intervals, this is

CER = P (Corresponding interval for Hi does not contain the parameter).

Regarding the entire family of hypotheses we do not have any control of the error type

I rate if only the CER is examined. Here the familywise error rate (FWE) is used. It is

the probability of rejecting a true null hypothesis when the entire family of inferences is

considered. The FWE is always less or equal than the CER because it does regard the

multiplicity effect, which the CER does not. The FWE for test of hypotheses is defined as

FWE = P (Reject at least one of H1, . . . , Hm|H1, . . . , Hm all are true).
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For simultaneous confidence intervals this is

FWE = P (at least one interval is incorrect).

More error rates than CER and FER exist, for example the false discovery rate (FDR),

further details are discussed by Hochberg and Tamhane (1987, p.2-12) or Westfall et al.

(1999, p.16-19).

2.2 Model and estimates

It is necessary for multiple comparisons procedures to specify a model and parameters of

interest. To introduce the model and the estimates an example from Neter et al. (1996,

p.711) is used who give the following data set: Four rust inhibitors (A, B, C and D)

were tested. The experimental units were treated by severe weather conditions. Thus

the endpoint is a coded value of effectiveness of the inhibitors on a continuous scale. With

increasing effectiveness the coded value becomes larger. To the four brands 40 experimental

units were randomly assigned, with sample size 10 per brand. This is the data set:

obs. A B C D

1 43.9 89.8 68.4 36.2

2 39.0 87.1 69.3 45.2

3 46.7 92.7 68.5 40.7

4 43.8 90.6 66.4 40.5

5 44.2 87.7 70.0 39.3

6 47.7 92.4 68.1 40.3

7 43.6 86.1 70.6 43.2

8 38.9 88.1 65.2 38.7

9 43.6 90.8 63.8 40.9

10 40.0 89.1 69.2 39.7
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2.2.1 Model

The usual model for the analysis of variance (ANOVA) for fixed effects is:

Y = Xβ + ε,

where

Y is a N × 1 vector that contains all measured values (observations) (N is the total

sample size),

X is the fixed and known N × p design matrix, where p is the number of parameters,

β is the fixed and unknown p× 1 parameter vector. Here the grand mean, the levels

of the treatments, called factors, and the covariates appear,

ε is the N × 1 vector which comprises the levels of the error term. Thus the vector is

random and unobservable.

The parametrization of the model for our rust inhibitor example might be:

Y =



43.9

39.0

46.7
...

89.8

87.1
...

68.4
...

36.2
...

39.7



,X =



1 1 0 0 0

1 1 0 0 0

1 1 0 0 0
...

...
...

...
...

1 0 1 0 0

1 0 1 0 0
...

...
...

...
...

1 0 0 1 0
...

...
...

...
...

1 0 0 0 1
...

...
...

...
...

1 0 0 0 1



, β =



β1

β2

β3

β4

β5


and ε =



ε1

ε2

ε3

...

ε40


.
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To regard the intercept parameter β1, the first column of X contains 1’s. After the first

one the next four columns represent the four levels of the treatment. These are the rust

inhibitors, their parameters are β2, . . . , β5.

Each observation yi follows the linear additive model

yi = xi1β1 + . . . + xipβp + εi, i = 1, . . . , N.

For example for the first observation of the second level of the factor this formula might

be as followed. Note that for better differentiation the indices are altered.

y11 = x11,1β1 + . . . + x11,5β5 + ε11, i = 1, . . . , 40.

This becomes

89.9 = 1β1 + 0β2 + 1β3 + 0β4 + 0β5 + ε11.

To use the analysis of variance certain assumptions have to be given:

• The errors εi are randomly distributed with mean zero and common variance σ2.

• All errors belonging to any pair of observations have to be uncorrelated.

In the following thesis we deviate from the above general model representation for nota-

tional convenience thus the general model is adapted for the particular model.

2.2.2 Estimates

In this paragraph it is explained how the estimates are calculated. The first column (in-

tercept respectively grand mean) of the model is the sum of the columns of the brand

groups. Therefore the columns of X are linearly dependent and thus the model is over-

parameterized. If this is the case it is not possible to estimate all of the parameters

unbiasedly because X′X may not be invertible. Nevertheless certain linear combinations

of the parameters are estimable. Such linear combinations could be adjusted means or
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least square means (or in SAS-Syntax: lsmeans) and they can be expressed as

β̂ = (X′X)−X′Y,

where (X′X)− denotes a generalized inverse. The mean square error is the estimate of

variance:

s2 = (Y −Xβ̂)′(Y −Xβ̂)/df,

where

df = (N − rankX),

which is the total sample size minus the number of linearly independent columns in X. In

the rust inhibitor example the degree of freedom is df = 40− 4 = 36.

In the following sections multiple comparisons are represented by contrasts. As Neter et

al. (1996, p.720) describe a contrast is defined as a linear combination of the factor level

means βi where the coefficients ci sum to zero. For example to estimate the difference of

brand 2 and brand 3, β3 − β4, this would be:

β3 − β4 = c′β =
(

0 0 1 −1 0

)


β1

β2

β3

β4

β5


.

Later on the standard errors of the estimates are needed. For a general estimable function

c′β, the variance of the estimate is

σ2{c′β} = σ2c′(X′X)−c.

And the standard error is the standard deviation of the estimate:

stderr{c′β} = s
√

c′(X′X)−c.
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2.3 Multiple comparisons procedures

In the following sections several multiple comparisons procedures are used which are shown

in this paragraph. In the beginning a two-sample test, an all-pair test and a many-to-one

test are defined, then the Bonferroni method is introduced and after that the methods of

Holm and Shaffer. Then the closed testing procedure is shown with two special types of it,

these are the unconstrained step-down method of Holm and the logical constraint method

of Shaffer. Finally the multivariate t distribution, contrasts tests, confidence intervals and

critical values are introduced.

2.3.1 Two-sample, many-to-one and all-pairs tests

Later on two-sample, many-to-one and all-pairs tests are used. We give a brief introduction

in their definition. When two groups i and j are tested a two-sample test is used. Under the

assumptions of normal distribution, continuous and independent data and homogeneous

variances the t-test as a two-sample test can be used. The test statistic is:

ti,j =
|x̄i − x̄j|

s
√

1
ni

+ 1
nj

.

Often we are interested in experiments containing more than two groups. If we have k

groups and we are interested in all possible pairwise comparisons we would have to test

t = k(k − 1)/2 null hypotheses. If the data fulfill the assumptions of normal distribution,

continuous and independent data, homogeneous variances and equal sample sizes, then the

Tukey-test is the appropriate all-pairs test, see Tukey (1953) for details. It has the test

statistic:

tTukey
i,j =

|x̄i − x̄j|
s
√

2
n

.

A many-to-one test is needed when we have k groups where one of them is a control group

c and the other k − 1 groups are tested only against this control. Then we have k − 1

null hypotheses. These can be tested with the Dunnett-test, which is a many-to-one test,

see Dunnett (1955) for details. The Dunnett-test requires data which are independent,
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continuous, normally distributed and have variance homogeneity. This is the test statistic:

tDunnett
i =

|x̄i − x̄c|
s
√

2
n

.

Note that a test statistic from the t-test is compared with the critical values from the

marginal t distribution. The test statistics from the Tukey and the Dunnett test are com-

pared with the critical values from the multivariate t distribution, which will be introduced

in 2.3.6.

2.3.2 Bonferroni method

If k groups are compared with two-sample tests, and every one of the t = k(k − 1)/2

hypotheses has the significance level of α then the CER is controlled. However the FWE

will be larger than α. A logical way to correct the CER is CER = α/t, which is the

Bonferroni method. This method is always valid. But neither does it consider the stochastic

dependencies among the test statistics nor the logical dependencies between the hypotheses,

thus the Bonferroni method is equal or less powerful than other multiple comparisons

procedures.

2.3.3 Holm method

An equal or more powerful MCP as the Bonferroni method is the Holm method, see Holm

(1979) for details. It still controls the FWE while the CER is larger. In the following

text the method is introduced. Again we are interested in all pairwise comparisons: In

the beginning all t = k(k − 1)/2 hypotheses are tested with the appropriate two-sample

test. After that, the p-values are sorted in ascending order, with p1 being the smallest

p-values and pt being the largest p-value. The smallest one, p1 is compared with α/t. If

p1 > α/t then the null hypothesis appendant to p1 (H1) and all other Hi (i = 2, . . . , t)

are accepted. Otherwise p2 is compared with α/(t − 1). If p2 > α/(t − 1) then the null

hypothesis belonging to p2 (H2) and all other Hi (i = 3, . . . , t), which are not tested yet,

are valid. In the case of rejection of H2 the procedure continues. So the method ends either
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with the first rejection of a null hypothesis or with the last comparison, which is pt versus

α.

2.3.4 Shaffer method

In comparison to the Holm method the method according to Shaffer (1986) uses restricted

hypotheses. Thus certain combinations of true hypotheses imply truth or falsehood of

other hypotheses. In contrast to the ones of Holm’s method the p-values are smaller while

the FWE is still controlled. As in Holm’s method the t hypotheses and their p-values

have to be ordered in ascending order. Again Hi will only be rejected if H1, . . . , Hi−1 have

been previously rejected. But the multiplicity adjustment considers only those hypotheses

that possibly can be true, given that the previous tested null hypotheses are all false. As

an example this is shown with three groups. If we are interested in all-pairs comparisons

we have three null hypotheses: H1,2, H1,3 and H2,3, where the groups are denoted by the

indices. First each of the null hypotheses is tested with the appropriate two-sample test

then the p-values are sorted. For example this could be p1,2 < p2,3 < p1,3. Note that the

p-values have the indices of the groups, not the number from the sorting! The the smallest

p-value p1,2 is compared with α/3. If the null hypothesis is rejected, both other p-values

are compared with α because only one of the two remaining null hypotheses can be true.

Both of them can not be true at the same time because if 1 6= 2 then it is not possible that

1 = 3 and 2 = 3. The Shaffer method has an equal or larger power than the methods of

Bonferroni and Holm. This is caused by the logical dependencies between the hypotheses.

2.3.5 Closed testing procedure

The closed testing procedure is a powerful MCP. It is named after the Closure Principle.

A closed family of hypotheses, by definition, is one for which any intersection of subset

hypotheses is also a member of the family. The procedure starts with the creation of the

interesting pairwise hypotheses of k groups; these are the elementary pairwise homogene-

ity hypotheses (short: elementary hypotheses). After that the power set of the elementary
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hypotheses is generated. From the elements of the power set all intersections are created,

these intersections are intersection hypotheses. After removing redundancies each intersec-

tion is tested with an appropriate α-level test. An elementary hypothesis is only rejected

if all intersection hypotheses which contain the two elements of the elementary hypoth-

esis are rejected. Using the data set rust inhibitor as an example we show the different

intersection hypotheses. The data set contains four levels of the group variable. If we are

interested in an all-pairs tests procedure we have six elementary hypotheses. Thus the

following hypotheses have to be tested:

• Elementary pairwise homogeneity hypotheses: H1,2 : µ1 = µ2, H1,3 : µ1 = µ3, H1,4 :

µ1 = µ4, H2,3 : µ2 = µ3, H2,4 : µ2 = µ4, H3,4 : µ3 = µ4.

• Three means homogeneity hypotheses: H1,2,3 : µ1 = µ2 = µ3, H1,2,4 : µ1 = µ2 =

µ4, H1,3,4 : µ1 = µ3 = µ4, H2,3,4 : µ2 = µ3 = µ4.

• Subset intersection (disjoint) hypotheses: H{1,2}∩{3,4} : µ1 = µ2 and µ3 = µ4,

H{1,3}∩{2,4} : µ1 = µ3 and µ2 = µ4, H{1,4}∩{2,3} : µ1 = µ4 and µ2 = µ3.

• Four means homogeneity hypotheses (global hypothesis): H1,2,3,4 : µ1 = µ2 = µ3 =

µ4.

Special cases of the closed testing procedure

In this paragraph we introduce two special cases of the closed testing procedure. These are

the unconstrained step-down method of Holm and the logical constraint method of Shaffer.

Both methods were already shown thus there is only a brief explanation of the methods

and afterwards the integration in the closed testing procedure is explained.

The procedure of the unconstrained step-down method of Holm is already shown in 2.3.3.

The method can be summarized as follows:

• Test all t hypotheses with an appropriate two-sample test.

• Sort all p-values belonging to the hypotheses in ascending order: p1, p2, . . . , pt−1,pt,

where i = 1, . . . , t and p1 is the smallest and pt is the largest p-value.
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• If p1 ≥ α/t then stop the procedure. All Hi (i = 1, . . . , t) are valid. Otherwise go to

the next step.

• If p2 ≥ α/(t− 1) then stop the procedure. All Hi (i = 2, . . . , t) are valid. Otherwise

go to the next step.

• ...

• End the procedure with pt versus α. If pt ≤ α then reject the Ht. Otherwise (only)

this null hypothesis is valid.

The integration of the Holm method into the closed testing procedure can be shown via a

many-to-one comparison with four groups where c is the control. The indices of the null

hypotheses belong to the number of the group.

Hc,2,3,4 versus α/3

Hc,2,3 Hc,2,4 Hc,3,4 versus α/2

Hc,2 Hc,3 Hc,4 versus α

The global hypothesis contains three pairwise comparisons. After testing the three p-values

are ordered and the smallest one, p1, is compared with α/3. If p1 ≤ α/3 then the global

hypothesis is rejected and the three means homogeneity hypotheses have to be tested.

Each p-value belonging to one of the three means homogeneity hypotheses is compared

with α/2. The procedure ends after analyzing the elementary hypotheses by comparing

the p-values of these hypotheses with α. Again an elementary hypothesis is only rejected

if all other hypotheses, which contain its groups, are rejected, too.

The second special case of the closed testing procedure which is shown here is the logical

constraint method of Shaffer. In 2.3.4 the method is shown. Here is a brief summary for

an example with three groups:

• Test all three hypotheses with an appropriate two-sample test.



2.3 Multiple comparisons procedures 13

• Sort all p-values belonging to the hypotheses in ascending order: p1, p2, p3, where p1

is the smallest and p3 is the largest p-value.

• If p1 ≥ α/3 then stop the procedure. H1, H2 and H3 are valid. Otherwise go to the

next step.

• Both p2 and p3 are tested against α.

As an example to show the integration of the logical constraint method of Shaffer into the

closed testing procedure an all-pairs design with four groups will be analyzed. Again the

indices of the null hypotheses belong to the number of the group.

H1,2,3,4 versus α/6

H1,2,3 H1,2,4 H1,3,4 H2,3,4 versus α/3

H{1,2}∩{3,4} H{1,3}∩{2,4} H{1,4}∩{2,3} versus α/2

H1,2 H1,3 H1,4 H2,3 H2,4 H3,4 versus α

According to Westfall et al. (1999, p.70) these general adjustments are valid for all all-

pair comparisons with four groups. This method can be used when the p-values are not

sorted. However the procedure can be improved: rather than selecting the maximum of

the individual adjustment one can calculate the actual sequence of the adjustments for a

particular problem, which is more powerful.

In the following example the sorting of the p-values could be p3,4 ≤ p1,2 ≤ p2,4 ≤ p1,4 ≤

p2,3 ≤ p1,3. In the example the null hypotheses are marked when they are rejected, so when

a hypothesis is rejected after the first comparison a p-value with an α it gets a ”1”. The

first comparison is the smallest p-value, which is p3,4 against α/6. If the null hypothesis

is rejected then the hypotheses H1
1,2,3,4, H1

1,3,4, H1
2,3,4, H1

{1,2}∩{3,4} and H1
3,4 will be rejected

because all of these hypotheses contain the comparison of group 3 versus group 4. After

that the next smallest p-value is p1,2. The global hypothesis is already rejected thus it does

not have to be analyzed again. There is still at least one of three means homogeneity hy-

potheses (in this example there are two remaining) thus p1,2 has to be compared with α/3.
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With the rejection the hypotheses H2
1,2,3, H2

1,2,4 and H2
1,2 drop out. Thus there are none

of the three means homogeneity hypotheses left, only two disjoint and four elementary

hypotheses. The next comparison is p2,4 versus α/2 because of the disjoint hypotheses.

After the rejection there is still one disjoint hypothesis left, so p1,4 is compared with α/2.

Then the last disjoint hypothesis drops out. Thus there are only elementary hypotheses

left and the remaining p-values, p2,3 and p1,3 are compared with α:

H1
1,2,3,4

H2
1,2,3 H2

1,2,4 H1
1,3,4 H1

2,3,4

H1
{1,2}∩{3,4} H3

{1,3}∩{2,4} H4
{1,4}∩{2,3}

H2
1,2 H6

1,3 H4
1,4 H5

2,3 H3
2,4 H1

3,4

Thus the adjustments for this example are:

Comparison 3 vs. 4 1 vs. 2 2 vs. 4 1 vs. 4 2 vs. 3 1 vs. 3

CER α/6 α/3 α/2 α/2 α α

2.3.6 Multivariate t distribution, contrast tests, confidence intervals and crit-

ical values

Up to now only the logical dependencies between the hypotheses have been considered.

However, there is another way to improve power: the consideration of the stochastic de-

pendencies among the test statistics. In this paragraph the multivariate t distribution is

introduced. It regards these stochastic dependencies. First this distribution is defined,

then contrast tests, confidence intervals and critical values are introduced.

The multivariate t distribution is defined as follows:

t =
Z√
χ2

ν/ν
,

where
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Z is (Z1, . . . , Zu) which is distributed as multivariate normal, with

expectation vector 0 and correlation matrix R.√
χ2

ν/ν is a random variable distributed as χ2
ν with ν degrees of freedom

independent from the numerator.

For testing more than one comparison {c1
′β} we can use for simultaneous inferences {c1

′β},

{c2
′β}, . . . , {ck

′β} contrast tests. Their test statistic is:

Ti =
ci

′β̂ − ci
′β

s
√

ci
′(X′X)−ci

.

And the joint distribution of {T1, . . . , Tk} is distributed multivariate t. The correlation

matrix of the contrast test is R = D−1/2C′(X′X)−CD−1/2 with C = (c1, . . . , ck) and D is

a diagonal matrix having ith element equal to ci
′(X′X)−ci.

Another way to analyze a comparison is to use confidence intervals. The estimated interval

covers the difference of the two means with the probability of 1 − α. If we are interested

in more than one comparison we use (1− α)-level simultaneous confidence intervals. The

confidence intervals have the form

c′iβ̂ ± cαstderr(c′iβ̂),

where the critical value cα has to be selected that FWE = α for the multiple comparisons

of means, thus cα satisfies

P (c′iβ̂ − cαstderr{c′iβ̂} < c′iβ < c′iβ̂ + cαstderr{c′iβ̂},∀ i) = 1− α

or

P

∣∣∣∣∣∣ c′iβ̂ − c′iβ

s
√

ci
′(X′X)−ci

∣∣∣∣∣∣ ≤ cα,∀ i

 = 1− α

respectively.

The critical value cα is the 1-α quantile of the distribution of maxi |Ti|. The advantage in

contrast to the Bonferroni method is the consideration of stochastic dependencies of the
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test statistics thus the multivariate t distribution notes the correlation structures between

them.

Common examples for the multivariate t distribution are the Tukey test and the Dunnett

test which use special multivariate t distributions with a certain correlation matrix. Both

tests have already been introduced in 2.3.1.



17

3 Explanation of the macros

As described in the introduction multiple comparisons in factorial designs are very com-

mon in agricultural experiments. Westfall et al. (1999) introduced two macros for the

statistical analysis software SAS, %SimIntervals and %SimTests (short: %Sim*), which

can be used for such multiple comparison procedures. In the beginning the advantages and

the invocation of these two macros are shown. The %Sim macros themself use the three

macros %MakeGLMStats, %Contrasts and %Estimates for the delivery of certain parame-

ters, these macros are explained thereafter. In the end the invocation is introduced with

the example rust inhibitor.

3.1 The %SimIntervals macro

This macro calculates simultaneous adjusted confidence intervals and adjusted p-values for

contrasts. The critical values from the multivariate t distribution are simulated via Monte

Carlo simulation. Comparing with the SAS procedures GLM, MIXED and MULTTEST

%SimIntervals has several advantages:

• PROC GLM and PROC MIXED can compute any contrast tests. However the p-

values are not adjusted for multiplicity.

• PROC MULTTEST adjusts p-values by e.g. bootstrap, see Westfall and Young

(1993) for details. But it is difficult to calculate a set of contrasts where more

than one factor is involved because the class-statement allows just one factor thus

it is restricted to simple one-way layout. And no multivariate t distribution based

analysis is available with PROC MULTTEST.

• No procedures in SAS are available to compute directly confidence limits for any

contrasts, except MIXED and GLM for all-pairs and many-to-one designs.

• Both %Sim* adjust all pairwise comparisons simultaneous, even if the comparisons

come from different factors. This is a great advantage in comparison to SAS, which
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adjusts the comparisons only per factor. However Biesheuvel (2001) shows a way to

control the error for more than one factor in stratified designs for SAS.

Invocation

%SimIntervals may be invoked as follows:

%SimIntervals (nsamp= ,
seed = ,
conf = ,
side = );

where

nsamp is the size of the simulation. An input is not necessary because it has the

default of 20000.

seed is the random number seed. Again there is a default. If there is no entry made

the computer clock time is used.

conf is the confidence level. The default is 0.95.

side determines whether upper-tailed (side=U), lower-tailed (side=L) or two-tailed

(side=B) are needed. The default is side=B.

Note: it is important to write the letters U, L and B as capitals.

With only these information it is not possible to analyze a data set, for example among

other things the data set is not delivered to %SimIntervals. The complete invocation will

be shown after the introduction of the %SimTests macro and the other three macros which

both %Sim* use.
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3.2 The %SimTests macro

%SimTests performs the closed testing procedure which takes logical dependencies among

hypotheses into account. Further on the macro allows any collection of linear combinations,

not just pairwise contrasts. The critical values are generated via Monte Carlo simulation

or via the Bonferroni method (the Bonferroni method is not available for %SimIntervals).

Compared to SAS %SimTests has the following advantages:

• The procedure MULTTEST from SAS performs a closed testing procedure. However

this procedure allows only one factor in the class-statement.

• SAS uses only the unconstrained step-down method of Holm instead of %SimTests,

which uses the unconstrained step-down method of Holm and the logical constraint

method of Shaffer.

Invocation

The %SimTests macro is invoked by:

%SimTests (nsamp= ,

seed = ,

side = ,

type = );

where

nsamp is the simulation size, with 20000 as the default. In the case of nsamp = 0 the

macro calculates all adjustments using the Bonferroni method instead of the

simulated critical values from the multivariate t distribution. However it still

uses the methods of Shaffer (with type = LOGICAL) or Holm (with type =

FREE).

seed is the random number seed. Again there is a default. If there is no entry made

the computer clock time is used.

side determines whether upper-tailed (side = U), lower-tailed (side = L) or two-
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tailed (side = B) are needed. The default is side = B.

Note: it is important to write the letters U, L and B as capitals.

type It can be chosen between two methods of the closed testing procedure. One is

the unconstrained method of Holm (type = FREE) and the other one is the

logical constrained method of Shaffer and Westfall (see Westfall (199) for

details) (type = LOGICAL). Though type = LOGICAL is more powerful than

type = FREE, the last one is the default because when there are more than 20

contrasts the computer needs much time to calculate. Although type = FREE is

less powerful than LOGICAL it still uses step-down testing and correlations thus

it is more powerful than single-step procedures. Note: the parameters TYPE and

LOGICAL have to be written in capitals!If the parameters are written in small

letters then SAS will print out a failure warning.

Note: if side=U and type=LOGICAL is entered in the invocation the procedure is no longer

closed. However this can be still used, Westfall explains this: ”The tests are technically still

called closed two-sided in that case (with high power for the anticipated alternative), but

since there seem to be no directional errors (. . .), it seems reasonable to make directional

claims as well.”

3.3 Invocation of the %Sim* macros.

Up to now the macro is not able to analyze a data set because there is no option to select

one or to choose in which way it has to be computed.

Both %Sim* macros use three marcos which contain the data (%Estimates), the interesting

contrasts (%Contrasts) or both (%MakeGLMStats). These macros can be used in several

ways:

• The %MakeGLMStats macro creates the %Estimates macro for the degree of freedom,

the lsmeans, the covariance matrix and the means square error (short: summary

statistics) and the %Contrasts macro for the contrasts of interest automatically.
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• The contrasts are created by the user and the summary statistics are computed by

the macro %MakeGLMStats.

• With the summary statistics, the macros %Estimates and %Contrasts can be specified

directly, writing SAS programming statements to identify the needed values.

The following three examples show the specifying of the macros by calculating multiple

comparisons of means in the balanced one-way ANOVA using the rust inhibitor data set

from page 4. It will be analyzed by an all-pair comparison. Supplementary there are

additional ways to invoke the macros, these are shown in the next chapter among the

analysis of various agricultural designs.

3.3.1 Using %MakeGLMStats

In the rare case of having a simple model we just use the macro %MakeGLMStats to create

%Estimates and %Contrasts automatically. %MakeGLMStats is invoked as follows:

%MakeGLMStats (dataset = ,

classvar = ,

yvar = ,

model = ,

contrasts= );

where

dataset is the name of the data set. An input is necessary.

classvar is the listing of the class-variables. If there are two or more factors,

they have to be separated by a space. Again this is a required input.

yvar is the endpoint (response variable). There’s no default.

model is the statement model in SAS. However nested effects as in PROC GLM

are not possible. Again there is no default.

contrasts define the contrasts of interest and the class-variables (factors) to which the

contrasts are applied. One can choose among all-pair comparisons:

all(class-variable), many-to-one comparisons: control(class-variable)
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where the first level of the class-variables is the control. And the default

is user. When user is specified then the macro %Contrasts

has to be created by hand.

Invocation

Analyzing all-pair comparisons of means with the example rust inhibitor this would be:

%MakeGLMStats(dataset = rust,
classvar = brand,
yvar = effectiveness,
model = brand,
contrasts = all(brand));

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

Output

%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

1-2 -46.3000 1.1081 <.0001 <.0001 <.0001 0
1-3 -24.8100 1.1081 <.0001 <.0001 <.0001 0
1-4 2.6700 1.1081 0.0212 0.0212 0.0212 0
2-3 21.4900 1.1081 <.0001 <.0001 <.0001 0
2-4 48.9700 1.1081 <.0001 <.0001 <.0001 0
3-4 27.4800 1.1081 <.0001 <.0001 <.0001 0
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Interpretation

Contrasts is the label of the contrasts. They can be defined by the %Contrasts

macro (see below) or generated automatically by %MakeGLMStats

(as in this example).

Estimate is the difference of the lsmeans.

Standard Error is the standard error of the difference.

Pr> |t| Raw is the unadjusted (raw) p-value from the marginal t-distribution.

Pr> |t| Bon is the p-value with Bonferroni adjustment.

Pr> |t| Adj is the p-value with closed testing procedure adjustment of Holm

or of Shaffer.

SE(AdjP) is the standard error for the adjusted p-value.

In the example all differences between the brands are statistically significant. Note that

Bonferroni adjusted and closed testing procedure adjusted p-value in one row are the same.

In this case, it is the last step of the step-down procedure; thus no adjustment is needed.

%SimIntervals

Estimated 95% Quantile = 2.66997

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

1-2 -46.3000 1.1081 -41.78 <.0001 <.0001 -49.2587 -43.3413
1-3 -24.8100 1.1081 -22.39 <.0001 <.0001 -27.7687 -21.8513
1-4 2.6700 1.1081 2.41 0.0212 0.0892 -0.2887 5.6287
2-3 21.4900 1.1081 19.39 <.0001 <.0001 18.5313 24.4487
2-4 48.9700 1.1081 44.19 <.0001 <.0001 46.0113 51.9287
3-4 27.4800 1.1081 24.80 <.0001 <.0001 24.5213 30.4387
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Interpretation

Estimated 95% Quantile is the simulated critical value from the multivariate t

distribution.

Contrast is the label of the contrast.

Estimate is the difference of the lsmeans.

Standard error is the standard error of the difference.

t-value is the test statistic.

Pr> |t| Raw is the unadjusted p-value.

Pr> |t| Adjusted is the adjusted p-value.

95% Confidence Interval is the adjusted 95% Confidence interval, commonly

denoted as simultaneous confidence intervals, see

Hochberg and Tamhane (1987, p.4) for details.

In contrast to %SimTests the comparison ”1 vs. 4” is not statistically significant. However

the output from %SimIntervals contains simultaneous confidence intervals. This can be

a great advantage if we accept a less powerful method than the closed testing procedure.

The intervals remain in the dimension of the endpoint. These two outputs are the standard

ones, they are no modifications.

3.3.2 Using %Contrasts and %MakeGLMStats

As already mentioned the invocation via %MakeGLMStats can only be used when we are

interested in either all-pairs or many-to-one comparisons. However in many situations we

want to examine any combinations of contrasts. Then %MakeGLMStats and %Contrasts

have to be used. In the macro %Contrasts the desired comparisons can be defined in the

first part. Note that the first column of the C matrix contains only 0’s. It belongs to the

intercept parameter β1 in the PROC GLM model. Note that all factors which are listed in

the model statement of the %MakeGLMStats macro have to be specified in the %Contrast

macro! In the second part of the macro %Contrasts the labels of the contrasts are defined.
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Invocation

%MakeGLMStats(dataset = rust,
classvar = brand,
yvar = effectiveness,
model = brand);

%macro Contrasts;
C = { 0 1 -1 0 0 , /* The contrasts of interest. */

0 1 0 -1 0 ,
0 1 0 0 -1 ,
0 0 1 -1 0 ,
0 0 1 0 -1 ,
0 0 0 1 -1 };

C = C‘ ;

Clab = {"1-2", "1-3", "1-4", /* And the labels of the contrasts. */
"2-3", "2-4",

"3-4"};
%mend;
%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

We abandon an output because we get the same results as analyzing the data set with the

macros %MakeGLMStats.

3.3.3 Using %Contrasts and %Estimates

In some situations PROC GLM is not sufficient for calculations, for example when random

variables are included. Then PROC MIXED has to be used. This can be done by using

the macro %Estimates to select the summary statistics from other procedures than PROC

GLM. Again the contrasts have to be defined by %Contrasts, however we do not use

%MakeGLMStats to create the summary statistics thus there is no first column for the

intercept. As already mentioned the summary statistics are set due %Estimates:

EstPar are the lsmeans.

Mse is the mean square error.

Cov is the covariance matrix. Here it is Mse*I(4)/10 were I is the identity
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matrix, which is multiplied by the number of groups. The denominator 10 is the

sample size per group.

df is the degree of freedom.

All the parameters have to be declared. There are no defaults. The values can be taken from

the outputs of PROC GLM / MIXED, the output delivery system (ODS) or somewhere else.

Without the ODS it is not possible to analyze more than one factor while using %Estimates

thus an analysis can be only done per factor. Therefore simultaneous adjustments for more

than on factor are not possible.

Invocation

%macro Contrasts;
C = { 1 -1 0 0 ,

1 0 -1 0 ,
1 0 0 -1 ,
0 1 -1 0 ,
0 1 0 -1 ,
0 0 1 -1 };

C = C‘ ;

Clab = {"1-2", "1-3", "1-4",
"2-3", "2-4",

"3-4"};
%mend;

%macro Estimates;
EstPar = { 43.14 , 89.44 , 67.95 , 40.47 };
Mse = 6.13983;
Cov = Mse * I(4)/10 ;
df = 36;

%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

So all the three methods to invoke the %Sim* macros will calculate the same results except

slight deviations in the results from %Estimates and %Contrasts due to roundoff errors.
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4 Invocation of %SimIntervals and %SimTests

In this section the invocation of the two macros %Sim* for some agricultural designs will

be shown. For most designs any pair-wise comparisons are used because this shows the

advantage of the analysis of any combination of contrasts of the two macros in contrast

to ordinary procedures of SAS. Supplementary for this kind of comparisons %Contrasts

have to be used, not only %MakeGLMStats. For the following designs an invocation will

be shown:

- one-way analysis of variance,

- two-way analysis of variance,

- three-way analysis of variance,

- randomized complete block design,

- Latin square design,

- Youden design,

- Hierarchical designs: split-plot design and

- Analysis of covariance.

If not stated otherwise an introduction of a design starts with some notes and the model

is shown. Afterwards an example for the design is explained and the data set appendant

to the example is provided. Then the invocation follows and in the end the output is

shown with a brief interpretation. An FWE of 5% is used in all designs. Note that all

calculations are valid for both balanced and unbalanced layouts if not stated otherwise.

Unbalanced designs are problematic in current statistic programs, for example for SAS

which uses the Tukey-Kramer test instead of the Tukey-test when analyzing unbalanced

all-pairs comparisons.



28 4 INVOCATION OF %SIMINTERVALS AND %SIMTESTS

4.1 One-way analysis of variance

Although we introduced already the one-way analysis of variance we show the invocation

again for completion of this section. Supplementary we indicate another way to specify

the macro %Estimates by using SAS programming code. As already mentioned in section

2 we deviate in this section from the general model and adapt it to the particular model.

Thus our model for an one-way analysis of variance is:

yij = µ + αi + εij

where

yij = observation of replication j on level i of factor A,

µ = mean of the population,

αi = effect of level i from factor A,

εij = error term.

Moore (2000, p.524-525) uses a study where the effect of logging on the number of trees in

the following years was studied. In the study forest plots in Borneo are compared. Some

have never been logged and others have been logged for a year respectively eight years

before the study.

Data

never 27 22 29 21 19 33 16 20 24 27 28 19

1 year 12 12 15 9 20 18 17 14 14 2 17 19

8 years 18 4 22 15 18 19 22 12 12 . . .
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Invocation

%MakeGLMStats(dataset = rainforest,
classvar = logged ,
yvar = trees ,
model = logged );

%macro Contrasts;
C = { 0 -1 1 0 ,

0 -1 0 1 ,
0 0 -1 1 };

C=C‘;
clab = {"never-one", "never-eight", "one-eight"};

%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

Alternatively we can use the following invocation. However this is just possible for a

one-way design because the statement cov in the procedure GLM allows just one factor.

proc glm data=rainforest outstat=stat;
class logged;
model trees=logged;
lsmeans logged /out=ests cov;

run;

%macro Contrasts;
C = { -1 1 0 ,

-1 0 1 ,
0 -1 1 };

C=C‘;
clab = {"never-one", "never-eight", "one-eight"};

%mend;

%macro Estimates;
use ests;
read all var {lsmean} into EstPar;
read all var {cov1 cov2 cov3} into Cov;
use stat (where=(_TYPE_=’ERROR’));
read all var {df} into df;
%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);
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Output

%SimIntervals

Estimated 95% Quantile = 2.469223

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

never-one 1.6944 2.3064 0.73 0.4682 0.7435 -4.0006 7.3895
never-eight 9.6667 2.1353 4.53 <.0001 0.0002 4.3941 14.9392
one-eight 7.9722 2.3064 3.46 0.0017 0.0038 2.2772 13.6672

Only the difference between ”never” and ”one year ago” logged are not significant because

the p-value is greater than 5% and the confidence interval includes 0. In comparison to

”eight” the number of trees in ”never” is at least 4.4 and up to 14.94 greater and the

number of ”one” is at least 2.28 and up to 13.67 greater than in ”eight”.

%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

never-one 1.6944 2.3064 0.4682 0.4682 0.4682 0
never-eight 9.6667 2.1353 <.0001 0.0003 0.0003 0
one-eight 7.9722 2.3064 0.0017 0.0017 0.0017 0

As we can see the p-values calculated by %SimTests are less than the ones computed by

%SimIntervals. But ”never-one” still shows no statistically significant difference in the

number of trees. There are no confidence intervals because %SimTests calculates a closed

testing procedure.
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4.2 Two-way analysis of variance

More common than one-way designs are multi-way classifications. Therefore a two-way

ANOVA and after that, in 4.3, a three-way ANOVA are shown. How to invoke the macros

for a two-way (unbalanced) ANOVA will be shown by analyzing the design with and

without interaction term and afterwards the same calculations with the interaction term

will be done by the cell means model. At last interaction contrasts for a two-way ANOVA

are shown. For all computations except the interaction contrasts a data set from Köhler et

al. (1996, p.139-140) is used. Thus we will provide the notes to the example and its data

before showing the model: In a greenhouse experiment the effect of two types of fertilizer

and of three types of pesticide on the yield [kg] of wine is studied.

Data

fertilizer
pesticide

F1 F2 F3

21.3 22.3 23.8

P1 20.9 21.6 23.7

20.4 21.0 22.6

12.7 12.0 14.5

P2 14.9 14.2 16.7

12.9 12.1 14.5

4.2.1 Without interaction term

The model for a two-way analysis of variance without interaction is:

yijk = µ + αi + βj + εijk,

where
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yijk = observation of replication k on level i of factor A and level j of factor B,

µ = mean of the population,

αi = effect of level i of factor A,

βj = effect of level j of factor B,

εijk = error term.

Invocation

The specification of the contrasts of %Contrasts is dependent from the model statement of

%MakeGLMStats. As already shown, in the first part of the macro %Contrasts the first row

is the mean of the population. Here the second and the third row belong to factor A and

the fourth, fifth and sixth row belong to factor B. When levels of factor A are compared

then the levels of factor B are set to 0. Although they are not part of the comparison the

levels of factor B are needed for the calculation of the least square means (see 4.2.2 for

more details.

In the following tabular the contrasts for the macro %Contrasts are shown:

factor A factor B
comparison intercept

(fertilizer) (pesticide)

µ α1 α2 β1 β2 β3

factor A: 1 vs. 2 0 1 -1 0 0 0

factor B: 1 vs. 2 0 0 0 1 -1 0

factor B: 1 vs. 3 0 0 0 1 0 -1

factor B: 2 vs. 3 0 0 0 0 1 -1
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Thus the invocation of the %Sim* is:

%MakeGLMStats(dataset= twoway ,
classvar = fertilizer pesticide,
yvar = yield ,
model = fertilizer pesticide);

%macro Contrasts;
C = {0 1 -1 0 0 0,

0 0 0 1 -1 0,
0 0 0 1 0 -1,
0 0 0 0 1 -1};

C = C‘ ;

Clab = {"fert1-fert2",
"pest1-pest2", "pest1-pest3", "pest2-pest3"};

%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

Output

%SimIntervals

Estimated 95% Quantile = 2.749074

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

fert1-fert2 8.1222 0.4560 17.81 <.0001 <.0001 6.8686 9.3759
pest1-pest2 -0.0167 0.5585 -0.03 0.9766 1.0000 -1.5520 1.5187
pest1-pest3 -2.1167 0.5585 -3.79 0.0020 0.0070 -3.6520 -0.5813
pest2-pest3 -2.1000 0.5585 -3.76 0.0021 0.0074 -3.6354 -0.5646

From the output we can see that the difference between the two fertilizers is statistically

significant. Type 1 results in a yield which is at least 6.87kg and up to 9.38kg greater

than the yield of type 2. There is no significant difference between the types 1 and 2

of the pesticides because the confidence interval includes 0. The two other comparisons

of pesticides, 1 vs. 3 and 2 vs. 3, are significant. The α is controlled for both factors
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simultaneous. If this is not desired each factor has to be analyzed alone thus for each one

the macros have to be invoked.

%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

fert1-fert2 8.1222 0.4560 <.0001 <.0001 <.0001 0
pest1-pest2 -0.0167 0.5585 0.9766 0.9766 0.9766 0
pest1-pest3 -2.1167 0.5585 0.0020 0.0060 0.0053 0.000128
pest2-pest3 -2.1000 0.5585 0.0021 0.0060 0.0053 0.000128

As expected the p-values are less than the ones of %SimIntervals. However the decisions

stay the same.

4.2.2 With interaction term

In most cases a two-way ANOVA will be analyzed when the interaction term is included.

The model is:

yijk = µ + αi + βj + (αβ)ij + εijk,

where

yijk = observation of replication k on level i of factor A and level j of factor B,

µ = mean of the population,

αi = effect of level i of factor A,

βj = effect of level j of factor B,

(αβ)ij = interaction between level i of factor A and level j of factor B,

εijk = error term.
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Invocation

By adding the interaction term the number of coefficients of the contrasts for the factors

A and B have to be altered. When averaged for the three pesticides the average gain for

the first fertilizer is

E(y1j) = µ + α1 +
1

3
(β1 + β2 + β3) +

1

3
{(αβ)11 + (αβ)12 + (αβ)13}.

And for the second fertilizer the average gain is

E(y2j) = µ + α2 +
1

3
(β1 + β2 + β3) +

1

3
{(αβ)21 + (αβ)22 + (αβ)23}.

Thus the difference between them is:

E(y1j − y2j) = α1 − α2 +
1

3
{(αβ)11 + (αβ)12 + (αβ)13 − (αβ)21 − (αβ)22 − (αβ)23}.

This is the combination which has to be specified to compute the contrasts. Alternatively

the contrast statements can be standardized to yield integer coefficients:

E(3y1j − 3y2j) = 3(α1 − α2) + (αβ)11 + (αβ)12 + (αβ)13 − (αβ)21 − (αβ)22 − (αβ)23,

which is used in this thesis. Thus the contrasts for the example are specified as in the

following table:

factors
comparison intercept

A (fertilizer) B (pesticide)

µ α1 α2 β1 β2 β3

A: 1 vs. 2 0 3 −3 0 0 0

B: 1 vs. 2 0 0 0 2 -2 0

B: 1 vs. 3 0 0 0 2 0 -2

B: 2 vs. 3 0 0 0 0 2 -2

comparison interactions

(αβ)11 (αβ)12 (αβ)13 (αβ)21 (αβ)22 (αβ)23

A: 1 vs. 2 1 1 1 -1 -1 -1

B: 1 vs. 2 1 -1 0 1 -1 0

B: 1 vs. 3 1 0 -1 1 0 -1

B: 2 vs. 3 0 1 -1 0 1 -1
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Thus the invocation is:

%MakeGLMStats(dataset= twoway ,
classvar = fertilizer pesticide ,
yvar = yield ,
model = fertilizer pesticide fertilizer*pesticide);

%macro Contrasts;
C = {0 3 -3 0 0 0 1 1 1 -1 -1 -1};
C = C/3;

C1 = {0 0 0 2 -2 0 1 -1 0 1 -1 0,
0 0 0 2 0 -2 1 0 -1 1 0 -1,
0 0 0 0 2 -2 0 1 -1 0 1 -1};

C1 = C1/2;

C = C//C1;
C = C‘ ;
Clab = {"fert1-fert2",

"pest1-pest2", "pest1-pest3", "pest2-pest3"};
%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

Output

%SimIntervals

Estimated 95% Quantile = 2.80968

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

fert1-fert2 8.1222 0.4597 17.67 <.0001 <.0001 6.8305 9.4139
pest1-pest2 -0.0167 0.5631 -0.03 0.9769 1.0000 -1.5987 1.5654
pest1-pest3 -2.1167 0.5631 -3.76 0.0027 0.0089 -3.6987 -0.5346
pest2-pest3 -2.1000 0.5631 -3.73 0.0029 0.0092 -3.6820 -0.5180

By adding the interaction the p-values become larger (Although the sum of squares of the

error term is less in the design containing the interaction term the degrees of freedom are

less, too. Thus the mean square error in the design with the interaction term is larger than

in the design without the interaction.).
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%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

fert1-fert2 8.1222 0.4597 <.0001 <.0001 <.0001 0
pest1-pest2 -0.0167 0.5631 0.9769 0.9769 0.9769 0
pest1-pest3 -2.1167 0.5631 0.0027 0.0082 0.0071 0.000168
pest2-pest3 -2.1000 0.5631 0.0029 0.0082 0.0071 0.000168

Also the p-values computed by the %SimIntervals macro are equal to or greater than by

the %SimTests macro. However the decisions stay the same.

4.2.3 Using the cell means model

The same results can be calculated by a different model representation, the cell means

model (see e.g. Dean and Voss (1999, p.138-139) for further details). The cell means model

for a two-way ANOVA is

yijk = µ + τij + εijk,

where

yijk = observation of replication k on level i of factor A and level j of factor B,

µ = parametric mean of the population,

τij =treatment combination ij, which is the sum of the individual effect of the two,

factors and their joint interaction,

εijk = error term.

The name ”cell” refers to a cell in a tabular where the levels of factor A are the rows

and the columns represent the levels of factor B. Although we get the same results as

using the ”ordinary” ANOVA representation, the invocation is different. In the macro

%MakeGLMStats the model statement comprises only the interaction term thus in the

macro %Contrasts just the interaction term has to be written, that is
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%MakeGLMStats(dataset = twoway ,
classvar = fertilizer pesticide,
yvar = yield ,
model = fertilizer*pesticide);

%macro Contrasts;
C = {0 1 1 1 -1 -1 -1};
C = C/3;

C1 = {0 1 -1 0 1 -1 0,
0 1 0 -1 1 0 -1,
0 0 1 -1 0 1 -1};

C1 = C1/2;

C = C//C1;
C = C‘ ;

Clab = {"fert1-fert2",
"pest1-pest2", "pest1-pest3", "pest2-pest3"};

%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

4.2.4 Interaction Contrasts

When a model contains more than one factor, these factors may have an influence on each

other. This interaction can be measured when the effect of one factor depends on the level

of the other factor. The ordinary procedures of SAS provide a general predication whether

the model contains interactions. However it is difficult to perform pairwise differences for

one factor at different levels of the other factor, which can be done by using the %Sim*

macros. Although there are several types of these interaction contrasts we use only the

tetrad differences. Further types of interaction contrasts as the product-type interaction

contrasts or generalized interaction contrasts are described by Hochberg and Tamhane

(1987 p.294-299). Tetrades have the form

(µij − µij′)− (µi′j − µi′j′).
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As an example we use a data set according to Dean and Voss (1999, p.98). A stimulus

was presented to a subject and the reaction time which was needed to press a key was

measured. However the subject was warned that the stimulus was followed by an auditory

or visual cue. We are interested in the interaction contrasts of the factor A (type of cues:

auditory or visual) and of the factor B (the elapsed times between cue and stimulus: 5, 10

or 15 seconds).

Data

cue Stimulus in seconds

5 10 15

auditory 0.204 0.182 0.202

0.17 0.167 .

. 0.187 .

visual 0.257 0.235 0.258

0.279 0.26 0.281

. 0.283 0.256

Invocation

%MakeGLMStats(dataset = time ,
classvar = stimulus time ,
yvar = reaction ,
model = stimulus*time);

%macro Contrasts;
C = {0 1 -1 0 -1 1 0,

0 1 0 -1 -1 0 1,
0 0 1 -1 0 -1 1};

C = C‘ ;

Clab = {"(11-12)-(21-22)",
"(11-13)-(21-23)",
"(12-13)-(22-23)"};

%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);
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Westfall et al. (1999, p.182) use another way to invoke %Contrasts. Although this way

seems to be more complicated only the number of the levels per factor between the macros

MakeGLMStats and Contrasts have to be adapted for a data set. In our example factor A

has two levels, (%let a =2) and factor B has three levels (%let b = 3).

%MakeGLMStats(dataset = time ,
classvar = stimulus time ,
yvar = reaction ,
model = stimulus*time);

%let a=2; /* Levels of first CLASS variable */
%let b=3; /* Levels or second CLASS variable */

%macro Contrasts;
start tlc(n); return(trim(left(char(n,20)))); finish;

idi=(1:&a);
idj=(1:&b);
free C clab;
do i1=1 to &a-1; do i2=i1+1 to &a;

do j1=1 to &b-1; do j2=j1+1 to &b;
C = C // (0 || ( ((idi=i1) - (idi=i2))

@((idj=j1) - (idj=j2))));
clab = clab // "("+tlc(i1)+tlc(j1)+"-"+tlc(i1)+tlc(j2)+")"

+"-("+tlc(i2)+tlc(j1)+"-"+tlc(i2)+tlc(j2)+")";
end; end;

end; end;
C=C‘;

%mend;

%SimTests(seed=100177, type = LOGICAL);
%SimIntervals(seed=100177);

Output

%SimIntervals

Estimated 95% Quantile = 2.860682

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

(11-12)-(21-22) -0.00033 0.0232 -0.01 0.9889 0.9999 -0.0666 0.0659
(11-13)-(21-23) -0.0180 0.0274 -0.66 0.5298 0.7903 -0.0964 0.0604
(12-13)-(22-23) -0.0177 0.0254 -0.70 0.5060 0.7698 -0.0903 0.0549



4.2 Two-way analysis of variance 41

%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

(11-12)-(21-22) -0.00033 0.0232 0.9889 1.0000 0.9889 0
(11-13)-(21-23) -0.0180 0.0274 0.5298 1.0000 0.7717 0.00163
(12-13)-(22-23) -0.0177 0.0254 0.5060 1.0000 0.7717 0.00163

Neither %SimIntervals nor %SimTests show significant interactions because the p-values

are greater than the α of 5%.
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4.3 Three-way analysis of variance

As already mentioned multi-way classifications are more common as agricultural designs

than one-way classifications. Thus a three-way balanced ANOVA with interactions is

presented. If an experiment contains more than two factors the analysis via the %Sim*

macros follows the same principles as a two-way analysis of variance. The model for a

three-way analysis of variance with three two-factorial and one three-factorial interaction

is:

yijmk = µ + αi + βj + γm + (αβ)ij + (αγ)im + (βγ)jm + (αβγ)ijm + εijkm,

where

yijmk = observation of replication k on level i of factor A, level j of factor B and

level m of factor C,

µ = mean of the population,

αi = effect of level i of factor A,

βj = effect of level j of factor B,

γm = effect of level m of factor C,

(αβ)ij = interaction between level i of factor A and level j of factor B,

(αγ)im = interaction between level i of factor A and level m of factor C,

(βγ)jm = interaction between level j of factor B and level m of factor C,

(αβγ)ijm = interaction between level i of factor A, level j of factor B and level

m of factor C,

εijmk = error term.

According to Neter et al. (1996, 942-943) the following data set is used as the example. In

an experiment the following effects on the exercise time of a subject were measured: body

fat (factor A), smoking history (factor B) and gender of the subject (factor C). The exercise

time is the time [minutes] until a subject, who is performing on a bicycle apparatus, gets

tired. Note that all three factors have two levels thus it is actually a 23 factorial layout.
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Data

smoking history
body fat gender

light heavy

24.1 17.6

male 29.2 18.8

24.6 23.2
low fat

20.0 14.8

female 21.9 10.3

17.6 11.3

14.6 14.9

male 15.3 20.4

12.3 12.8
high fat

16.1 10.1

female 9.3 14.4

10.8 6.1

Invocation

To demonstrate the specification of a contrast the levels 1 (low) and 2 (heavy) of factor A

(body fat) are compared. The average time until tiredness for level 1 is:

E(y1jm) = µ + α1 +
1

2
(β1 + β2) +

1

2
(γ1 + γ2)

+
1

8
{(αβ)11 + (αβ)12 + (αγ)11 + (αγ)12 + (αβγ)111 + (αβγ)112 + (αβγ)121 + (αβγ)122}.

And the average time for level 2 is:

E(y2jm) = µ + α2 +
1

2
(β1 + β2) +

1

2
(γ1 + γ2)

+
1

8
{(αβ)21 + (αβ)22 + (αγ)21 + (αγ)22 + (αβγ)211 + (αβγ)212 + (αβγ)221 + (αβγ)222}.

The difference of the two equations is:

E(y1jm − y2jm) = α1 − α2

+
1

8
{(αβ)11 + (αβ)12 + (αγ)11 + (αγ)12 + (αβγ)111 + (αβγ)112 + (αβγ)121 + (αβγ)122

−(αβ)21 − (αβ)22 − (αγ)21 − (αγ)22 − (αβγ)211 − (αβγ)212 − (αβγ)221 − (αβγ)222}.
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Alternatively it can be written as:

E(8y1jm − 8y2jm) = 8α1 − 8α2

+(αβ)11 + (αβ)12 + (αγ)11 + (αγ)12 + (αβγ)111 + (αβγ)112 + (αβγ)121 + (αβγ)122

−(αβ)21 − (αβ)22 − (αγ)21 − (αγ)22 − (αβγ)211 − (αβγ)212 − (αβγ)221 − (αβγ)222,

which is used here. However in the macros only the three-way interaction term is specified.

Although the same p-values will be calculated by using all four interaction terms in the

%Contrasts macro, the differences of the lsmeans and the standard errors are incorrect.

Thus the contrasts for the example are specified as in the following tables:

Main factors

factor A factor B factor C
comparison intercept

α1 α2 β1 β2 γ1 γ2

fath − fatl 0 4 -4 0 0 0 0

smokeh − smokel 0 0 0 4 -4 0 0

genderf − genderm 0 0 0 0 0 4 -4

Three-factorial interaction

interaction terms
comparison

(αβγ)111 (αβγ)112 (αβγ)121 (αβγ)122 (αβγ)211 (αβγ)212 (αβγ)221 (αβγ)222

fath − fatl 1 1 1 1 -1 -1 -1 -1

smokeh − smokel 1 1 -1 -1 1 1 -1 -1

genderf − genderm 1 -1 1 -1 1 -1 1 -1
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Thus the invocation of the macros is:

%MakeGLMStats(dataset = threeway ,
classvar = fat smoke gender ,
yvar = minutes ,
model = fat smoke gender fat*smoke*gender);

%macro Contrasts;
C = {0 4 -4 0 0 0 0 1 1 1 1 -1 -1 -1 -1};
C = C/4;

C1 = {0 0 0 4 -4 0 0 1 1 -1 -1 1 1 -1 -1};
C1 = C1/4;

C2 = {0 0 0 0 0 4 -4 1 -1 1 -1 1 -1 1 -1};
C2 = C2/4;

C = C//C1//C2;
C = C‘;

Clab = {"fat_h-fat_l", "smoke_h-smoke_l", "gender_f-gender_m"};
%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

As already shown in 4.2.3 another model representation, the cell means model, can be

used. This cell means model can be applied here, too. However the results would be the

same except the Monte Carlo error.
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Output

%SimIntervals

Estimated 95% Quantile = 2.625904

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

fat_h-fat_l -6.3583 1.2474 -5.10 0.0001 0.0004 -9.6338 -3.0829
smoke_h-smoke_l -3.4250 1.2474 -2.75 0.0144 0.0391 -6.7004 -0.1496
gender_f-gender_m -5.4250 1.2474 -4.35 0.0005 0.0013 -8.7004 -2.1496

As it can be seen from the p-values, which are all less than 5%, or from the confidence

intervals, they exclude the 0, all comparisons are significant.

%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

fat_h-fat_l -6.3583 1.2474 0.0001 0.0003 0.0003 0
smoke_h-smoke_l -3.4250 1.2474 0.0144 0.0144 0.0144 0
gender_f-gender_m -5.4250 1.2474 0.0005 0.0010 0.0010 0

Again the powerful macro %SimTests calculates p-values which are less than the ones of

%SimIntervals.
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4.4 Randomized complete block design

In the randomized complete block design the experimental units are grouped in blocks

thus every level of the factor is represented with one ore more units in a block. The

block factor is used as an adjustment against possible heterogeneities. As Piepho (2000,

p.103) describes the goal is to minimize the variance within and to maximize it between

the blocks. From that it follows a reduction of the mean square error. The model of the

randomized complete block design is equivalent to the model of the two-way ANOVA (see

4.2). However the randomized complete block design is common in agricultural experiments

and for completion of this thesis we show the analysis of this design. The model is:

yij = µ + αi + bj + εijk,

where

yijk = observation of replication k of level i of the factor and level j of the block,

µ = mean of the population,

αi = effect of level i of the factor,

bj = effect of level j of the block,

εijk = error term.

In an experiment of Gomez et al. (1984, p.164) the effect of six sowing densities on the

yield [kg/ha] of a rice type is studied. Every sowing density appears once in one of the

four blocks.

Data

sowing block

density 1 2 3 4

25 5113 5398 5307 4678

50 5346 5952 4719 4264

75 5272 5713 5483 4749

100 5164 4831 4986 4410

125 4804 4848 4432 4748

150 5254 4542 4919 4098
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Invocation

To demonstrate the construction of the contrasts the average yield over all blocks of the

sowing densities 25[kg/ha] and 50[kg/ha] are shown. The average yield of the first sowing

density (25[kg/ha]) is:

y1j = µ + α1 +
1

4
(b1 + b2 + b3 + b4)

And the average yield of the second one (50[kg/ha] is :

y2j = µ + α2 +
1

4
(b1 + b2 + b3 + b4)

The difference of the two equations is:

y1j − y2j = α1 − α2

which is used here. Therefore the contrasts are:

compa- inter- Levels: factor Levels: block

rison cept α1 α2 α3 α4 α5 α6 b1 b2 b3 b4

50 - 25 0 -1 1 0 0 0 0 0 0 0 0

75 - 50 0 0 -1 1 0 0 0 0 0 0 0
...

...

150 -125 0 0 0 0 0 -1 1 0 0 0 0

Though the block factor does not appear in the calculations of the lsmeans it is listed in the

%Contrasts macro. The block factor is needed to reduce the mean square error. Thus it is

specified in the model statement of the %MakeGLMStats macro and therefore it appears

in the %Contrasts macro. So the invocation is:
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%MakeGLMStats(dataset = fixedblock ,
classvar = density block,
yvar = yield ,
model = density block);

%macro Contrasts;
C = {0 -1 1 0 0 0 0 0 0 0 0,

0 0 -1 1 0 0 0 0 0 0 0,
0 0 0 -1 1 0 0 0 0 0 0,
0 0 0 0 -1 1 0 0 0 0 0,
0 0 0 0 0 -1 1 0 0 0 0};

C = C‘;

Clab = {"50-25", "75-50", "100-75",
"125-100", "150-125"};

%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

As described on page 24 all factors listed in the model statement have to appear in the

Contrasts macro. If the last four rows, which belong to the block factor, are omitted, then

SAS will print out a failure warning.

Output

%SimIntervals

Estimated 95% Quantile = 3.031517

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

50-25 -19.4845 264.1 -0.07 0.9426 1.0000 -820.1 781.1
75-50 243.4 266.5 0.91 0.3826 0.8454 -564.5 1051.2
100-75 -314.7 277.8 -1.13 0.2838 0.7246 -1156.8 527.5
125-100 -271.3 292.2 -0.93 0.3750 0.8379 -1157.2 614.6
150-125 175.0 292.2 0.60 0.5626 0.9649 -710.9 1060.9

As we can see from the p-values or confidence intervals none of the comparisons show a

statistical significance.
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%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

50-25 -19.4845 264.1 0.9426 1.0000 0.9426 0
75-50 243.4 266.5 0.3826 1.0000 0.7977 0.00204
100-75 -314.7 277.8 0.2838 1.0000 0.7253 0.00217
125-100 -271.3 292.2 0.3750 1.0000 0.7977 0.00204
150-125 175.0 292.2 0.5626 1.0000 0.8038 0.00174

Again the differences are not significant, which is a matter of course because the raw

p-values are not significant, too.
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4.5 Latin square design

The randomized complete block design is used to eliminate one disturbing effect. If two of

these effects appear then row-column-designs are used. Two of them are shown here, the

first one is called Latin Square design and the second one, shown in the next subsection,

is the Youden design. The difference between them is the number of levels per block. In a

Latin Square design every level of the factor is represented once in each block. Whereas in

a Youden design the blocks are incomplete, see page 4.6 for details. To analyze the design

the following model is used:

yijhk = µ + αi + bj + ch + εijhk,

where

yijhk = observation of the replication k of level i of factor A, level j of row B and level

= h of column C,

µ = mean of the population,

αi = effect of level i of factor A,

bj = effect of level j of row B, which is represented as rows,

ch = effect of level h of column C, which is represented as columns,

εijhk = error term.

Piepho (2000, p.175) uses an example where the contents of bacteria in milk of five com-

panies were compared. The content was measured on five different days and day times,

both of them are disturbing effects.
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Data

Day

Daytime 1 2 3 4 5

08:30 A B C D E

1.9 1.2 0.7 2.2 2.3

10:00 D C E B A

2.3 2.0 0.6 2.6 2.3

11:30 C A D E B

2.1 1.5 1.7 1.1 3.0

14:00 B E A C D

2.9 1.1 1.2 1.8 2.6

15:30 E D B A C

1.8 2.1 2.0 2.4 2.5

Invocation

If we are interested in comparisons company 1 vs. 2, 2 vs. 5 and 3 vs. 4 then the invocation

is:

%MakeGLMStats(dataset = latinsq ,
classvar = company row column,
yvar = content ,
model = company row column);

%macro Contrasts;
C = {0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0,
0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0};

C = C‘;

Clab = {"1-2", "2-5", "3-4"};
%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);
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Output

%SimIntervals

Estimated 95% Quantile = 2.699672

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

1-2 -0.4800 0.2185 -2.20 0.0484 0.1227 -1.0700 0.1100
2-5 0.9600 0.2185 4.39 0.0009 0.0027 0.3700 1.5500
3-4 -0.3600 0.2185 -1.65 0.1254 0.2993 -0.9500 0.2300

Only the contents of company 2 and 5 show a significant difference. The p-values of the

two other comparisons are greater than the α.

%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

1-2 -0.4800 0.2185 0.0484 0.0969 0.0923 0.000427
2-5 0.9600 0.2185 0.0009 0.0026 0.0025 0.000087
3-4 -0.3600 0.2185 0.1254 0.1254 0.1254 0

Using the %SimTests macro the decisions stay the same. Note that the comparison ”2-5”

should have in both analyses the same adjusted p-value. However they differ because of

the Monte Carlo error.
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4.6 Youden design

As already mentioned in 4.5 the Youden and the Latin square design are used to eliminate

two disturbing factors via two blocks. In certain cases it may be impossible to generate

complete blocks where every level of a factor is represented in each row and column. Here

the Latin square is not the appropriate design. However the Youden design is a special

row-column-design where the rows or columns are incomplete blocks. The model is:

yijhk = µ + αi + bj + ch + εijhk,

where

yijhk = observation of replication k of the level i of factor A, level j of row B and level

= h of column C,

µ = parametric mean of the population,

αi = effect of level i of factor A,

bj = effect of level j of row B, which is represented as rows,

ch = effect of level h of column C, which is represented as columns,

εijhk = error term.

Piepho (2000, p.178) uses an example with five treatments, five rows and four columns.
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Data

Row Column

(Block) 1 2 3 4

1 B D C E

158 107 94 68

2 D A E B

140 156 106 130

3 E B A C

141 155 99 97

4 C E D A

156 126 99 86

5 A C B D

136 140 131 102
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Invocation

If we are interested in the comparisons 1 vs. 3, 1 vs. 4, 3 vs. 4 and 4 vs. 5 then the

invocation will be:

%MakeGLMStats(dataset = youden ,
classvar = trt row column,
yvar = y ,
model = trt row column);

%macro Contrasts;
C = {0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0,

0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0,
0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0};

C = C‘;

Clab = {"trt1-trt3", "trt1-trt4",
"trt3-trt4", "trt4-trt5"};

%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);

Output

%SimIntervals

Estimated 95% Quantile = 2.988913

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

trt1-trt3 -9.6667 6.4588 -1.50 0.1728 0.4155 -28.9713 9.6380
trt1-trt4 3.4000 6.4588 0.53 0.6129 0.9298 -15.9047 22.7047
trt3-trt4 13.0667 6.4588 2.02 0.0777 0.2046 -6.2380 32.3713
trt4-trt5 0.7333 6.4588 0.11 0.9124 0.9993 -18.5713 20.0380

All p-values are greater than the α and all confidence intervals include 0. Thus there is no

significant difference.
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%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

trt1-trt3 -9.6667 6.4588 0.1728 0.3457 0.3033 0.00113
trt1-trt4 3.4000 6.4588 0.6129 1.0000 0.8255 0.00168
trt3-trt4 13.0667 6.4588 0.0777 0.3107 0.2092 0.00132
trt4-trt5 0.7333 6.4588 0.9124 1.0000 0.9124 0

Again there are no statistically significant differences.
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4.7 Hierarchical designs: split-plot design

This two-way design is used when it is impossible to randomize completely the levels of

a factor in an experiment. The factor, called main factor, which can not be randomized

completely is arranged in complete blocks. In each unit of the main factor in the blocks

the second (sub) factor is represented with each of its levels once. The difference to a

completely randomized two-way design is the estimate of the variance. While the sub

factor uses the ordinary mean square error, the main factor uses a combination of the

mean squares of the block and of the interaction between block and main factor (see below

for details). In our model the block and the interaction between block and main factor are

random. Note that the model does not contain the interaction between block and main

factor. In the split-plot design this interaction term is at the same time the error term of

the main factor. The model of the split-plot design is:

yijh = µ + αi + βj + bh + (αβ)ij + φih + εijh,

where

yijh = observation of level i of the factor A, of level j of factor B and level h of the

= block,

µ = mean of the population,

αi = effect of level i of the main factor,

βj = effect of level j of the sub factor,

bh = effect of level h of the block,

(αβ)ij = interaction between level i of factor A and level j of factor B,

φih = error term of the main factor, which is alternatively (αb)ih,

εijh = error term of the sub factor.

In the example from Piepho (2000, p.218) the effect of four types of rice and six levels of

nitrogen fertilizer is examined. The main factor, which is the fertilizer, is brought out in a

randomized way in three blocks. Whereas the types of rice as the sub factor are brought

out in a completely randomized way in each unit per block.
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Data

fertilizer 1 2

block type 1 2 3 4 1 2 3 4

1 4430 3944 3464 4126 5418 6502 4768 5192

2 4478 5314 2944 4482 5166 5858 6004 4604

3 3850 3660 3124 4836 6432 5586 5556 4652

fertilizer 3 4

block type 1 2 3 4 1 2 3 4

1 6076 6008 6244 4546 6462 7139 5792 2774

2 6420 6127 5724 5744 7056 6982 5880 5036

3 6704 6642 6014 4146 6680 6564 6370 3638

fertilizer 5 6

block type 1 2 3 4 1 2 3 4

1 7290 7682 7080 1414 8452 6228 5594 2248

2 7848 6594 6662 1960 8832 7387 7122 1380

3 7552 6576 6320 2766 8818 6006 5480 2014

4.7.1 Split plot analysis using PROC MIXED and PROC GLM

Originally PROC GLM was used to analyze a split-plot design until PROC MIXED became

available. Though there are a number of similarities some important differences occur where

PROC GLM calculates incorrect values. Comparing the two procedures, the main points

are:

False values

The default standard error for the lsmeans from the main factor in an unbalanced design

in PROC GLM is

stderr(x̄i..) =

√
σ2

ni

,∀ i,
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which is incorrect. According to Littell et al.(1996, p.61) The correct standard error, which

is calculated by PROC MIXED, is:

stderr(x̄i..) =

√
1

ni

· (4σ2
block + 4σ2

block·residual + σ2).

Or expressed in terms of ANOVA means squares:

stderr(x̄i..) =

√
1

ni

[(
1

2

)
MSblock +

(
1

2

)
MSblock·main

]
.

According to our example for the wrong calculations for the main effect (fertilizer) this

would be:

stderr(x̄i..) =

√
349442

12
= 170.646.

To get the right standard error we have to use the estimates of σ2, σ2
block and σ2

block·residual

from e.g. the output of PROC MIXED:

Covariance Parameter
Estimates

Cov Parm Estimate

block 16667
block*main -51758
Residual 349442

This becomes

stderr(x̄i..) =

√
1

12
· 4 · 16667 + 4 · (−51758) + 349442 = 131.997.

A further problem is the specification of the mean square error. The statement contrast

in PROC GLM use the split-plot mean square error σ2 as the default denominator for all

F-statistics. This is not correct in every case. Although PROC GLM allows to define a

single different mean square as denominator it is not able to calculate a linear combination

of mean squares to be used with contrasts. Thus there is no way to get the correct results.

The problem of PROC GLM not computing linear combinations of mean squares is shown

in the follwing table:
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Source of Variation Standard Error

Main
√

1
ni
· 4σ2

block + 4σ2
block·residual + σ2

Sub
√

1
ni
· 4σ2

block + σ2
block·residual + σ2

Main · Sub
√

1
ni
· σ2

block + σ2
block·residual + σ2

All of the correct standard errors are functions of all three variance components and are

estimated by linear combinations of mean squares.

Correct values

• The F-statistics and the probability values of the fixed effects, their interaction, the

random effects block and the interaction between block and main factor are correct

calculated by PROC GLM.

• In some cases PROC GLM estimates and tests main effect and sub effect contrasts

and the resulting standard errors and denominator degrees of freedom correctly. All

results are correct in the special case of a balanced design. However in an unbal-

anced design PROC GLM uses the correct defaults only in certain cases; in other

cases, where the standard error involves a single mean square, PROC GLM allows

to override the default by using the correct mean square to obtain the correct result.

If the standard involves a linear combination of mean squares then PROC GLM has

no available option to calculate in a correct way.

4.7.2 SAS-syntax for PROC MIXED

In the following calculations we use certain estimates from the output of PROC MIXED.

For completion of the analysis we show the SAS-syntax of this procedure:

proc mixed method = reml nobound;
class block main sub;
model yield = main sub main * sub /ddfm = satterth;
random block block * main ;
lsmeans main /pdiff adjust = dunnett cl;
lsmeans sub /pdiff adjust = dunnett cl;
run;
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4.7.3 Analysis using %SimIntervals and %SimTests

As already shown it is not possible that PROC GLM does calculate the correct standard

errors for the contrasts of the main effect. When using %MakeGLMStats for calculating the

summary statistics the same error appears (because this macro uses the GLM procedure).

Also it is not possible to calculate the pairwise contrasts for both factors at the same

time with the %Sim* because the macro %Estimates accepts only one mean square error.

In a balanced design all the standard errors within one factor are equal. Therefore it

is possible to split the analysis for each factor. On the other hand the analysis of an

unbalanced design is difficult and time-consuming because the standard errors within one

factor will be different.Thus the analysis via the %Sim* macros is not recommendable

for unbalanced designs. By using the output delivery system of SAS it may be possible

to analyze both factors in one invocation simultaneously. However the use of the %Sim*

macros in combination with the ODS would go too far for this thesis. Westfall et al. (1999)

shows the application of the ODS with the macros.

Main factor

As we use %Estimates we do not have a dummy variable in %Contrasts.

%Estimates needs a mean square error to calculate the correct standard error of the differ-

ence of the lsmeans. PROC MIXED does not compute this value. However it provides the

required standard errors. Thus we use the following formula from Piepho (2000, p.224) to

compute the needed standard errors from the mean square error (so that %Estimates can

calculate from the mean square error the standard error):

stderrdiff(main)) =

√
2 · σ2

main

nblock · nsub

⇔ σ2
main =

stderr2
diff(main) · nblock · nsub

2
.

This becomes:

s2
main =

154, 062 · 12

2
= 142406, 9016.

Additional the %Estimates macro needs the degree of freedom. Again we use a formula

from Piepho (2000, p.220). The degree of freedom of the error term of the main factor is
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df = (a− 1)(r − 1) = (6− 1)(3− 1) = 10, with a levels of the main factor and r blocks.

Invocation

%macro Contrasts;
C = { 1 -1 0 0 0 0,

1 0 -1 0 0 0,
1 0 0 -1 0 0,
1 0 0 0 -1 0,
1 0 0 0 0 -1};

C = C‘ ;

Clab = {"1-2", "1-3", "1-4", "1-5", "1-6"};
%mend;

%macro Estimates;
EstPar = {4054.33 ,5478.17, 5866.25, 5864.42, 5812.00, 5796.75 };
Mse = 142406.9016;
Cov = Mse * I(6)/12 ;
df = 10;

%mend;
%SimIntervals(seed=100177);
%SimTests(seed=100177, type=LOGICAL);

Output

%SimIntervals

Estimated 95% Quantile = 2.991591

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

1-2 -1423.8 154.1 -9.24 <.0001 <.0001 -1884.7 -963.0
1-3 -1811.9 154.1 -11.76 <.0001 <.0001 -2272.8 -1351.0
1-4 -1810.1 154.1 -11.75 <.0001 <.0001 -2271.0 -1349.2
1-5 -1757.7 154.1 -11.41 <.0001 <.0001 -2218.6 -1296.8
1-6 -1742.4 154.1 -11.31 <.0001 <.0001 -2203.3 -1281.5
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%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

1-2 -1423.8 154.1 <.0001 <.0001 <.0001 0
1-3 -1811.9 154.1 <.0001 <.0001 <.0001 0
1-4 -1810.1 154.1 <.0001 <.0001 <.0001 0
1-5 -1757.7 154.1 <.0001 <.0001 <.0001 0
1-6 -1742.4 154.1 <.0001 <.0001 <.0001 0

All fertilizers show significant differences.

Sub factor

Again there is no dummy variable in the %Contrasts macro. The required mean square

error can be taken directly from the output of PROC MIXED. It is the error variance

component, called Residual. According to Piepho (2000, p.220) the degree of freedom of

the error term of the sub factor is df = a(b− 1)(r− 1) = 6(4− 1)(3− 1) = 36 with b levels

of the sub factor.

Invocation

%macro Contrasts;
C = { 1 -1 0 0,

1 0 -1 0,
1 0 0 -1};

C = C‘ ;

Clab = {"1-2", "1-3", "1-4"};
%mend;

%macro Estimates;
EstPar = {6553.56 ,6155.50 , 5563.44 , 3642.11 };
Mse = 349422;
Cov = Mse * I(4)/18 ;
df = 36;

%mend;
%SimIntervals(seed=100177);
%SimTests(seed=100177, type=LOGICAL);
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Output

%SimIntervals

Estimated 95% Quantile = 2.445971

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

1-2 398.1 197.0 2.02 0.0509 0.1221 -83.8936 880.0
1-3 990.1 197.0 5.02 <.0001 0.0001 508.2 1472.1
1-4 2911.5 197.0 14.78 <.0001 <.0001 2429.5 3393.4

%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

1-2 398.1 197.0 0.0509 0.0509 0.0509 0
1-3 990.1 197.0 <.0001 <.0001 <.0001 0
1-4 2911.5 197.0 <.0001 <.0001 <.0001 0

The types 3 and 4 differ significantly from type 1.
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4.8 Analysis of covariance

If the disturbing factor can be quantified before the experiment or controlled during the

experiment then blocks can be used to eliminate this factor. In the analysis of covariance

the means are adjusted for the nuisance factor, which either cannot be controlled with

blocks or cannot be measured before the experiment. We use the following model:

yij = µ + αi + βxij + γxij + εij,

where

yij = observation of the replication j on the level i of factor A and of the

regression coefficients βxij and γxij,

µ = mean of the population,

αi = effect of level i of factor A,

βxij= first regression coefficient (initial weight),

γxij= second regression coefficient (initial age),

εij = error term.

Snedecor and Cochran (1967, p.438-443) use an example where the effect of four types of

feed on the weight gain of pigs was analyzed. The disturbing factors are initial weight and

age.
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Data

feed 1 feed 2 feed 3 feed 4

age weight gain age weight gain age weight gain age weight gain

78 61 1.40 78 74 1.61 78 80 1.67 77 62 1.40

90 59 1.79 99 75 1.31 83 61 1.41 71 55 1.47

94 76 1.72 80 64 1.12 79 62 1.73 78 62 1.37

71 50 1.47 75 48 1.35 70 47 1.23 70 43 1.15

99 61 1.26 94 62 1.29 85 59 1.49 95 57 1.22

80 54 1.28 91 42 1.24 83 42 1.22 96 51 1.48

83 57 1.34 75 52 1.29 71 47 1.39 71 41 1.31

75 45 1.55 63 43 1.43 66 42 1.39 63 40 1.27

62 41 1.57 62 50 1.29 67 40 1.56 62 45 1.22

67 40 1.26 67 40 1.26 67 40 1.36 67 39 1.36

Invocation

If we are interested in an all-pair comparison then the invocation is:

%MakeGLMStats(dataset = covariate ,
classvar = treatment ,
yvar = gain ,
model = treatment in_age in_weight);

%macro Contrasts;
C = {0 1 -1 0 0 0 0,

0 1 0 -1 0 0 0,
0 1 0 0 -1 0 0,
0 0 1 -1 0 0 0,
0 0 1 0 -1 0 0,
0 0 0 1 -1 0 0};

C = C‘ ;

Clab = {"1-2", "1-3", "1-4",
"2-3", "2-4",

"3-4"};
%mend;

%SimTests(seed=100177, type=LOGICAL);
%SimIntervals(seed=100177);
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Alternatively we can use only %MakeGLMStats:

%MakeGLMStats(dataset = covariate ,
classvar = treatment ,
yvar = gain ,
model = treatment in_age in_weight,
contrasts = all (treatment));

%SimIntervals(seed=100177);
%SimTests(seed=100177, type=LOGICAL);

Output

%SimIntervals

Estimated 95% Quantile = 2.683334

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

1-2 0.1546 0.0630 2.45 0.0194 0.0831 -0.0144 0.3237
1-3 0.0185 0.0637 0.29 0.7735 0.9914 -0.1524 0.1893
1-4 0.1196 0.0638 1.88 0.0694 0.2521 -0.0515 0.2907
2-3 -0.1362 0.0632 -2.15 0.0385 0.1501 -0.3059 0.0336
2-4 -0.0350 0.0638 -0.55 0.5863 0.9458 -0.2061 0.1361
3-4 0.1011 0.0631 1.60 0.1184 0.3844 -0.0683 0.2705

None of the comparisons show significant differences.

%SimTests

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

1-2 0.1546 0.0630 0.0194 0.1162 0.0864 0.000844
1-3 0.0185 0.0637 0.7735 1.0000 0.8261 0.00172
1-4 0.1196 0.0638 0.0694 0.2081 0.1622 0.000932
2-3 -0.1362 0.0632 0.0385 0.1162 0.0949 0.000693
2-4 -0.0350 0.0638 0.5863 1.0000 0.8261 0.00172
3-4 0.1011 0.0631 0.1184 0.2081 0.1622 0.000932

Although the powerful %SimTests is used the decisions stay the same.
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5 Examples

In this section four examples of the analysis of agricultural designs via the %Sim* macros

are shown. The first example contains a three-way analysis of variances, where the cell

means model is used. Afterwards we present an analysis of covariances. As the third ex-

ample we analyze a split plot design and the last example contains the analysis of tetrades.

We assume that the requirements of the analysis of variances, e.g. variance homogeneity,

normal distribution and uncorrelated data are given. Note that the number of replications

in all four examples is very small, it is between three and twelve.

5.1 Licensure of carrots

After breeding a plant the new type has to be permitted so that it can be launched on the

market. In Germany the licensure of new types of plants takes place at the Bundessorten-

amt. To get a licensure the new type has to pass a test method (Wertprüfung). In this

test method the new type has to show its superiority (see below) above a standard. A

Wertprüfung takes place on several locations in several years. In this time the new type

has to be better than the standard in the totality of all characteristics from the mean

of the different locations. The test method goes over two years (the period of time is

dependent from the plant species). Our data set is a small part from a Wertprüfung with

carrots (Daucus carota L. ssp. sativus Umbellifarae). Here the superiority contains the

yield (marketable ware: very good and not marketable: deformed, cracked, too small),

intensity of the color inside the carrot, intensity of the green color inside the carrot, the

tensile strength, number of shoots and the density of the circles on the outside of the carrot.

In total these are nine characteristics. The observations of the four new types (”Jeanette”,

”Napoli”, ”Splendid” and ”Yukon”) and the standard type (”Bolero”) were measured at

five locations (shortcuts: lemgr, quedl, unihh, unibe, olvst) in the years 1996 and 1997.

Every factor combination has four replications. To simplify the analysis we deviate from

the original guidelines of the Bundessortenamt. For us a new type gets a licensure if

it shows superiority above the standard in the totality of all characteristics. However
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this superiority has to appear in both years on at least one location. To represent all

characteristics in one endpoint we use the parametric version of the multivariate endpoint

analysis of O’Brien (1984). Therefore we standardize each endpoint by subtracting the

overall variable mean from each observation and afterwards the differences are divided

by the standard deviation of the endpoint. Finally we calculate the response variable by

adding each of the observations of the endpoints. However the algebraic sign from the

endpoints with negative specification (such as the green color inside the carrot or the not

marketable ware: deformed) are switched. Thus we receive an univariate design. Note

that we are not interested in the difference between the years or the locations. We have to

analyze each combination of the year, type and location. So we get the following model:

yijmk = µ + αi + βj + γm + (αβ)ij + (αγ)im + (βγ)jm + (αβγ)ijm + εijkm,

where

yijmk = observation of replication k on level i of factor A (type), level j of factor B

(location) and level m of factor C (year),

µ = mean of the population,

αi = effect of level i of factor A,

βj = effect of level j of factor B,

γm = effect of level m of factor C,

(αβ)ij = interaction between level i of factor A and level j of factor B,

(αγ)im = interaction between level i of factor A and level m of factor C,

(βγ)jm = interaction between level j of factor B and level m of factor C,

(αβγ)ijm = interaction between level i of factor A, level j of factor B and level

m of factor C,

εijmk = error term.
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Data

This is a small part of the data set:

location year type replication shoots tensile ... small endpoint
lemgr 96 bolero 1 -0.653 1.454 . . . -0.470 2.144
lemgr 96 bolero 2 -0.653 1.196 . . . -0.470 2.631
lemgr 96 bolero 3 -0.653 1.196 . . . -0.470 2.520
lemgr 96 bolero 4 -0.653 1.454 . . . -0.322 1.800

...
...

...
...

...
... . . .

...
...

olvst 97 napoli 1 2.897 -1.387 . . . -0.421 -3.416
olvst 97 napoli 2 0.767 -1.645 . . . -0.480 1.499
olvst 97 napoli 3 0.057 -1.387 . . . -0.539 1.599
olvst 97 napoli 4 0.767 -1.387 . . . -0.539 1.002

Invocation

We are only interested in the decision whether a new type is better than the standard in

both years on at least two locations. Thus we use the %SimTest macro. Note that there

are 40 comparisons, which are too many to use the logical constraint method of Shaffer.

So we use the unconstrained method of Holm, which is not so time consuming. To test the

superiority we have to use one-sided tests. As already mentioned we are only interested

in the comparisons of types in a specific year and at a specific location. Thus we do not

compare the years or locations. For this specific invocation we use the cell means model.

This is a brief general overview how the contrasts have to be specified:

bolero
contrast intercept lemgr olvst quedl unibe unihh

96 97 96 97 96 97 96 97 96 97
”96 lemgr jeanette” 0 -1 0 0 0 0 0 0 0 0 0
”97 lemgr jeanette” 0 0 -1 0 0 0 0 0 0 0 0

jeanette yukon
lemgr olvst quedl unibe unihh . . . unihh

96 97 96 97 96 97 96 97 96 97 96 97
1 0 0 0 0 0 0 0 0 0 . . . 0 0
0 1 0 0 0 0 0 0 0 0 . . . 0 0
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Therefore the invocation is:

%MakeGLMStats(dataset = licensure ,
classvar = types location year ,
yvar = endpoint ,
model = type * location * year );

%macro Contrasts;
C = {0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0,
0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0,
0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0,
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0,
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0,
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0,
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0,
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0};
C=C‘;

clab = {"96 lemgr jeanette", "97 lemgr jeanette", "96 lemgr napoli",
"97 lemgr napoli", "96 lemgr splendid", "97 lemgr splendid",
"96 lemgr yukon", "97 lemgr yukon", "96 olvst jeanette",
"97 olvst jeanette", "96 olvst napoli", "97 olvst napoli",
"96 olvst splendid", "97 olvst splendid", "96 olvst yukon",
"97 olvst yukon", "96 quedl jeanette", "97 quedl jeanette",
"96 quedl napoli", "97 quedl napoli", "96 quedl splendid",
"97 quedl splendid", "96 quedl yukon", "97 quedl yukon",
"96 unibe jeanette", "97 unibe jeanette", "96 unibe napoli",
"97 unibe napoli", "96 unibe splendid", "97 unibe splendid",
"96 unibe yukon", "97 unibe yukon", "96 unihh jeanette",
"97 unihh jeanette", "96 unihh napoli", "97 unihh napoli",
"96 unihh splendid", "97 unihh splendid", "96 unihh yukon",
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"97 unihh yukon"};
%mend;

%SimTests(seed=100177, side=U, type=FREE);

Output

Unconstrained (Free Combinations) Step-Down Tests

Standard ------ Pr > t ------
Contrast Estimate Error Raw Bon Adj SE(AdjP)

96 lemgr jeanette -1.3231 1.0390 0.8976 1.0000 1.0000 0
97 lemgr jeanette 1.5013 1.0390 0.0753 1.0000 0.7616 0.00240
96 lemgr napoli 0.4542 1.0390 0.3313 1.0000 0.9854 0.000822
97 lemgr napoli 2.6845 1.0390 0.0054 0.1556 0.1251 0.00108
96 lemgr splendid -4.0990 1.0390 0.9999 1.0000 1.0000 0
97 lemgr splendid 3.8680 1.0390 0.0001 0.0046 0.0045 0.000068
96 lemgr yukon -7.3462 1.0390 1.0000 1.0000 1.0000 0
97 lemgr yukon 4.0666 1.0390 <.0001 0.0024 0.0023 0.000065
96 olvst jeanette 1.9346 1.0390 0.0323 0.8392 0.4845 0.00232
97 olvst jeanette 3.6958 1.0390 0.0003 0.0078 0.0074 0.000129
96 olvst napoli 1.2573 1.0390 0.1141 1.0000 0.8601 0.00210
97 olvst napoli 0.6369 1.0390 0.2704 1.0000 0.9802 0.000946
96 olvst splendid -0.4119 1.0390 0.6538 1.0000 0.9999 0.000050
97 olvst splendid -0.5696 1.0390 0.7078 1.0000 0.9999 0.000050
96 olvst yukon 1.0269 1.0390 0.1623 1.0000 0.9300 0.00164
97 olvst yukon 1.9838 1.0390 0.0291 0.7847 0.4612 0.00227
96 quedl jeanette 0.7356 1.0390 0.2400 1.0000 0.9749 0.00106
97 quedl jeanette -3.2620 1.0390 0.9990 1.0000 1.0000 0
96 quedl napoli 4.0174 1.0390 <.0001 0.0028 0.0027 0.000078
97 quedl napoli -1.5686 1.0390 0.9334 1.0000 1.0000 0
96 quedl splendid 1.4502 1.0390 0.0824 1.0000 0.7725 0.00238
97 quedl splendid -0.8157 1.0390 0.7832 1.0000 1.0000 0
96 quedl yukon 0.8123 1.0390 0.2178 1.0000 0.9681 0.00118
97 quedl yukon -0.5114 1.0390 0.6883 1.0000 0.9999 0.000050
96 unibe jeanette 6.7784 1.0390 <.0001 <.0001 <.0001 0
97 unibe jeanette -0.4570 1.0390 0.6697 1.0000 0.9999 0.000050
96 unibe napoli 0.5870 1.0390 0.2865 1.0000 0.9802 0.000946
97 unibe napoli -1.3666 1.0390 0.9048 1.0000 1.0000 0
96 unibe splendid 3.1000 1.0390 0.0017 0.0499 0.0433 0.000518
97 unibe splendid 0.1815 1.0390 0.4308 1.0000 0.9966 0.000404
96 unibe yukon 5.2782 1.0390 <.0001 <.0001 <.0001 0
97 unibe yukon 0.5184 1.0390 0.3093 1.0000 0.9817 0.000912
96 unihh jeanette -0.8553 1.0390 0.7942 1.0000 1.0000 0
97 unihh jeanette 2.0106 1.0390 0.0274 0.7680 0.4489 0.00228
96 unihh napoli 5.9212 1.0390 <.0001 <.0001 <.0001 0
97 unihh napoli -3.9470 1.0390 0.9999 1.0000 1.0000 0
96 unihh splendid 6.8160 1.0390 <.0001 <.0001 <.0001 0
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97 unihh splendid -4.1369 1.0390 0.9999 1.0000 1.0000 0
96 unihh yukon 3.7571 1.0390 0.0002 0.0065 0.0063 0.000104
97 unihh yukon 5.7490 1.0390 <.0001 <.0001 <.0001 0

The only type, which is significant in both years on at least one location is the type ”Yukon”

on the location ”unihh”. The first adjusted p-value is 0.0063 and the second is smaller

than 0.0001. Thus only the type ”Yukon” gets the licensure.
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5.2 Uptake of a fungicide into apple leaves

The aim of this experiment was to find an effective fungicide against a fungi, which harms

apples. In the study 25 fungicides with five to ten replications were tested on their ability

to penetrate the cuticle from leaves of Gloster. The endpoint is the uptake [%] in the

leaves, which was measured after several hours. However the time [hours] between the

application of the fungicide and the measuring of the penetration is not constant. Thus

we consider this time as a covariate. Because we cannot assume which fungicide is better

than the other, we are interested whether there are differences between the fungicides.

Thus we have two-sided tests. Also we want to know how large the differences between

the fungicides are so we use %SimIntervals to get simultaneous confidence intervals. We

use the following model:

yij = µ + αi + βxij + εij,

where

yij = observation of the replication j on the level i of the factor (fungicide) and of the

regression coefficient βxij (hours),

µ = mean of the population,

αi = effect of level i of the factor (fungicide),

βxij= regression coefficient (hours),

εij = error term.
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Data

A part of the data set is provided in the following tabular:

fungicide replication hours penetration
38-1 1 18.91 16.60
38-1 2 19.01 11.94
38-1 3 19.10 7.79
38-1 4 19.18 10.05

...
...

...
...

66-6 7 27.63 3.49
66-6 8 27.73 1.14
66-6 9 27.84 3.32

Invocation

%MakeGLMStats(dataset = appleleaf ,
classvar = fungicide ,
yvar = penetration ,
model = fungicide hours,
contrasts = all (fungicide));

%SimIntervals(seed=100177);

Output

In total we have 300 comparisons. So we abandon the whole output. This is a part of it:

Estimated 95% Quantile = 3.601726

Standard --- Pr > |t| -- 95% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

1-2 2.0235 3.1525 0.64 0.5217 1.0000 -9.3311 13.3781
1-3 2.6892 4.5534 0.59 0.5555 1.0000 -13.7108 19.0892
1-4 9.7953 6.6033 1.48 0.1396 0.9974 -13.9880 33.5786
1-5 0.4186 7.2461 0.06 0.9540 1.0000 -25.6800 26.5173
: : : : : : : :
23-24 -1.3567 3.1150 -0.44 0.6637 1.0000 -12.5760 9.8627
23-25 0.4057 3.4646 0.12 0.9069 1.0000 -12.0730 12.8843
24-25 1.7623 3.1767 0.55 0.5797 1.0000 -9.6792 13.2038
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To shorten the output only the significant comparisons are summarized in the following

tabular:

95% confidence 95% confidence 95% confidence
contrast

interval
contrast

interval
contrast

interval
38-1 − 64-1 0.8694 23.0270 38-6 − 66-4 5.3767 31.1301 39-4 − 39-5 2.6900 26.3151
38-1 − 64-2 4.0565 26.2687 38-6 − 66-5 5.2300 28.5635 39-4 − 39-6 1.6554 26.7618
38-1 − 64-5 2.1408 30.9946 38-6 − 66-6 7.6203 29.6979 39-4 − 64-1 2.9136 37.8492
38-1 − 66-1 2.2156 30.0016 39-4 − 64-2 8.0831 39.1086
38-1 − 66-2 0.5313 33.1158 39-1 − 64-1 1.7128 27.1373 39-4 − 64-5 13.5763 36.4256
38-1 − 66-4 0.7532 44.6443 39-1 − 64-2 5.8749 29.4041 39-4 − 64-7 13.2022 39.4043

39-1 − 64-5 6.7192 31.3700 39-4 − 66-1 13.2396 35.8440
38-2 − 64-2 2.0456 24.2326 39-1 − 64-7 4.1658 36.5280 39-4 − 66-2 14.5218 35.9918
38-2 − 64-5 1.7271 27.3614 39-1 − 66-1 6.6982 30.4728 39-4 − 66-3 11.8403 34.3238
38-2 − 66-1 1.7596 26.4106 39-1 − 66-2 5.7847 32.8161 39-4 − 66-4 18.4332 43.8307
38-2 − 66-2 0.4699 29.1302 39-1 − 66-3 1.3864 32.8650 39-4 − 66-5 14.8678 44.6828
38-2 − 66-4 1.0925 40.2580 39-1 − 66-4 6.8284 43.5229 39-4 − 66-6 14.3869 48.6884

39-1 − 66-5 2.6356 45.0024
38-3 − 39-3 -23.4151 -0.3051 39-1 − 66-6 1.7223 49.4403 39-5 − 66-4 5.0020 28.2568
38-3 − 64-5 2.2505 25.5066 39-5 − 66-5 2.0490 28.4966
38-3 − 64-7 1.7310 28.6307 39-2 − 64-2 3.9031 28.7204 39-5 − 66-6 1.9840 32.0862
38-3 − 66-1 1.9343 24.9046 39-2 − 64-5 6.4916 28.9421
38-3 − 66-2 3.0444 25.2244 39-2 − 64-7 4.4303 33.6080 39-6 − 64-4 5.7499 28.0968
38-3 − 66-3 0.2248 23.6945 39-2 − 66-1 6.3939 28.1216 39-6 − 64-5 3.2841 27.8493
38-3 − 66-4 6.7364 33.2828 39-2 − 66-2 6.0851 29.8603 39-6 − 64-6 3.5612 31.0968
38-3 − 66-5 3.1432 34.1627 39-2 − 66-3 2.0765 29.5194
38-3 − 66-6 2.6475 38.1830 39-2 − 66-4 7.7529 39.9429 64-2 − 64-3 -22.8928 -0.2450

39-2 − 66-5 3.6761 41.3064 64-2 − 64-4 -25.0837 -0.6734
38-4 − 39-3 -34.8161 -3.1162 39-2 − 66-6 2.8476 45.6596 64-2 − 64-6 -33.6992 -2.9443
38-4 − 39-4 -32.2779 -4.1790
38-4 − 66-4 1.9953 23.8117 39-3 − 39-5 2.4275 28.0529 64-3 − 64-5 0.7719 25.1762
38-4 − 66-5 0.4542 22.6395 39-3 − 39-6 1.0391 28.8535 64-3 − 66-1 0.7747 24.2551
38-4 − 66-6 1.4403 25.1780 39-3 − 64-1 5.6358 36.6024 64-3 − 64-4 0.5982 37.6119

39-3 − 64-2 10.5732 38.0938
38-5 − 64-7 1.0537 33.8491 39-3 − 64-3 0.4021 25.1271 64-4 − 64-5 2.9614 25.6060
38-5 − 66-2 0.7426 32.0672 39-3 − 64-4 0.0431 22.8667 64-4 − 64-7 0.7864 30.3856
38-5 − 66-3 0.8629 27.5974 39-3 − 64-5 14.7193 36.7580 64-4 − 66-1 2.8813 24.7679
38-5 − 66-4 10.6327 33.9275 39-3 − 64-7 13.4018 40.6800 64-4 − 66-2 2.4488 26.6302
38-5 − 66-5 9.8385 32.0084 39-3 − 66-1 14.5150 36.0486 64-4 − 66-4 3.9768 36.8526
38-5 − 66-6 11.5193 33.8523 39-3 − 66-2 14.9554 37.0335

39-3 − 66-3 11.5152 36.1242 64-5 − 64-6 -31.3481 -8.1056
39-3 − 66-4 17.5616 46.1777
39-3 − 66-5 13.6859 47.3401 64-6 − 64-7 7.5749 34.4834
39-3 − 66-6 12.9970 51.5537 64-6 − 66-1 7.7908 30.7447

64-6 − 66-2 8.8915 31.0739
64-6 − 66-3 6.0627 29.5532
64-6 − 66-4 12.5674 39.1483
64-6 − 66-5 8.9701 40.0323
64-6 − 66-6 8.4716 44.0555
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From the 300 comparisons 104 show significant differences. By using the simultaneous

confidence intervals we get more information about the fungicides than by using the p-

value. For example a cuticle assimilates more of 38-1 than of 64-1. The uptake is at least

0.87% and at most 23.03% higher.
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5.3 Effectiveness of fertilizers and substrates on spinach

In this greenhouse experiment the effect of five fertilizers and two substrates on the dry

weight [g] of spinach is studied. Each spinach plant was planted into a flowerpot with one of

the substrates, later one of the fertilizers was applied. The pots were placed one behind the

other on a rotating conveyor belt. To eliminate a possible nuisance factor blocks containing

five pots were created and in each block each level of the factor fertilizer appeared once.

To simplify the lay out of the experiment the experimenter used a split plot design. The

main factor contains the substrates and therefore the fertilizers are the sub factor. We are

interested in the differences between the fertilizers and the substrates and how large these

differences are. Thus we use the %SimIntervals macro. However we are not able to predict

how large the effects of each of the fertilizers and substrates are, so we use two-sided tests.

The model of our design is:

yijh = µ + αi + βj + bh + (αβ)ij + φih + εijh,

where

yijh = observation of level i of the main factor (substrate), of level j of the sub

= factor (fertilizer) and level h of the block,

µ = mean of the population,

αi = effect of level i of the main factor,

βj = effect of level j of the sub factor,

bh = effect of level h of the block,

(αβ)ij = interaction between level i of the main factor and level j of the sub factor,

φih = error term of the main factor, which is alternatively (αb)ih,

εijh = error term of the sub factor.
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Data

The data set is provided in the following table:

fertilizer
substrate block

1 2 3 4 5
1 10.6 10.5 10.2 10.6 10.2
2 10.4 10.4 10.3 11.1 10.6
3 10.7 10.8 11.0 10.8 10.9a
4 10.5 10.7 10.6 11.1 10.8
5 10.3 10.7 11.0 9.4 10.7
6 10.3 10.4 10.8 10.6 11.4
1 10.6 10.0 9.1 10.3 9.9
2 10.1 9.3 10.3 9.6 10.4
3 8.7 9.3 9.1 10.4 10.3b
4 9.7 10.1 11.1 10.3 9.8
5 11.5 9.6 9.8 10.0 10.0
6 8.2 11.8 10.0 6.2 10.0

Main factor

As shown in 4.7 the analysis of the split plot design via the %Sim* macros is divided into

two parts, for both factors the macros have to be invoked separately. Two control the FWE

over both invocations we use an α = 2.5% for the analysis of each factor. We begin with

main factor. For the invocation of the %SimIntervals macro we have to use the macros

%Contrasts and %Estimates.

Invocation

%Estimates requires several values for the mean square error, the lsmeans, the degree of

freedom and the covariance matrix. The lsmeans can directly be taken e.g. from the PROC

MIXED output. To get the mean square error we use the standard error from the PROC

MIXED output and compute the needed value:

σ2
main =

stderr2
diff(main) · nblock · nsub

2

This becomes:

s2
main =

0.22462 · 30

2
= 0.7567
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The degree of freedom is df = (a − 1)(r − 1) = 5 and the covariance matrix is Cov =

Mse ∗ I(2)/30 with two levels of the main factor (substrate) and 30 observations per level.

Note that we do not use %MakeGLMStats, thus the contrasts in the %Contrasts macro do

not have 0 as the first value for the intercept parameter.

%macro Contrasts;
C = {1 -1};

C = C‘ ;

Clab = {"1-2"};
%mend;

%macro Estimates;

EstPar = {10.6467, 9.85};
Mse = 0.7566774;
Cov = Mse * I(2)/30;
df = 5;

%mend;
%SimIntervals(seed=100177, conf=0.975);

Output

Estimated 97.5% Quantile = 3.092336

Standard --- Pr > |t| -- 97.5% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

1-2 0.7967 0.2246 3.55 0.0164 0.0148 0.1022 1.4912

The adjusted p-value is smaller than 2.5%, thus the difference between the two substrates

is significant. If spinach is planted in substrate 1 it brings at least 0.102[g] and at most

1.491[g] more yield than if it is planted in substrate 2.

Sub factor

Now the difference between the five fertilizers are analyzed. Again we use α = 2.5% to

control the FWE.
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Invocation

For the %Estimates macro the lsmeans and the mean square error can be directly taken

from e.g. the PROC MIXED output. The degree of freedom is calculated by df = a(b −

1)(r − 1) = 40 and the covariance matrix is Cov = Mse ∗ I(5)/12 with five levels of the

factor fertilizer and twelve observations per level.

%macro Contrasts;
C = { 1 -1 0 0 0,

1 0 -1 0 0,
1 0 0 -1 0,
1 0 0 0 -1,
0 1 -1 0 0,
0 1 0 -1 0,
0 1 0 0 -1,
0 0 1 -1 0,
0 0 1 0 -1,
0 0 0 1 -1};

C = C‘ ;

Clab = {"1-2", "1-3", "1-4", "1-5",
"2-3", "2-4", "2-5",
"3-4", "3-5",
"4-5"};

%mend;

%macro Estimates;
EstPar = {10.2167, 10.3, 10.275, 10.0333, 10.4167};
Mse = 0.6915;
Cov = Mse * I(5)/12 ;
df = 40;

%mend;
%SimIntervals(seed=100177, conf=0.975);
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Output

Estimated 97.5% Quantile = 3.133614

Standard --- Pr > |t| -- 97.5% Confidence
Contrast Estimate Error t Value Raw Adjusted Interval

1-2 -0.0833 0.3395 -0.25 0.8074 0.9992 -1.1471 0.9805
1-3 -0.0583 0.3395 -0.17 0.8645 0.9999 -1.1221 1.0055
1-4 0.1834 0.3395 0.54 0.5920 0.9807 -0.8804 1.2472
1-5 -0.2000 0.3395 -0.59 0.5591 0.9745 -1.2638 0.8638
2-3 0.0250 0.3395 0.07 0.9417 1.0000 -1.0388 1.0888
2-4 0.2667 0.3395 0.79 0.4367 0.9320 -0.7971 1.3305
2-5 -0.1167 0.3395 -0.34 0.7328 0.9974 -1.1805 0.9471
3-4 0.2417 0.3395 0.71 0.4806 0.9516 -0.8221 1.3055
3-5 -0.1417 0.3395 -0.42 0.6786 0.9930 -1.2055 0.9221
4-5 -0.3834 0.3395 -1.13 0.2655 0.7896 -1.4472 0.6804

None of the comparisons show significant differences because all p-values are larger than

2.5% and all simultaneous confidence intervals contain 0.
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5.4 Effects of water and rotation of crops on lettuce

This experiment shows the effect of the application of water and a rotation of crops on

the fresh weight [g] of lettuce. The study took place in a greenhouse and the lettuce was

planted into flowerpots. The first factor, the water application, has two levels: normal and

reduced doses. A rotation of crops is the second factor. It has the levels 1, 2 and 3, so that

1 means the lettuce was planted into unused substrate, position 2 is already used substrate

(once) and when the substrate was used twice it is position 3. For each combination of

the factors twelve plants were used. We are interested in possible interactions between the

levels of the two factors.

Data

This is the data set:

water position
application 1 2 3

1 168.9 154.6 63.1
180.5 150.9 75.9
177.3 158.5 77.2
129.5 174.8 83.7
183.4 149.4 98.3
187.7 90.2
177.7 167.5 97.2
177.9 166.2 87.2
182.1 178.9 78.5
177.0 167.3 87.7
169.0 158.2 79.1
181.7 140.4 87.9

2 98.8 101.4 94.4
91.4 109.3 89.9
90.0 103.0 86.4
94.6 90.8 85.8
97.7 93.7
91.7 105.0 91.7

105.3 105.6 83.9
102.2 79.7
103.0 105.2 90.7
96.6 104.8 72.6
98.9 106.5 72.9
76.3 . 89.2
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Invocation

%MakeGLMStats(dataset = tetrade ,
classvar = water position,
yvar = freshweight ,
model = water*position);

%macro Contrasts;
C = {0 1 -1 0 -1 1 0,

0 1 0 -1 -1 0 1,
0 0 1 -1 0 -1 1};

C = C‘ ;

Clab = {"(11-12)-(21-22)",
"(11-13)-(21-23)",
"(12-13)-(22-23)"};

%mend;

%SimTests(seed=100177, type=LOGICAL);

Output

Logically Constrained (Restricted Combinations) Step-Down Tests

Standard ----- Pr > |t| -----
Contrast Estimate Error Raw Bon Adj SE(AdjP)

(11-12)-(21-22) 22.5020 6.1739 0.0005 0.0005 0.0005 0
(11-13)-(21-23) 81.6750 5.8705 <.0001 <.0001 <.0001 0
(12-13)-(22-23) 59.1730 6.1739 <.0001 <.0001 <.0001 0

As we can see from the output all three tetrades show a significant interaction. For example

the second one, (11-12)-(21-22), means that the fresh weight of the lettuce for the first

position of the rotation of crops with normal water application is 81.68[g] higher than with

reduced water application.
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6 Summary

The macros %SimTests and %SimIntervals are powerful and very practical tools to analyze

agricultural designs. They can be used with comparatively little effort and are a valuable

addition to the analysis of many designs. All advantages of both macros, e.g. the simulta-

neous confidence intervals of %SimIntervals or the simultaneous control over all contrast

test over all factors, fill some of the gaps in the current statistical analysis software.

The aim of this thesis is to show the applications of the two macros for agricultural designs.

However here only a small part of the possibilities of the %Sim* macros is shown. They can

also be used for repeated measurements, multiple endpoints and much more, see Westfall

et al. (1999) for details. Further the use of the macros is improved when the invocation

is combined with the output delivery system of SAS. With Bretz’s (1999) calculations the

exact critical values of the multivariate t distribution have become available now. Soon two

altered versions of the %Sim* macros will be completed by Bretz where the exact critical

values instead of the simulated values are used.

Furthermore in this thesis only pairwise tests are treated. Westfall et al. (1999) show the

invocation for combinations of means. Thus e.g. test on trend, as dose-response tests, are

available.

Possible future improvements of the macros could be e.g. tests on equivalence and/or ratio

tests.



88 7 LISTINGS

7 Listings

In this section the original source code of the macros %SimIntervals, %SimTests and

%MakeGLMStats from Westfall et al. (1999) is provided. All three macros are given

on the disk.

7.1 The %SimIntervals Macro

/*--------------------------------------------------------------*/
/* Name: SimIntervals */
/* Title: Simultaneous Confidence Intervals for General */
/* Linear Functions */
/* Author: Randy Tobias, sasrdt@sas.com, */
/* Reference: Edwards and Berry (1987). The efficiency of */
/* simulation-based multiple comparisons. */
/* Biometrics 43, 913-928. */
/* Release: Version 7.01 */
/*--------------------------------------------------------------*/
/* Inputs: */
/* */
/* NSAMP = simulation size, with 20000 as default */
/* */
/* SEED = random number seed, with 0 (clock time) */
/* as default */
/* */
/* CONF = desired confidence level, with 0.95 as default */
/* */
/* SIDE = U, L or B, for upper-tailed, lower-tailed */
/* or two-tailed, respectively. SIDE=B is default. */
/* */
/* Additionally, %SimIntervals requires two further macros to */
/* be defined that use SAS/IML to construct the estimates and */
/* the contrasts of interest. In particular, make sure the */
/* following two macros are defined before invoking */
/* %SimIntervals: */
/* */
/* %Estimate: Uses SAS/IML code to define */
/* EstPar - (column) vector of estimated parameters */
/* Cov - covariance matrix for the for the estimates */
/* df - error degrees of freedom; set to 0 for */
/* asymptotic analysis */
/* */
/* %Contrasts: Uses SAS/IML code to define */
/* C - matrix whose columns define the contrasts of */
/* interest between the parameters */
/* CLab - (column) character vector whose elements */
/* label the respective contrasts in C */
/* */
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/* You can either define these macros directly, or use the */
/* %MakeGLMStats macro to define them. */
/* */
/*--------------------------------------------------------------*/
/* Output: */
/* The output is a dataset with one observation for each */
/* contrast and the following variables: */
/* */
/* Contrast - contrast label */
/* Estimate - contrast estimated value */
/* StdErr - standard error of estimate */
/* tValue - normalized estimate, Estimate/StdErr */
/* RawP - non-multiplicity-adjusted p-value */
/* OneP - one-step multiplicity-adjusted p-value */
/* LowerCL - multiplicity-adjusted lower confidence limit */
/* UpperCL - multiplicity-adjusted upper confidence limit */
/* */
/* This dataset is also displayed as a formatted table, using */
/* the ODS system. */
/*--------------------------------------------------------------*/

%macro SimIntervals(nsamp = 20000,
seed = 0,
conf = 0.95,
side = B,
options = );

%global ANORM quant;

options nonotes;

proc iml;
%Estimates;
if (df <= 0) then call symput(’ANORM’,’1’);
else call symput(’ANORM’,’0’);
%Contrasts;

Cov = C‘*Cov*C;
D = diag(1/sqrt(vecdiag(Cov)));
R = D*Cov*D;

evec = eigvec(R);
eval = eigval(R) <> 0;
U = (diag(sqrt(eval))*evec‘)‘;
dimU = sum(eval > 1e-8);

U = U[,1:dimU];

ests = C‘*EstPar;
ses = sqrt(vecdiag(Cov));
tvals = ests/ses;
%if (&side = B) %then %do;
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if df>0 then rawp = 2*(1-probt(abs(tvals),df));
else rawp = 2*(1-probnorm(abs(tvals)));

%end;
%else %if (&side = L) %then %do;

if df>0 then rawp = probt( tvals ,df) ;
else rawp = probnorm( tvals);
%end;

%else %do;
if df>0 then rawp = 1-probt( tvals ,df) ;
else rawp = 1-probnorm(tvals);
%end;

adjp = j(ncol(C),1,0);
maxt=j(&nsamp,1,0);
do isim = 1 to &nsamp;

Z = U*rannor(j(dimU,1,&seed));
if df>0 then do;

V = cinv(ranuni(&seed),df);
tvalstar = Z / sqrt(V/df);
end;

else do; tvalstar = Z; end;
%if (&side = B) %then %do; mx = max(abs(tvalstar)); %end;
%else %do; mx = max( tvalstar ); %end;
maxt[isim] = mx;

%if (&side = B) %then %do; adjp = adjp + (mx>abs(tvals)); %end;
%else %if (&side = L) %then %do; adjp = adjp + (mx> -tvals ); %end;
%else %do; adjp = adjp + (mx> tvals ); %end;
end;

adjp = adjp/&nsamp;

confindx = round(&nsamp*&conf,1);
sorttemp = maxt;
maxt[rank(maxt),] = sorttemp;
c_alpha = maxt[confindx];

start tlc(n,d); return(trim(left(char(n,d)))); finish;

%if (&side = B) %then %do;
LowerCL = ests - c_alpha*ses;
UpperCL = ests + c_alpha*ses;
%end;

%else %if (&side = L) %then %do;
LowerCL = j(ncol(C),1,.M);
UpperCL = ests + c_alpha*ses;
%end;

%else %do;
LowerCL = ests - c_alpha*ses;
UpperCL = j(ncol(C),1,.I);
%end;
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create SimIntOut
var {"Estimate" "StdErr" "tValue" "RawP"

"OneP" "LowerCL" "UpperCL"};
data = ests || ses || tvals || rawp || adjp || LowerCL || UpperCL;
append from data;
call symput(’confpct’,tlc(100*&conf,4));
call symput(’quant’ ,tlc(c_alpha ,8));

create labels from clab; append from clab;

data SimIntOut; merge labels(rename=(COL1=Contrast)) SimIntOut; run;

%if (^%index(%upcase(&options),NOPRINT)) %then %do;

proc template;
delete MCBook.SimIntervals;
define table MCBook.SimIntervals;

column Contrast Estimate StdErr tValue RawP OneP LowerCL UpperCL;

define header h1;
text "Estimated &confpct% Quantile = &quant";
spill_margin;

%if (^&ANORM) %then %do;
space=1;

%end;
end;

%if (&ANORM) %then %do;
define header h2;

text "Asymptotic Normal Approximations";
space=1;
end;

%end;

define column Contrast;
header="Contrast";
end;

define column Estimate;
header="Estimate" format=D8. space=1;
translate _val_ = ._ into ’’;
end;

define column StdErr;
header="Standard Error" format=D8. space=1;
translate _val_ = ._ into ’’;
end;

define column tValue;
header="#t Value" format=7.2;
translate _val_ = .I into ’ Infty’,

_val_ = .M into ’ -Infty’,
_val_ = ._ into ’’;

end;
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%if (&side = B) %then %do;
define header ProbtHead;

text " Pr > |t| ";
start=RawP end=OneP just=c expand=’-’;
end;

%end;
%else %if (&side = L) %then %do;

define header ProbtHead;
text " Pr < t ";
start=RawP end=OneP just=c expand=’-’;
end;

%end;
%else %do;

define header ProbtHead;
text " Pr > t ";
start=RawP end=OneP just=c expand=’-’;
end;

%end;

define column RawP;
space=1 glue=10
parent=Common.PValue header="Raw";
translate _val_ = ._ into ’’;
end;

define column OneP;
parent=Common.PValue header="Adjusted";
translate _val_ = ._ into ’’;
end;

define header CLHead;
text "&confpct% Confidence Interval";
start=LowerCL end=UpperCL just=c;
end;

define LowerCL;
translate _val_ = .M into ’ -Infty’;
space=1 glue=10 format=D8. print_headers=off;
end;

define UpperCL;
format=D8. print_headers=off;
translate _val_ = .I into ’ Infty’;
end;

end;
run;

data _null_; set SimIntOut;
file print ods=(template=’MCBook.SimIntervals’);
put _ods_;
run;
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%end;

options notes;

%mend;
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7.2 The %SimTests Macro

/*--------------------------------------------------------------*/
/* Name: SimTests */
/* Title: Simultaneous Hypothesis Tests for General Linear */
/* Functions, using Correlations and Constraints */
/* Author: Peter Westfall, westfall@ttu.edu */
/* Reference: Westfall, P.H. (1997). Multiple testing of */
/* general contrasts using logical constraints and */
/* correlations. JASA 92, 299-306 */
/* Release: Version 7.01 */
/*--------------------------------------------------------------*/
/* Inputs: */
/* */
/* NSAMP = simulation size, with 20000 as default */
/* */
/* SEED = random number seed, with 0 (clock time) */
/* as default */
/* */
/* SIDE = U, L or B, for upper-tailed, lower-tailed */
/* or two-tailed, respectively. SIDE=B is default. */
/* */
/* TYPE = LOGICAL or FREE, for logically constrained or */
/* unconstrained tests, respectively. TYPE=FREE */
/* is the default. */
/* */
/* Additionally, %SimTests requires two further macros to be */
/* defined that use SAS/IML to construct the estimates and */
/* the contrasts of interest. In particular, make sure the */
/* following two macros are defined before invoking */
/* %SimTests: */
/* */
/* %Estimate: Uses SAS/IML code to define */
/* EstPar - (column) vector of estimated parameters */
/* Cov - covariance matrix for the for the estimates */
/* df - error degrees of freedom; set to 0 for */
/* asymptotic analysis */
/* */
/* %Contrasts: Uses SAS/IML code to define */
/* C - matrix whose columns define the contrasts of */
/* interest between the parameters */
/* CLab - (column) character vector whose elements */
/* label the respective contrasts in C */
/* */
/* You can either define these macros directly, or use the */
/* %MakeGLMStats macro to define them. */
/* */
/*--------------------------------------------------------------*/
/* Output: */
/* The primary output is a dataset with one observation for */
/* each contrast and the following variables: */
/* */
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/* Contrast - contrast label */
/* Estimate - contrast estimated value */
/* StdErr - standard error of estimate */
/* tValue - normalized estimate, Estimate/StdErr */
/* RawP - non-multiplicity-adjusted p-value */
/* BonP - Bonferroni multiplicity-adjusted p-value */
/* BonMult - corresponding Bonferroni multiplier */
/* AdjP - stepwise multiplicity-adjusted p-value */
/* SEAdjP - standard error for AdjP */
/* */
/* This dataset is also displayed as a formatted table, using */
/* the ODS system. */
/* */
/* This macro also produces a data set called SUBSETS that has */
/* has a variable STEPJ indicating the particular (ordered) */
/* hypothesis being considered; as well as variables */
/* (TEST1--TESTk) identifying the particular subset hypotheses */
/* that contain the hypothesis indicated by the STEPJ variable,*/
/* that do not contradict falsehood of the previous hypotheses.*/
/* The order of the TEST1--TESTk variables is from most to */
/* least significant. */
/*--------------------------------------------------------------*/

%macro SimTests(nsamp = 20000 ,
seed = 0 ,
side = B ,
type = FREE ,
options = );

%global ANORM;

options nonotes;

proc iml;
%Estimates;
if (df <= 0) then call symput(’ANORM’,’1’);
else call symput(’ANORM’,’0’);
%Contrasts;
C = C‘;
side="&side";
type="&type";
if side = "U" then C=-C;

EstCont = C*EstPar;
CovCont = C*Cov*C‘;
SECont = sqrt(vecdiag(CovCont));
tvals = EstCont/SECont;
if side = "B" then do;

tvals = -abs(tvals);
if df=0 then pvals = 2*probnorm(tvals);

else pvals = 2*probt(tvals,df);
end;
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else do;
if df=0 then pvals=probnorm(tvals);

else pvals = probt(tvals,df);
end;

k = nrow(c);
nests = nrow(EstPar);
call symput(’k’,char(k));
call symput(’g’,char(nests));
r = rank(Pvals‘);
ir = r;
ir[,r] = 1:nrow(PVals);
origord = ir‘ ;
cord = c [ir,];
clabord = clab [ir,];
tvalsord = tvals [ir,];
pvalsord = pvals [ir,];
ccord = CovCont[ir,ir];
crrccord = inv(sqrt(diag(ccord)))*ccord*inv(sqrt(diag(ccord)));
ct = t(cord);

start ztrail;
ii=1;
zz=kk;
do while(mod(zz,2)=0);

ii=ii+1;
zz=zz/2;
end;

finish;

if type = "LOGICAL" then do;
do iout = 1 to k-2;

limit = 2**(k-iout-1);
in=J(k-iout-1,1,0);
zero =J(k,1,0);
in1 =zero;
y = ct[,1:iout];

do kk=1 to limit;
if kk=limit then in=j(k-iout-1,1,0);
else do;

run ztrail;
in[ii,]=^in[ii,];
end;

locbin = j(iout, 1, 0) // {1} // in;
loc1 = loc(locbin);
x = ct[,loc1];

res = y - x*ginv(x‘*x)*x‘*y;
ssemat = vecdiag(res‘*res);
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if ssemat > .00000001 then do;
if in1=0 then in1 = locbin;
else do;

check = in1 - repeat(locbin, 1, ncol(in1));
diff = check[<>,] - check[><,];
if min(diff) = 2 then in1 = in1||locbin;
else do;

mindx = diff[,>:<];
if check[+,mindx]=-1 then in1[,mindx] = locbin;
end;

end;
end;

end;
in1 = in1‘;
ncont = nrow(in1);
in1 = j(ncont,1,iout+1)||in1;
if iout = 1 then inbig = in1;
else inbig = inbig//in1;
end;

end;

big = j(1,k+1,1)//inbig;
lastset = j(1,1,k)||j(1,k-1,0)||{1};
big = big//lastset;
stepj = big[,1];
if type="FREE" then do;

stepj = 1:k;
stepj = stepj‘;

end;
SubsetK = big[,2:ncol(big)];
if type="FREE" then do;

m = j(1,k,1);
do i = 2 to k;

r = j(1,i-1,0)||j(1,k-i+1,1);
m= m//r;

end;
SubsetK = m;
end;

subsets = subsetk||stepj;
create subsets var (("t1":"t&k")||"StepJ");
append from subsets;
nbig = nrow(big);
if type="LOGICAL" then des = design(big[,1]);

else des=design(stepj);
if type="LOGICAL" then contonly = big[,2:k+1];

else contonly = subsetk;
tcmpr = des*tvalsord;
h = root(crrccord);
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if type="FREE" then nbig=k;
count = j(nbig,1,0);
countc = count;
countc2 = count;

contonly = ((contonly + des) > 0);

if type="LOGICAL" then totals = contonly[,+];
else do; totals=k:1; totals=totals‘; end;

if side = "B" then do;
if df = 0 then bon = 2*(probnorm(tcmpr))#totals;

else bon = 2*(probt(tcmpr,df))#totals;
end;

else do;
if df = 0 then bon = (probnorm(tcmpr))#totals;
else bon = (probt(tcmpr,df))#totals;
end;

if &nsamp>0 then do;
file log;
do isim = 1 to &nsamp;

if mod(isim,5000) = 0 then put isim;
z = h‘*rannor(j(k,1,&seed));
if df=0 then s=1; else do;

chi = 2*rangam(&seed,df/2);
s = sqrt(chi/df);
end;

t = z/s;
if side = "B" then t = -abs(t);
try = (contonly#(j(nbig,1,1)*t‘));
try1 = (10000*(try=0)) + try;
maxind = (try1[,><] <= tcmpr);

sumind = (try1 < ((tcmpr)*j(1,ncol(try),1)))[,+];
countc = countc + sumind;
countc2 = countc2 + sumind##2;
count = count + maxind;

end;

smpl = count/&nsamp;
cv = bon + smpl - countc/&nsamp;
avec = countc/&nsamp;
avec2 = countc2/&nsamp;
varx = smpl#(j(nrow(smpl),1,1)-smpl);
varz = avec2 - avec##2 + smpl - smpl##2 -2*avec#(j(nrow(smpl),1,1)-smpl);
covzx = (avec-smpl)#(j(nrow(smpl),1,1)-smpl);
a1 = varz+covzx;
a2 = varx+covzx;
atot = a1+a2;
atot = (atot=0) + atot;
a1 = a1/atot;
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a2 = a2/atot;
atot = a1+a2;
a2 = a2+(atot=0);
gls = a1#smpl + a2#cv;

stdgls = sqrt(abs((a1##2#varx + a2##2#varz -2*a1#a2#covzx)/&nsamp));
stdsmpl = sqrt(varx/&nsamp);
stdcv = sqrt(abs(varz/&nsamp));
glsbig = des#(gls*j(1,k,1));
glsp = glsbig[<>,];
glsin = glsbig[<:>,];

stdgls = stdgls[glsin,];
glsptry = glsp‘;
smplbig = des#(smpl*j(1,k,1));
smplp = smplbig[<>,];
smplin = smplbig[<:>,];
stdsmpl = stdsmpl[smplin,];
cvbig = des#(cv*j(1,k,1));
cvp = cvbig[<>,];
cvin = cvbig[<:>,];
stdcv = stdcv[cvin,];

do i = 2 to k;
if smplp[1,i] < smplp[1,i-1] then do;

smplp[1,i] = smplp[1,i-1];
stdsmpl[i,1] = stdsmpl[i-1,1];
end;

if cvp[1,i] < cvp[1,i-1] then do;
cvp[1,i] = cvp[1,i-1];
stdcv[i,1] = stdcv[i-1,1];
end;

if glsp[1,i] < glsp[1,i-1] then do;
glsp[1,i] = glsp[1,i-1];
stdgls[i,1] = stdgls[i-1,1];
end;

end;

adjpsmpl = smplp‘;
adjpcv = cvp‘;
adjpgls = glsp‘;
adjp=adjpgls;
SEAdjp = stdgls#(stdgls>.00000001);
end;

bonbig = des#(bon*j(1,k,1));
bonp = bonbig[<>,];
bonmult = bonp‘/pvalsord;

do i = 2 to k;
if bonp[1,i] < bonp[1,i-1] then bonp[1,i] = bonp[1,i-1];
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end;

rawp = pvalsord;
estimate = EstCont[ir,];
if side ="U" then estimate=-estimate;
stderr = SECont[ir,];
contrast = cord;
if side = "U" then contrast=-contrast;
adjpbon = bonp‘;
adjpbon = (adjpbon<1)#adjpbon +(adjpbon>=1);

if &nsamp>0 then do;
outres = origord

||contrast
||estimate
||stderr
||rawp
||bonmult
||adjpbon
||adjp
||SEAdjp;

create SimTestOut var ( "OrigOrd"
||("Est1":"Est&g")
||"Estimate"
||"StdErr"
||"RawP"
||"BonMult"
||"BonP"
||"AdjP"
||"SEAdjP");

append from outres;
end;

else do;
outres = origord

||contrast
||estimate
||stderr
||rawp
||bonmult
||adjpbon;

create SimTestOut var ( "OrigOrd"
||("Est1":"Est&g")
||"Estimate"
||"StdErr"
||"RawP"
||"BonMult"
||"BonP");

append from outres;
end;

create labels from clabord; append from clabord;
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data SimTestOut; merge SimTestOut labels;
rename col1=Contrast;

proc sort data=SimTestOut out=SimTestOut; by origord;
data SimTestOut; set SimTestOut; drop origord;

run;

%if (^%index(%upcase(&options),NOPRINT)) %then %do;

proc template;
delete MCBook.SimTests;
define table MCBook.SimTests;

column Contrast Estimate StdErr RawP BonP AdjP SEAdjP;

define header h1;
spill_margin;

%if (%upcase(&type) = LOGICAL) %then %do;
text "Logically Constrained (Restricted Combinations) Step-Down Tests";

%end;
%else %do;

text "Unconstrained (Free Combinations) Step-Down Tests";
%end;

%if (^&ANORM) %then %do;
space=1;

%end;
end;

%if (&ANORM) %then %do;
define header h2;

text "Asymptotic Normal Approximations";
space=1;
end;

%end;

define column Contrast;
header="Contrast";
end;

define column Estimate;
header="Estimate" format=D8. space=1;
translate _val_ = ._ into ’’;
end;

define column StdErr;
header="Standard Error" format=D8.;
translate _val_ = ._ into ’’;
end;

%if (&nsamp) %then %let LastPValCol = AdjP;
%else %let LastPValCol = BonP;

%if (&side = B) %then %do;
define header ProbtHead;

text " Pr > |t| ";
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start=Rawp end=&LastPValCol just=c expand=’-’;
end;

%end;
%else %if (&side = L) %then %do;

define header ProbtHead;
text " Pr < t ";
start=Rawp end=&LastPValCol just=c expand=’-’;
end;

%end;
%else %do;

define header ProbtHead;
text " Pr > t ";
start=Rawp end=&LastPValCol just=c expand=’-’;
end;

%end;

define column RawP;
space=1 glue=10
parent=Common.PValue header="Raw";
translate _val_ = ._ into ’’;
end;

define column BonP;
space=1 glue=10
parent=Common.PValue header="Bon";
translate _val_ = ._ into ’’;
end;

define column AdjP;
parent=Common.PValue header="Adj";
translate _val_ = ._ into ’’;
end;

define column SEAdjP;
header="SE(AdjP)" format=d8.;
translate _val_ = ._ into ’’;
end;

end;
run;

data _null_; set SimTestOut;
file print ods=(template=’MCBook.SimTests’);
put _ods_;
run;

%end;

options notes;

%mend;
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7.3 The %MakeGLMStats Macro

/*--------------------------------------------------------------*/
/* Name: MakeGLMStats */
/* Title: Macro to create %Estimates and %Contrasts macros */
/* needed for %SimIntervals and %SimTests */
/* Author: Randy Tobias, sasrdt@sas.com */
/* Release: Version 7.01 */
/*--------------------------------------------------------------*/
/* Inputs: */
/* */
/* DATASET = Data set to be analyzed (required) */
/* */
/* CLASSVAR = Listing of classification variables. If absent, */
/* no classification variables are assumed */
/* */
/* YVAR = response variable (required) */
/* */
/* MODEL = GLM model specification (required) */
/* */
/* CONTRASTS = CONTROL(effect), ALL(effect), or USER. This */
/* creates the %Contrasts macro unless you specify */
/* USER (the default), in which case you create */
/* the %Contrasts macro yourself */
/* */
/*--------------------------------------------------------------*/
/* Output: This macro creates the %Estimates macro needed for */
/* the %SimIntervals and %SimTests macros. Additionally, if */
/* you specify CONTRASTS = ALL or CONTROL, it also creates the */
/* %Contrasts macro. There is no other output. */
/*--------------------------------------------------------------*/

%macro MakeGLMStats(dataset= , classvar= , yvar= , model= , contrasts=USER);
%global nx yvar1 nlev icntl;

options nonotes;

%let yvar1 = &yvar;
proc glmmod data=&dataset noprint outparm=parm outdesign=design;

%if (%length(&classvar)) %then %do;
class &classvar;
%end;
model &yvar = &model;

data _null_; set parm; call symput(’nx’,_n_);
run;

%macro Estimates;
use design;
read all var ("col1":"col&nx") into X;
read all var ("&yvar1") into Y;
XpXi = ginv(X‘*X);
rankX = trace(XpXi*(X‘*X));
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n = nrow(X);
df = n-rankX;
EstPar = XpXi*X‘*Y;
mse = ssq(Y-X*EstPar)/df;
Cov = mse*XpXi;

%mend;

%let ctype = %upcase(%scan(&contrasts,1));
%if (&ctype ^= USER) %then %do;

%let effect = %scan(&contrasts,2);
%if (&ctype = CONTROL) %then %do;

%let icntl = %scan(&contrasts,3);
%end;

%end;

%if (&ctype ^= USER) %then %do;
ods listing close;
ods output LSMeanCoef=LSMeanCoef;
proc glm data=&dataset;

%if (%length(&classvar)) %then %do;
class &classvar;
%end;
model &yvar = &model;
lsmeans &effect / e;

quit;
ods listing;
proc transpose data=LSMeanCoef out=temp;

var Row:;
data _null_; set temp;

call symput(’nlev’,_n_);
run;
%end;

%if (&ctype = ALL) %then %do;
%macro Contrasts; %global nlev;

use LSMeanCoef; read all var ("Row1":"Row&nlev") into L;
free C clab;
do i = 1 to ncol(L)-1;

do j = i+1 to ncol(L);
C = C // L[,i]‘ - L[,j]‘;
clab = clab // ( trim(left(char(i,5)))

+’-’+trim(left(char(j,5))));
end;

end;
C = C‘;
%mend;

%end;
%if (&ctype = CONTROL) %then %do;

%macro Contrasts; %global icntl;
use LSMeanCoef; read all var ("Row1":"Row&nlev") into L;
free C clab;
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j = &icntl;
do i = 1 to ncol(L);

if (i ^= j) then do;
C = C // L[,i]‘ - L[,j]‘;
clab = clab // ( trim(left(char(i,5)))

+’-’+trim(left(char(j,5))));
end;

end;
C = C‘;
%mend;

%end;
options notes;

%mend;



106 REFERENCES

References

[1] Biesheuvel, E., Hothorn, L.(2001): Many-to-one comparisons in a stratified design

maintaining the overall α level. Biometrical Journal (in press).

[2] Bretz, F. (1999): Powerful Modifications of Williams’ Test on Trend. Dissertation,

University of Hannover.

[3] Dean, A., Voss, D. (1999): Design and Analysis of Experiments. Springer Verlag, New

York.

[4] Dunnett, C. W. (1955): A multiple comparison procedure for comparing several treat-

ments with a control. Journal of the American Statistical Association 50, 1096-1121.

[5] Gomez, K. A., Gomez, A. A. (1984): Statistical procedures for agricultural research.

Wiley, New York.

[6] Hochberg, Y., Tamhane, A. C. (1987): Multiple Comparison Procedure. John Wiley

& Sons, Inc., New York.

[7] Holm, S. (1979): A simple sequentially rejective test procedure. Scandinavian Journal

of Statistics 6, 65-70.
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