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List of abbreviations

α signi�cance level

βi model parameter

Bt Bacillus thuringiensis

δ equivalence threshold

c contrasts

χ2 quantile of the χ2 distribution

cl con�dence limit

CI con�dence interval

e.g. abbr. of Latin "`exempli gratia"'

ε residual error

GLM generalized linear model

GLMM generalized linear mixed model

H0 null-Hypothesis

HA alternative-Hypothesis

INS insecticide treated

int intercept

ISO isogene

IUT intersection union test

L likelihood function

l log-likelihood function

λi mean of a Poisson distributed sample

µ sample mean

ML maximum likelihood

MLE maximum likelihood estimate

MVN multivariate normal distribution

n sample size

ν link function

p proportion

φ dispersion factor

PQL penalized quasi-likelihood

ρ ratio of two samples

R correlation matrix

s standard deviation

t quantile of the t distribution

Trt treatment

ui random e�ects parameter

xi value in one sample

X model matrix

z quantile of the standard normal distribution

ZIP zero-in�ated Poisson model

ZNBM zero-in�ated negative binomial model
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1 Proof of safety for abundance data

For proving safety in a trial, where the influence of genetic modified maize on insect non-

target abundance is tested, the use of confidence intervals for estimates of a generalized

linear model is examined. To determine the effect of Bt-maize on data of various insect

counts not genetic modified maize is used as a control and the use of insecticides on genetic

unmodified maize is set as a standard. To compare multiple groups in consideration of

time covariates and blocking factors the use of a linear model is recommended. For an

easy interpretation confidence intervals should be computed for the ratio of the sample

means, to test for equivalence of the treatments. Inference should be made for the ratio of

counts to enable the comparability for example of the frequency of different insect species.

A bound for the ratio of counts, where two samples are not equal, can be defined for each

species as desired.

2 Poisson distribution

When measuring the abundance of insects with catches in traps, the observed values are

count data. Count data are non-negative integers with an infinite upper limit, which can

follow the Poisson distribution, which probability function is given by

pr(Y = y) =
e−µµy

y!
. (1)

In the Poisson distribution the variance and all other components depend on the mean.

The whole distribution is described by the mean, the only parameter to be modified.

3 Confidence intervals

When for example two sample means should be compared, under the assumptions of

normal distributed, independent, continuous and variance homogene data, a Wald t-test

can be performed. In the two sided case of this test the hypothesis H0 : µi = µj can be

rejected, if there is a difference between the two groups (HA : µi 6= µj). The test statistic

of a Wald t-test can be simply computed by

t =
x̄i − x̄j√

s2
(

1
ni

+ 1
nj

) (2)

where x̄i, with (i = 1, 2), are the two sample means, ni the sample sizes and s2 is the

common variance estimator of the two samples. This test statistic can be compared with

6



a critical value of the student t-distribution to an ascertained error probability α, or the

quantile of the t-distribution at this value can be used to obtain a p-value, which also can

be compared with α. As a result a decision can be made, if the two groups are differing

significantly, but it is rather difficult to use a p-value for measurements of the accuracy of

discrimination. The equation for the t-test can be adapted for computations of confidence

limits, like

µ1 − µ2 ∈

x̄i − x̄j ± t1−α
2

√√√√s2

(
1

ni

+
1

nj

) . (3)

Here t1−α/2 is the 1− α/2 quantile of the student-t-distribution. This confidence interval

has the advantage, that its limits are in the scale of the measurements of Xij. If the

intervals for the difference of two means not contain zero, H0 can be rejected, a significant

difference between the groups can be detected. In addition effect size can be observed,

with the lower limit (with x̄i− x̄j > 0) showing the minimal difference between the groups

and the upper limit showing the maximal difference between the groups at a probability

of 1− α. If two sided intervals are calculated, further a decision can be made about the

the direction of the effect.

4 Test for equivalence

In a typical test for detecting difference between two groups, e.g. a t-test, evidence of this

difference can not be proofed directly but it can be shown, that the probability, that the

samples are equal is very small. By rejecting the null hypothesis (both samples are equal),

the alternative hypothesis (one sample is different from the other) can be assumed.To test

for equivalence the hypotheses can be inverted but an equivalence threshold δ has to be

inserted, to define at which difference the two samples are expected to be different or

equal.

One sided Hypotheses:

Hypotheses Difference Equivalence

H0: µ1 = µ2 µ1 6= µ2

HA: µ1 − µ2 < 0 µ1 − µ2 < δ

Considering a two sided test for equivalence, the hypotheses are

HA: δ1 < (µ1 − µ2) < δ2

H0: (µ1 − µ2) < δ1 OR (µ1 − µ2) > δ2

7



This null hypothesis can also be written as

H lower
0 : (µ1 − µ2) > δ1 AND Hupper

0 : (µ1 − µ2) < δ2

Both hypotheses H lower
0 AND Hupper

0 have to be rejected to accept HA, what is called

an intersection union test (IUT). This enables us to perform two one sided tests where

both of them should show significance to reject H0 as a level α test.

If δ is known a priori, by transforming the normal test for the difference, a test for

equivalence can be performed. But in most cases this threshold is not known. One

solution of this problem is to test for equivalence with a confidence interval method. If

the confidence limits of a two sided interval are located between δ1 AND δ2, H0 can be

rejected. These intervals can be computed at a level of (1 − 2α), as the entire space

between two one sided interval limits have to be covered by the interval [−δ; δ] and both

level α interval limits have to be within this range.

(Wellek (2003), [26])

− δ δ0

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]1

2

3

4

5

6

Figure 1: Testing for equivalence with confidence intervals

In Figure 1 with confidence intervals 1 and 6 equivalence can be detected between

two samples, because their limits are located between the threshold limits. All the other

intervals show no significant equivalence between the groups.

5 Confidence Intervals for two Poisson parameters

Several different confidence intervals can be computed to compare two single Poisson

parameters. If these counts were measured in different environments or time intervals,
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the rates of the count per environment are of interest, as the observations are made

comparable.

5.1 Parameter

In the following xi, with (i = 1, 2), will be denoted as the response, e.g. one count or the

mean of one sample. Further ni, with (i = 1, 2), is a range, in which the response was

measured, for example a time interval or an area. z is the quantile of the standard normal

distribution with an error probability of α.

5.2 CIs for the difference of two Poisson parameters

Schwertman and Martinez 1994 [23] constructed eight confidence intervals for the differ-

ence of two Poisson parameters in relation to binomial confidence intervals.

5.2.1 Wald interval

Like two proportions also two counts observed over a specific range, e.g. a measurement

over a time interval or in a delimited area, can be compared. Simplest way of constructing

a confidence interval is Wald’s method.

For two binomials:

cll,u = p1 − p2 ± zα
2

√
p1(1− p1)

n1

+
p2(1− p2)

n2

(4)

with the proportion pi = Xi

ni
, Xi as the number of successes in all ni. Similar to this a

Poisson Wald interval for the difference can be derived.

cll,u =
x1 − x2 ± zα

2

√
x1 + x2

n
(5)

where xi are the counts in a population of size n.

5.2.2 Add4-method

Because the Wald interval is too liberal, it can be improved by adding four pseudo-

observations with two successes. The interval construction for proportions is similar to

the Wald interval construction, but with

padd4 =
Xi + 2

ni + 4
(6)

9



This continuity correction can be made also for Poisson intervals

cll,u =
(x1 − x2)± 0.5± zα

2

√
x1 + x2 ± 0.5

n
(7)

A different approach to construct a CI for Poisson parameters is based on a single

parameter interval, which is obtained by solving a quadratic equation in p. (Schwertman,

Martinez 1994)

cll,u =
(x1 − x2) +

z2
α
2

2
± zα

2

√
x1 + x2 +

z2
α
2

4

n
(8)

5.3 CIs for the ratio of two Poisson rates

Poisson parameters are often compared as a ratio of risks, the counts of one population

divided by a covariable, which defines the range over which was measured, divided by the

rate of counts of a second population.

5.3.1 Wald interval

For the ratio of rates also a simple Wald interval can be constructed.

cll,u = exp

[
log

( x1

n1

x2

n2

)
± zα

2

√
1

x1

+
1

x2

]
(9)

, where x1 and x2 are the positive counts, n1 and n2 are the sizes in which range of time

or environment xi were observed. (Graham (2003) [12], Liu (2006) [16])

5.3.2 Jeach’s interval

Another method is proposed by Jeach (1970) [13], in which the Poisson statistic is trans-

formed to a standard normal distribution. The lower and upper bounds k can be obtained

by:

√
cll,u =

√√√√√√√√√√√
( x1

n1

x2

n2

)

√

(x1 + 0.5)(x2 + 0.5)± 0.5zα
2

√√√√x1 + x2 + 1−
(

z2
α
2

4

)

x0 + 0.5−
(

z2
α
2

4

)
 (10)

(Graham (2003) [12])
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5.3.3 Score interval

A third interval proposed by Graham et al. (2003), which behavior is similar to Jeach’s

CI, is based on the score function. It’s limits are computed by

cll,u =
n2

n1

2x1x2 + z2
α
2
x.±

√
z2

α
2
x.
(
4x1x2 + z2

α
2
x.
)

2x2
2

 (11)

, with x. = x1 + x2.

(Graham (2003) [12])

5.3.4 Example

In the dataset from Eckert (p.49) abundance of four insect species was counted in the

years 2003 and 2004. Four plants were observed in overall 24 blocks over 14 dates in 2002

and 8 dates in 2003. Insect counts on isogene maize (control), Bt maize and isogene maize

plus insecticide were observed. To deal with the time covariate simply the counts were

summed over all dates for each block in each year. The data were split by the factor year

(Figure 2).
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Figure 2: Boxplots for the Eckert dataset for factors type (coloured) and year (left: 2002,

right: 2003)

Confidence limits can be computed for the ratio of the rate, which is defined by the

mean over all blocks divided by the time interval (Table 1), in which these counts were

measured. The time period, where insects were counted, in 2002 is 99 days and in 2003

it is 89 days.

If the count means are high (x̄ > 10), the intervals are relative narrow, but if not

much insects were counted, like for the bugs, especially in 2003, the intervals get non-

adequate wide (Table 2). In these situations the interval limit estimates for the three
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x̄

Insect Type 2002 2003

Thrips Bt 48.000 10.500

INS 46.000 4.375

ISO 52.750 10.125

Aphids Bt 2861.250 1346.250

INS 2893.125 2688.250

ISO 1673.750 2042.125

Bugs Bt 22.250 4.00

INS 4.500 3.50

ISO 14.750 2.75

Table 1: Sample means for each year (dataset Eckert)

confidence intervals differ. The score method, proposed by Graham et al. (2003) [12], has

the shortest interval span, the Wald interval range stands between the score and Jeach’s

interval.This reflects the simulation results by Graham et al. (2003) [12], where the score

method is found near nominal level and the Wald based interval is far more conservative.

But in these simulation study the interval by Jeach shows nearly the same behaviour as

the score interval.

6 Generalized linear model (GLM)

When we are dealing with multiple observations per group, a general linear model is the

method of choice. Multiple counts per group can be pooled by adding them up, so that

confidence intervals for one parameter can be used, but these are not as accurate as a

model, as they are not including any different computed standard errors than the sample

means.

The assumptions for a linear least square variance analysis are variance homogeneity,

independent, continuous and normal distributed data. To fit a linear model for Poisson

data without violating these assumptions, a log transformation can be done. Another

recommended method is the use of a generalized linear model. Components of these

models are a link function, an error distribution and a variance function.
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Wald CI Jeach CI Score CI

Year Insect Comparison Estimate lower upper lower upper lower upper

2002 Thrips Bt/Iso 0.910 0.615 1.345 0.614 1.346 0.617 1.342

Ins/Iso 0.872 0.587 1.295 0.586 1.295 0.589 1.292

Aphids Bt/Iso 1.709 1.609 1.816 1.610 1.816 1.609 1.816

Ins/Iso 1.729 1.628 1.836 1.628 1.836 1.628 1.836

Bugs Bt/Iso 1.508 0.781 2.913 0.785 2.961 0.790 2.880

Ins/Iso 0.305 0.106 0.877 0.096 0.832 0.111 0.839

2003 Thrips Bt/Iso 1.037 0.437 2.459 0.433 2.495 0.448 2.399

Ins/Iso 0.432 0.141 1.326 0.128 1.280 0.148 1.259

Aphids Bt/Iso 0.659 0.615 0.706 0.615 0.706 0.615 0.706

Ins/Iso 1.316 1.243 1.394 1.243 1.394 1.243 1.394

Bugs Bt/Iso 1.455 0.313 6.753 0.308 7.759 0.354 5.984

Ins/Iso 1.273 0.262 6.175 0.251 7.013 0.299 5.421

Table 2: Confidence intervals for the ratio of rates (example Eckert)

6.1 Linear predictor

In ordinary linear models for a random variable Y the vector µ gets specified in terms of

a number of unknown parameters β1, . . . , βp, with

E(Yi) = µi =
p∑
1

xijβj (12)

and in matrix notation:

µ = Xβ (13)

, where µi is the mean of a normal distribution with constant variance σ2 and X is the

model matrix. As an example for a one factorial design with three factor levels this model

formulation is represented as
y1

y2

y3

 =


1 0 0

1 1 0

1 0 1




int

β1

β2


This is the model like it is fit in R ([22]), where the intercept of this model is the estimate

for the mean of the first factor level (in one factorial designs) and the following β are

estimates for the difference between the first and the next factor levels. In other statistical
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packages, like SAS, the intercept of the model is denoted as the overall mean and a β

exists for every factor level, representing the difference from the overall mean.

In generalized linear models the symbol η is introduced for describing the linear structure.

η = Xβ (14)

(Dobson (1990), [8])

6.2 Link function

In classical linear models µ and η are identical. Dealing with count data a link function

can be used

η = log(µ). (15)

In this case the log-link turns the additive effects contributing to η into multiplicative

effects contributing to µ (McCullagh and Nelder (1989), [18]). For each different distri-

bution a different link function can be used (table 3,(Everitt and Hothorn (2006), [9])).

Distribution Canonical link

Normal ηi = µi

Poisson ηi = log(µi)

Binomial ηi = log
(

πi

1−πi

)
= log

(
µi

ni−µi

)
Gamma ηi = 1

µi

Inverse Gaussian ηi = 1
µ2

i

Table 3: Link functions for various distributions

This technique of applying a link function to the mean of the response and fitting a

model by maximum likelihood is the main idea of a GLM, instead of transforming the

response directly.

6.3 Variance function

The variance function V (µ) implies, how the variance of a response variable depends on

its mean.

a(φ) =
φ

w
(16)

, where φ is called the dispersion factor, which is constant over the observations, and w is

a known prior weight, which varies over the observations (Table 4, (Everitt and Hothorn

(2006), [9])) (McCullagh and Nelder (1989), [18]).
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Distribution Dispersion parameter φ Variance function V (µ)

Normal σ2 1

Poisson 1 µ

Binomial 1/m µ(1− µ)

Gamma ν−1 µ2

Inverse Gaussian σ2 µ3

Table 4: Variance functions for various distributions

6.4 Maximum-likelihood estimation

Generalized linear models have the likelihood function as basis. In likelihood inference,

the model that makes the observed data more probable, is said to be more likely (Lindsey

(1997), [15]). A vector of parameter values in a model function, that makes the observed

data most probable, is called the maximum likelihood estimate. For the assumptions

yi ∼ Poi(µi), where log(µi) = β1xi1 + . . . + βpxip, the likelihood function is

L∗(β) = L(µ) =
n∏

i=1

(
µyi

yi!
e−µi

)
(17)

By differentiating L(β) with respect to β and equating the derivate to zero, the values of

β that maximize L are found. Maximizing L is the same as maximizing log(L), which is

often easier to use. So the transformed log-likelihood function is

l(β) = log(L(µ)) = −log
(∏

yi!
)

+

(
n∑

i=1

yi

)
log(µ)− nµ. (18)

The maximization has to be carried out for a permissible range of values of β. For example

if β is a variance, the range of permissible values are only non-negative values. If they are

not appropriate, adjustments have to be made. (McCulloch, Searle 2001, [19])

7 Confidence intervals for GLM estimates

7.1 Likelihood-ratio test

The likelihood ratio test statistic is a standard hypothesis test. It compares the maximized

likelihood values of the full model with a restricted model, where some parameters are

treated as nuisance parameters.

LR =
L(µ̂0)

L(µ̂)
=

n∏
i=1

([
µ̂0

µ̂

]yi

e−(µ̂0i−µ̂i)

)
(19)

and under H0, −2log(LR) ∼ χ2
p is approximately true. (McCulloch, Searle 2001, [19])
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7.2 Profile-likelihood interval

Based on the asymptotic χ2 distribution of the likelihood ratio test a confidence inter-

val can be constructed. Let l(·) be the log likelihood function and θ̂ be the maximum

likelihood estimate of a parameter vector θ ∈ Θ ⊆ <p, then

l̃j(β̂) = max
θ∈Θj(β)

l(θ). (20)

This is the profile-likelihood function for a single parameter β, where Θj(β) = {θ ∈ Θ|θj =

β}. In the profile-likelihood approach lθ is a function for one single parameter β = θj of

interest, treating the others as nuisance parameters and maximizing over them. A (1−α)

profile likelihood based confidence interval for θj is given by

{β|2[l(θ̂)− l̃j(β)] ≤ χ2
1,1−α}. (21)

(Venzon and Moolgavkar, 1988, [24])

7.3 Profile-likelihood interval in R [22]

In R the function confint() in the library(MASS) computes confidence intervals for a

model parameter βp from a generalized linear model. A marginal 1−α interval for βp can

be written as

−t
(
N − P ;

α

2

)
≤ δ(βp) ≤ t

(
N − P ;

α

2

)
(22)

with
βp − β̂p

se(β̂p)
= δ(βp). (23)

For a nonlinear model the profile t function τ(θp) is

τ(θp) = sign(θp − θ̂p)

√
S̃(θp)− S(θ̂)

s
(24)

, where

S̃(βp) = minβ−pS((βp, β
T
−p)

T ) = S((βp, β̃
T
−p)

T ). (25)

The profile t-statistic is defined as the square root of change in sum of squares divided

by residual standard error with an appropriate sign (profile() function R).

Now τ(θp) can be plotted against δ(θp), where a likelihood interval is read off at the

values of τ corresponding to the quantile of the profile t-function with degrees of freedom

N−P and a probability α
2
. These points on the profile-likelihood curve are interpolated by

16



a spline function fitted for the values of the profile of an GLM fit. (Bates and Watts (1988),

[1])This confidence interval derivation can be illustrated by the graphical demonstration of

the profile t-function for one parameter in a model. Such a graphic can be easily presented

in R.

5 10 15 20 25
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4
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99
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8

0.
99

profile−spline
estimate
confidence limits

Figure 3: Plot of the profile-t-function

In Figure 3 the point estimate for the ratio is found at τ = 0 and the lower and

upper confidence limits are found at the corresponding θ for τ = ±t
(
N − P ; α

2

)
. The

resulting confidence limits can be compared with the ones of the function conf.int() from

library(MASS) (Table 5).

function lower cl upper cl

from graphic 2.639799 9.046682

confint() from library(MASS) 2.667978 8.926303

Table 5: Profile-likelihood intervals for a generated dataset

The differences in the results should be depending on different spline fits.

7.4 Wald interval

For large sample sizes Wald statistic can be found with

(θ̂1 − θ1)
′[var∞(θ̂1)]

−1(θ̂1 − θ1) ≤ χ2
ν,1−α (26)

with the corresponding confidence interval

cll,u = β̂ ± zα
2

√
var(β̂). (27)
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These intervals are easy to calculate and are provided for a wide range of methods. (Mc-

Cullagh and Nelder (1989), [18])

7.5 Computing Wald intervals for the ratio of factor level marginal

means derived from GLM estimates

In a one way design a linear model in R is fit with the marginal mean of the first factor level

as the intercept of the model. The next model estimates βi are the differences between the

further means of each factor level with the intercept. The marginal means for each factor

level are represented by a linear combination of the parameter estimates from the GLM.

The model matrix X, which does not include any replications, can be used to construct

linear combinations for computing the marginal means. In a design with two or more

levels this can be done similarly, as the only difference to a one way model is the higher

complexity of the model matrix. These linear combinations can be used to transform the

variance-covariance matrix to derive standard errors for the means and their correlation.

After computing the marginal means contrast tests can be used for comparing means of

factor level combinations, or for example the mean of two factor levels pooled over all

levels of a second factor. The integration of covariates for weighting the marginal means

can also be provided. (Yandell (1997), [28])

7.6 Example

The Eckert dataset (Table 21, see page 11) is used to compute Waldintervals and profile-

likelihood intervals for GLM estimates.

To simplify the model and by accounting interactions between the maize type and year

the dataset was split by the factor year into two separate sets. Now the only repetitions

are made over the blocks the variance of the blocks influence the residual error.

Model specification:

yij = typei + εij

, where y is the response, type are the three maize treatments (Iso, Bt, Ins) and ε denotes

the residual error.

The objective of the trial is to show equivalence of insect abundance for Bt- and

insecticide treated maize compared to isogene maize. To obtain estimates for the ratio of

the means of Iso and Bt and of Iso and Ins the factor level Iso is set as the intercept of

18



the model, whereby the model parameters β1 and β2 are the desired ratios. For verifying

equivalence between the groups (1− 2α) confidence intervals are computed for the model

parameters.

Wald CI Profile CI

Year Insect Comparison Estimate lower CI upper CI lower CI upper CI

2002 Thrips Bt/Iso 0.910 0.8103 1.0219 0.8102 1.0218

Ins/Iso 0.872 0.7755 0.9806 0.7754 0.9805

Aphids Bt/Iso 1.7095 1.6792 1.7404 1.6792 1.7404

Ins/Iso 1.7285 1.6979 1.7597 1.6980 1.7597

Bugs Bt/Iso 1.5085 1.2409 1.8337 1.2423 1.8364

Ins/Iso 0.3051 0.2231 0.4173 0.2210 0.4139

2003 Thrips Bt/Iso 1.0370 0.8027 1.3398 0.8026 1.3405

Ins/Iso 0.4321 0.3098 0.6027 0.3073 0.5987

Aphids Bt/Iso 0.6592 0.6459 0.6728 0.6459 0.6728

Ins/Iso 1.3164 1.2941 1.3391 1.2941 1.3391

Bugs Bt/Iso 1.4545 0.9223 2.2939 0.9264 2.3133

Ins/Iso 1.2727 0.9223 2.2939 0.7984 2.0470

Table 6: Confidence intervals for GLM estimates (example Eckert)

For most of the ratios no difference between the Wald interval and the profile-likelihood

interval could be observed (Table 6), this corresponds to an analysis in Giminez et al.

(2005) [11]. A major difference between the intervals occurs for the bugs data in the year

2003. In this time period only rare events were counted so that the sample means are

near the zero truncation. In this example the confidence bounds are lower for the profile

interval than for the wald interval. As not many bugs were counted, especially in 2003, the

spans of the intervals are the widest. Altogether the intervals are quite narrow, because

the variation in abundance over the year is not accounted.

If comparing these intervals from the generalized linear model with these for the ratio

of two Poisson parameters, the spans of the intervals derived from a model are noticeable

shorter than these ones, assuming a Poisson distributed response by only defining the

sample mean. At high abundance all intervals are mostly similar.
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8 Simulation study for comparing two means in an

one factorial design

8.1 Parameter selection

For examination of coverage probability for the profile likelihood interval and Wald interval

in a one-factorial GLM, following variation in parameterization was chosen:

n = 5, 10, 20, 50, 100

λ2 = 0.1, 1, 10

ρ = 0.1, 0.2, 0.5, 1, 2, 5, 10

where

λ1 = ρλ2

.

Two samples of random Poisson data with mean λi were generated 10000 times for

each parameter combination. A seed was set to ascertain comparability of the results.

8.2 Problems with extreme parameter settings

For small numbers of observation or small population means, the probability increases,

that in one sample no count was observed. For these situations no profile likelihood

interval can be computed, as for example while profiling the GLM model object, better

fits could be obtained. Limits for the Wald interval, in cases were one sample contains only

zeros, are ranging from zero to infinity. In the simulation study coverage for the profile

likelihood interval and the Wald interval was only computed for samples with at least

containing one count higher than zero. Additional Wald interval coverage was computed

for all samples. Not properly working cases were counted.

8.3 Results

At a low number of observations and a small λ near 100% of the samples are completely

filled with zeros the coverage of both intervals is near zero (Figure 4, Table 17). With

increasing N the coverage is also increasing, with the likelihood-ratio interval being slightly

less liberal than the Wald interval. At higher λ or ρ both intervals reach the 95% at a

lower observation number, because in these situations at least one sample is not highly

20



20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

co
ve

ra
ge

rho == 0.1  ;  lambda == 0.1

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

co
ve

ra
ge

rho == 10  ;  lambda == 0.1

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

co
ve

ra
ge

rho == 0.1  ;  lambda == 10

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ

co
ve

ra
ge

N == 10  ;  lambda == 0.1

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ

co
ve

ra
ge

N == 20  ;  lambda == 0.1

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ

co
ve

ra
ge

N == 10  ;  lambda == 1

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

co
ve

ra
ge

N == 5  ;  rho == 0.1

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

co
ve

ra
ge

N == 20  ;  rho == 0.1

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

co
ve

ra
ge

N == 100  ;  rho == 0.1

Profile likelihood CI
Wald CI
Wald CI (for every sample)
% sample = 0

Figure 4: Coverage probability of the two-sided Wald- and the profile-likelihood confidence

interval for the ratio of two sample means (1− α = 0.95)

zero inflated. The only observable influence of ρ on the coverage of the intervals is the

influence on the height of the sample means. When increasing the difference between the

observation means, coverage is located at 0.95 for both λ > 0.5. For λ near the zero

truncation both intervals will perform not well. But if the sample size is large enough,

the intervals will show also good results for small sample means (N = 100 for λ1,2 = 0.1).

Overall the both intervals perform both well for samples following a Poisson distribution

without zero inflation. For more extreme parameter settings the profile-likelihood interval

has a slightly better behavior.
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8.4 Bootstrap confidence interval

The Wald interval and the profile-likelihood interval were compared with a non-parametric

bootstrap confidence interval for only a few situations (ρ = 0.1, 0.2, 0.5), as it takes some

time to compute these. For each parameter setting the bootstrap interval was computed

10000 times with 100 repetitions for each bootstrap. Bootstrap intervals were computed

in R [22] with the package boot by Angelo Canty and imported to R by Brian Ripley,

where the function boot() generates the bootstrap replicates of a statistic (GLM) applied

to the data and with the function boot.ci() a percentile interval is calculated from the

bootstrap calculation using the full bootstrap distribution.

Giminez et al. (2005) [11] compared a bootstrap interval with a Wald and a profile-

likelihood confidence interval for an example dataset in a capture-recapture model. Their

suggestion was that the profile likelihood interval is a compromise between a wider Wald

interval and a more narrow bootstrap interval.
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Figure 5: Coverage probability of the Bootstrap-, Wald- and the profile-likelihood interval

for the ratio of two sample means

For small sample sizes and sample means, there are also problems to compute the

bootstrap intervals for zero inflated data. The situations where the model did not con-

verge, had been omitted. For very small sample sizes (N < 10, λ2 > 1) the bootstrap

interval gets most liberal (coverage< 0.9), the possibility to obtain adequate, exact con-

fidence limits out of the samples is delimited (Figure 5). For parameter settings with

large sample sizes and sample means (N > 100, λ > 1, ρ > 0.5) all three intervals have

coverage probabilities near 95 %. If we are looking at moderate situations between these

(N ≈ 50, ρ ≈ 0.5 and λ2 ≈ 1), the Wald interval is slightly conservative, the bootstrap

interval is in most cases more liberal and the profile-likelihood interval lies between them

at coverage 0.95 or near the bootstrap interval.
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9 Generalized linear mixed model (GLMM)

A basic linear model can be written as

E (Yi) = Xβ (28)

with X being the model matrix and β a vector for the fixed effects. This model can be

enlarged by a term of random effects:

E (Yi|u) = Xβ + Zu (29)

u ∼ MV N(0, D) (30)

, where Z is a model matrix, like X, for the random effects and u is the vector for the

random effects. For a model with one fixed factor and a random one with three levels this

can be written as
y1

y2

y3

 =


1 0 0

1 1 0

1 0 1




int

β1

β2

+


1 0 0

0 1 0

0 0 1




u1

u2

u3


. u follows a multivariate normal distribution with zero mean and variance-covariance

matrix D.

For a GLMM the linear predictor η can be written as

ηi = g(µi) = x′iβ + z′iu (31)

with g(·) is a known link function, in the Poisson case the log link, which links together

ηi and the conditional mean of yi and the linear form of predictors. x′i and z′i are the

ith rows of the model matrices of the fixed and random effects. Because the conditional

distribution of y given u is just a notational extension of the generalized linear model,

many of the relationships derived for the GLM will hold for a GLMM, too. (McCulloch

and Searle 2001, [19])

The link function for a Poisson GLMM is, like in a GLM, the logarithmic transforma-

tion, so

exp(ηi) = µi. (32)

The same is true for the variance function: For deriving the marginal variance of y fol-

lowing formula can be used:

var(yi) = var(E[yi|u]) + E[var(yi|u)]. (33)
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Assuming we have a log link and y, given u, following a Poisson distribution gives

var(yi) = var(µi) + E[µi]. (34)

This conditional variance for yi given u is Poisson but the marginal distribution is not

Poisson, as for assuming ui ∼ N(0, σ2) the variance is larger than the mean. This oc-

currence gives the opportunity to deal with overdispersion. (McCulloch and Searle 2001,

[19])

9.1 Estimation

The estimation can be done by maximum likelihood for simple situations like a single

random effect, two or three nested random effects or longitudinal data with random slopes.

With more complicated structures the estimation by maximum likelihood fails.

Alternative methods of estimation are available, which can compute and maximize the

likelihood in an effective way. In R for the function lmer() in the package lme4 the penal-

ized quasi-likelihood (PQL) method is used as standard for estimation. Quasi-likelihood

has the ability to generate highly efficient estimators without making distributional as-

sumptions, specifying only the mean to variance relationship. For the estimation of the

variance-covariance structure in a generalized mixed model a penalty function is added

to the quasi-likelihood. McCulloch and Searle (2001) [19] recommend only modified PQL

algorithms for generalized linear mixed models, as the unmodified method has not been

found to work well in practice, especially for binary data in small clusters.

9.2 Confidence intervals

For large samples Waldintervals can be constructed according to McCulloch and Searle

(2001, [19]), who proposed following Wald test:

β̂i − βi,0√
ˆvar∞

(
β̂i

) ∼ N(0, 1) (35)

Instead of the normal distribution the t-distribution, default setting for interval construc-

tion in R ([22]), is used to calculate the intervals, which should be the same for large

sample sizes.
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9.3 Example

The same dataset from Eckert is used to compare insect counts in isogene- versus Bt- and

insecticide treated maize. This time the simplified model gets extended by the year as a

fixed or random factor. Model syntax:

yijk = typei + yearj + (type : year)ij + εijk

In a generalized linear mixed model, with the factor year is treated as random influencing

the variance-covariance matrix, a cell means model can be fitted to obtain the parameter

estimates. If the years are taken as fixed, a two factorial model is fitted, where the marginal

means for each combination of factor levels can be used to compute the desired ratios for

one factor (type) pooled over the second (year). The alculated confidence intervals are

Waldintervals for the difference of the logarithmic estimates (marginal means) of the

generalized models.

GLM GLMM

Insect Comparison lower CI Estimate upper CI lower CI Estimate upper CI

Thrips Bt/Iso 0.8413 0.9714 1.1216 0.8351 0.9304 1.0366

Ins/Iso 0.5125 0.6138 0.7352 0.7160 0.8012 0.8965

Aphids Bt/Iso 1.0470 1.0616 1.0764 1.1172 1.1323 1.1476

Ins/Iso 1.4895 1.5085 1.5276 1.4832 1.5020 1.5211

Bugs Bt/Iso 1.1497 1.4813 1.9085 1.2485 1.5000 1.8022

Ins/Iso 0.4671 0.6231 0.8312 0.3547 0.4571 0.5892

Table 7: Confidence intervals for GLMM estimates (example Eckert)

There are large differences between the intervals depending on different models, even

between the model estimates (Table 7). The only case where nearly equal results are pro-

duced, is for the aphids data between isogene and insecticide treatment. In this situation

there are no interactions between type and year and the marginal means for each year

are nearly the same. If there are interactions between the blocks, the block effect can be

misinterpreted by pooling over their marginal means to compare the treatment effects in

a GLM. With the random effect a GLMM can have a better fit to overdispersed data,

which can be caused by extra variance generated by the block effects.
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10 Simulation study for comparing two factor levels

in a block design

Coverage probabilities for confidence intervals for the ratio of two Poisson samples in the

context of a two-factorial general linear model are computed. A blocking factor was added

to the generated data, with the blocks having no effect, the means of the two blocks for

each factor are equal and with the blocks having an effect, with their sample means were

at 0.5λi and 1.5λi. A general linear model and a general linear mixed model, with blocks

as random factor, were fitted. With the extracted estimates and the variance-covariance

matrix, Waldintervals were computed for the ratio of the two sample means. In case

of a GLM fit the two blocks for each factor were pooled and in a GLMM the blocks are

random, influencing the variance-covariance matrix. For a GLMM the confidence intervals

were constructed with the point estimates for the fixed effects, a quantile of the student

t distribution and a the estimated variance for the fixed effects.

10.1 Parameter setting

Following parameters for generating Poisson data were chosen:

n = 10, 20, 50, 100

λ2 = 0.1, 1, 10

ρ = 0.1, 0.2, 0.5, 1, 2, 5, 10

where

λ1 = ρλ2

.

The simulations had 10000 repetitions and a seed was set.

10.2 Error treatment

In cases where the whole response vector contains only zeros, the models can not converge

and no confidence interval can be obtained. These events were counted and ignored at

coverage computation. For small sample sizes some iteration errors can occur with the

mixed model, as it is possible that the response for some factor combinations is at zero

level.
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10.3 Results
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Figure 6: Coverage probability of two-sided Wald intervals (1−α = 0.95) from a general-

ized linear model and a generalized linear mixed model for the ratio of two sample means

in a block design (without/with block effect, row 1/2)

If there is no block effect and λi are high, the intervals from the GLM achieve similar

results as the GLMM intervals (Figure 7). Only for small λi and small sample sizes the

GLMM Wald intervals produce a better coverage (Figure 6, Table 18). At these parameter

settings the data could be zero inflated resulting in different sample means for each block.

If a block is present or absent, there seems to be no difference for the intervals from the

GLMM. For the GLM intervals get more conservative with blocks having an effect. The

differences to the mixed model increase with decreasing λ and decreasing sample size.

Another setting was observed for a design comparing two groups with ten random

distributed block effects each (Figure 8).

For small lambdas the intervals for GLM estimates are far too conservative. On the

opposite the mixed model intervals show good coverage (≤ 0.96) probability also for small

sample means. If sample means increase, coverage reaches 95% for both intervals.

It can be shown, that for λ ≥ 1 and n ≥ 10 good coverage probability can be reached

for the confidence intervals of both models. If a block effect is present, a mixed model
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Figure 7: Coverage probability of two-sided Wald intervals (1−α = 0.95) from a general-

ized linear model and a generalized linear mixed model for the ratio of two sample means

in a block design (without/with block effect, row 1/2)

with the blocking factor taken as random is recommended.

11 α-Adjustment for multiplicity

If more than one comparison should be made, the probability of seeing a difference between

two groups increases with the number of comparisons. A simple but conservative method

of correcting this error is to divide the error α by the number of comparisons (Bonferroni

method). It is evident that only these levels of a factor should be compared, which are

necessary. An enhancement for α-adjustment is the inclusion of the correlation between

contrasts using the multivariate normal distribution. For a many-to-one comparison this is

called the Dunnett-procedure. In R this is provided by the package multcomp for multiple

comparisons and mvtnorm for the multivariate t distribution. There should be no great

difference between the multivariate t distribution and the multivariate normal distribution

for large sample sizes. The computed confidence intervals are therefore approximate

intervals.
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Figure 8: Coverage probability of Waldintervals from a generalized linear model and a

generalized linear mixed model for the ratio of two sample means in a block design with

random distributed block effects of ten block factors.

11.1 Multiple contrasts for data with heterogeneous variances

Because for Poisson distributed responses the variance depends on the mean, the variance

for samples with different means should be differing, too. Therefore the assumption for the

application of contrast tests to have equal variances is violated. Simultaneous confidence

intervals can be constructed using the unpooled variance estimator to deal with this

problem.

cll,u =
I∑

i=1

cijλ̂i ± cJ,1−α,R

√√√√ I∑
i=1

c2
ij ˆvar (λi) (36)

, where i = 1, . . . , I are the number of treatment groups and j = 1, . . . , J represent the

number of simultaneous estimated contrasts. cJ,1−α,R is the J-variate normal distribution

with correlation matrix R. The elements ρjj′ of R are defined as:

ρjj′ =
cijcij′λi√(∑I

i=1 c2
ijλi

) (∑I
i=1 c2

ij′λi

) . (37)

As the variances are different, the assumption of multivariate normal distribution is vi-

olated. Therefore in the following section it is tested by simulation, if nevertheless the

approximation can be used to obtain quite good results.

In library(multcomp) the function csimint() compute simultaneous confidence in-

tervals with the multivariate t distribution for provided estimates, contrast matrix and

variance-covariance matrix (Bretz, Genz, Hothorn (2001), [3]).

29



11.2 Example

In the dataset from Eckert (Table 21) a user specified contrast can be used to compare

every level of the factor type with the average of the two other factors. A generalized

linear model with formula:

yijk = typei + yearj + (type : year)ij + εijk

, log link and family Poisson was fit. The average contrast for comparisons of the estimates

of the marginal means is presented in Table 8 and the computed results are shown in Table

9.

Bt Ins Iso

Comparison 2002 2003 2002 2003 2002 2003

Bt vs. Ins, Iso -0.5 -0.5 0.25 0.25 0.25 0.25

Ins vs. Bt, Iso 0.25 0.25 -0.5 -0.5 0.25 0.25

Iso vs. Ins, Bt 0.25 0.25 0.25 0.25 -0.5 -0.5

Table 8: Contrast for comparing one factor level (type) versus the average of two others,

pooled over two levels of a second factor (year) (Example Eckert)

Confidence interval

Insect Comparison Estimate lower upper

Thrips Bt vs. Ins, Iso 1.2399 1.0465 1.4689

Ins vs. Bt, Iso 0.6228 0.5066 0.7657

Iso vs. Ins, Bt 1.2950 1.0925 1.5350

Aphids Bt vs. Ins, Iso 0.8643 0.8518 0.8771

Ins vs. Bt, Iso 1.4640 1.4448 1.4836

Iso vs. Ins, Bt 0.7902 0.7788 0.8019

Bugs Bt vs. Ins, Iso 1.8765 1.4307 2.4611

Ins vs. Bt, Iso 0.5120 0.3757 0.6976

Iso vs. Ins, Bt 1.0409 0.7740 1.3998

Table 9: Simultaneous confidence intervals for Poisson model estimates and average con-

trast setting (Example Eckert)
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For large counts (Aphids) the interval span is very narrow, but if less insects were

counted and some zeros occur (Bugs) the confidence limits cover a wider range.

12 Simulation study for simultaneous confidence in-

tervals for user defined contrasts

For some special situations coverage probability was observed for confidence intervals using

the multivariate-t-distribution, Bonferroni adjusted intervals and unadjusted confidence

intervals.

12.1 Parameter setting

Poisson data was generated for four or five independent samples, with their mean defined

by λ and ρi, with i = 1, . . . , 5.

ρi = 1, 1, 1.5, 2, 2.5

where

λi = ρiλ1

Data were generated for:

n = 5, 10, 20, 50, 100

λ = 3, 10

The simulations had 10000 repetitions and a seed was set.

12.2 Single contrasts

First the behaviour of the Wald interval was observed for testing hypotheses for single

linear combinations of MLEs. Every sample mean was compared with the average of the

three other sample means and the average of two sample means was compared with the

average of the other two.

The coverage probabilities for every contrast nearly equal each other (Figure 9, Table

19). The same results are obtained with generated samples for different means and un-

balanced designs. The intervals seem to be almost unaffected by emulating some variance

heterogeneity, but the main influence on coverage of these intervals has zero inflation and

departure from Poisson distribution.
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Figure 9: Coverage probability of two-sided Wald intervals (1−α = 0.95) for single linear

combinations

12.3 Coverage for different contrast settings

A Dunnett contrast (Table 10) is used to perform many-to-one comparisons, for example

comparing every treatment versus a control. With the control being the first sample a

Dunnett contrast for five groups is

Comparison Control Trt1 Trt2 Trt3 Trt4

1 vs. 2 -1 1 0 0 0

1 vs. 3 -1 0 1 0 0

1 vs. 4 -1 0 0 1 0

1 vs. 5 -1 0 0 0 1

Table 10: Dunnett contrast for four groups and a control

The intervals which are not adjusted for multiplicity are far too liberal, whereas the

Bonferroni adjusted ones are conservative (Figure 10). The intervals using the multivariate

t distribution for implying the correlation between the contrasts lie between the others

at a coverage near above 0.95 for larger sample sizes. If decreasing the sample size, all

intervals get more conservative, especially for the unadjusted intervals this effect is large.

This effect will be delayed by comparing higher sample means to avoid zero inflation. If

there are less numbers of groups compared, the Bonferroni-adjusted and the multivariate
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Figure 10: Coverage probability of many-to-one confidence intervals: unadjusted CIs, CIs

with multivariate-t-distribution and adjusted intervals by Bonferroni method

intervals get less conservative and the unadjusted ones are less liberal. For fewer compared

samples the intervals using the correlation between contrasts gain still the best results.

The Tukey contrast (Table 11) is set for doing all-pair comparisons. In difference to

the Dunnett contrast there are some more linear combinations to compute and the group,

which first was the control in the many to one setting, has less influence. Tukey contrast

for four groups:

Comparison Trt1 Trt2 Trt3 Trt4

1 vs. 2 -1 1 0 0

1 vs. 3 -1 0 1 0

1 vs. 4 -1 0 0 1

2 vs. 3 0 -1 1 0

2 vs. 4 0 -1 0 1

3 vs. 4 0 0 -1 1

Table 11: Tukey contrast for four groups

In an ”‘average”’-contrast (Table 12) every single group is compared with the average

of the other groups.

Using a Williams contrast (Table 13) results in the comparison of one control with the

last group, the average of the last two groups and so on.
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Comparison Trt1 Trt2 Trt3 Trt4

1 vs. 234 1.00 -0.33 -0.33 -0.33

2 vs. 134 -0.33 1.00 -0.33 -0.33

3 vs. 124 -0.33 -0.33 1.00 -0.33

4 vs. 123 -0.33 -0.33 -0.33 1.00

Table 12: Average contrast for four groups

Comparison Control Trt1 Trt2 Trt3

1 vs. 4 -1 0.00 0.00 1.00

1 vs. 34 -1 0.00 0.50 0.50

1 vs. 234 -1 0.33 0.33 0.33

Table 13: Williams contrast for four groups

A McDermott contrast (Table 14) is like a reversed Williams contrast comparing the

averages of the first, second, third, . . . group with the following one.

Comparison Trt1 Trt2 Trt3 Trt4

1 vs. 2 -1.00 1.00 0.00 0

12 vs. 3 -0.50 -0.50 1.00 0

123 vs. 4 -0.33 -0.33 -0.33 1

Table 14: McDermott contrast for four groups

The unadjusted intervals are, as expected, far too liberal with the average contrast

at the lowest coverage probability, due to making four comparisons instead of three like

the other contrasts (Figure 11). With the chosen parameters the Williams contrast shows

the best performance, since the unadjusted intervals perform not such liberal at all, the

performance of the Bonferroni adjustment works relatively poor. The intervals involving

the correlation between contrasts perform overall well, with the Williams intervals being

also better at small sample sizes.

13 Diagnostics for generalized linear models

To explore the adequacy of a model fit a look at the residuals can be useful. For Gaussian

models the residuals are ε̂ = y− µ̂. In GLMs the variance of the response is not constant.
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Figure 11: Coverage probability of confidence intervals for different contrasts: unadjusted

CIs, CIs with multivariate-t-distribution and adjusted intervals by Bonferroni method

For a similar use, like in a Gaussian linear model, the Pearson residual y− µ̂ gets rescaled:

rP =
y − µ̂√
V (µ̂)

. (38)

The deviance residuals are defined in analogy:

rD = sign(y − µ̂)
√

di. (39)

For the Poisson case, this is

rD = sign(y − µ̂)

√√√√2

(
y
logy

µ̂
− y + µ̂

)
. (40)

The residuals can be plotted against the predicted values. For detecting outliers,

half-normal plots can be created for the jacknife residuals (Figure 12).

For the Gaussian linear model an increasing variance with increasing µ̂ can be observed.

This would violate the requirements of variance homogeneity for this model. Because for

Poisson data the variance completely depends on the mean, the plot of the deviance

residuals of the Poisson GLM shows constant variances over the whole range of µ̂, as the

variance function has been already scaled out. By inspecting the response residuals we

see the same picture as for the Gaussian model.

(Faraway (2006), [10])
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Figure 12: Diagnostic plots for generalized linear models

14 Models for zero inflated data

Often abundance data have many zeros (sometimes until 80 percent of all values), so the

Poisson distribution is violated. If using a logarithmic transformation, small values like

0.1 are added up on the response vector to make the transformation possible. Because

in generalized linear models the linear predictor is transformed by a link function, these

problems do not arise. But if many zeros appear, a normal Poisson model provides no

adequate fit. A possible way to deal with this problem is a zero-inflated Poisson model

(ZIP). It assumes, that with probability p the only possible observation is zero, and with

probability 1− p a Poisson(λ) variable is observed, so that
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Yi = 0 with probability pi + (1− pi)e
−λi and

Yi = k with probability (1− pi)
e−λiλk

i

k!

k = 1, 2, . . .

(Lambert (1992) [14]).

Problems can occur with these models, if zero-inflation appears together with overdis-

persion, what often could happen. For these situation a zero-inflated negative binomial

model (ZINB) turned out to be more reliable (Yau et al. (2003), [29]).

Zero-inflated Poisson models and zero-inflated negative binomial models can be fit in

R with functions of the package zicounts. These results in two sets of estimates: one set

for the Poisson or negative binomial part and a second set for the zero-inflated part.

15 Overdispersion

In the Poisson distribution the variance is related to the mean (V (µ) = µ). If there where

e.g. several events recorded on the same unit, the observations are not independent, so

the variance could be greater than µ. Overdispersion could also arise, if some variables

cause differences in mean for different observations, which are not integrated into the

model. Another reason for overdispersion is the dependency of one observation on the

former observation in a time series (Lindsey (1997), [15].

A solution to solve the problem of overdispersion is to assume a random effects model,

where the parameter which varies in an unknown way has a random distribution. A

second way to deal with overdispersion is assuming different distributions.

15.1 Mixed model

One can deal with overdispersion by using a generalized linear mixed model, treating a

factor as random, to integrate the evoked overdispersion by this factor into the model (see

section 9, p.23).

15.2 Negative binomial distribution

In many cases a gamma mixing distribution, which leads to a negative binomial distribu-

tion, is considered for the observed data (Breslow (1990) [2], Warton (2005) [25]). These

models can produce an adequate fit to overdispersed count data, with a variance function
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V (µ) = µ + φµ2. The probability mass function of the two parameter negative binomial

family is written as

p(x|κ, λ) =
Γ
(
x + 1

κ

)
λx

k
1
κ Γ
(

1
κ

)
Γ(x + 1)

(
λ + 1

κ

)x+ 1
κ

(41)

(McCullagh and Nelder (1989), [18]).

A negative binomial generalized linear model can be fit in R [22] with the function

glm.nb() or with the family negative.binomial, where the specification of the additional

parameter θ is needed, while in glm.nb() it is estimated from the data.

15.3 Quasilikelihood

The quasi-Poisson model allows the estimation of the dispersion factor φ, instead of as-

suming it to be one, like in the Poisson distribution.

V (µ; φ) = φV (µ)

In this model one parameter more has to be estimated, but it can provide a better fit than

the ordinary Poisson GLM. In the quasi-likelihood models the parameter φ still is fixed

at a certain position. In more complex models φ has not to be a constant, as it can vary

in a systematic way with other covariates, for example as a quadratic term (McCullagh

and Nelder (1989),[18]).

15.3.1 Example

The data from Eckert could be used to estimate the dispersion parameter φ by a quasipois-

son model to determine if overdispersion is present in this data or if the Poisson distribu-

tion can be assumed.

Three models are fitted:

� Model 1: yijk = typei+yearj +(type : year)ij +εijk, with Poisson family and log-link

� Model 2: yijk = typei + yearj + (type : year)ij + εijk, with quasi family, log-link and

the dispersion factor of the variance function estimated from the observed data.

� Model 3: yijk = typei + yearj + (type : year)ij + εijk, with negative binomial family,

log link.
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Type φ

Thrips 7.941

Aphids 716.025

Bugs 3.322

Table 15: Dispersion parameters for different quasipoisson model fits (Example Eckert)

For the normal Poisson model the dispersion parameter is taken to be 1 and for the

quasipoisson model the estimated φ are shown in Table 15.

In the QQ-Plots in Figure 13 it can be ssen, that the Poisson model does not fit well

to the thrips data, but with a negative binomial model an adequate fit can be obtained.
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Figure 13: QQ-Plots for the Poisson and the negative binomial model, Type = Thrips

(Example Eckert)

These differences in variance assumptions can also be shown, if comparing the related

Wald intervals (Table 16).

As the dispersion parameter and therewith the standard errors for the parameter

estimates change, the intervals for the quasipoisson model and for the negative binomial

model are much wider than the normal Poisson intervals. The differences are largest, if

the deviation from the Poisson distribution is greatest. Further, except for one case, the

quasi-model contains the 1 (quotient, where both samples are equal) in the interval, while

in the Poisson intervals it is only a single time present. Because the negative binomial

model shows a better fit to the data and due to the presence of overdispersion, variance

functions differing from the Poisson distribution can be assumed, estimates of the quasi

or the negative binomial model should be used to calculate confidence intervals.
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Poisson Quasipoisson Negative binomial

Insect Comparison Estimate lower upper lower upper lower upper

Thrips Bt/ISO 0.9714 0.8413 1.1216 0.6478 1.4566 0.7103 1.3286

INS/ISO 0.6138 0.5125 0.7352 0.3692 1.0205 0.4401 0.8561

Aphid Bt/ISO 1.0616 1.0470 1.0764 0.7322 1.5391 0.7664 1.4704

INS/ISO 1.5085 1.4895 1.5276 1.0758 2.1151 1.0891 2.0893

Bugs Bt/ISO 1.4813 1.1497 1.9085 0.9334 2.3508 0.9814 2.2357

INS/ISO 0.6231 0.4671 0.8312 0.3685 1.0536 0.4027 0.9643

Table 16: Confidence intervals for Poisson model, Quasipoisson model and negative bino-

mial model estimates (Example Eckert)

16 General discussion

To compare multiple treatments in experiment designs with multiple factors a general-

ized linear model framework should be chosen. Considering the analysis of count data,

a log link is recommended and, neglecting overdispersion and zero-inflation, the Poisson

distribution is suitable for this data. The performance of confidence intervals for the ratio

(difference in the logarithmic transformation) of model estimates was observed by simu-

lation to predict their benefit for testing of equivalence in practical application. For small

sample sizes and very small sample means near the zero truncation no useful confidence

limits are obtained. In some extreme situations the profile likelihood confidence intervals

perform slightly better than the Wald interval, but the overall behaviour of both intervals

is adequate for normal parameter settings (λ > 1, n > 10). The advantage of the Wald

interval is its easy calculation and its transferability to a wide range of methods. In more

complex designs, here a quite simple block design, a generalized linear mixed model is

superior to a normal GLM, so its usage is recommended. If comparing more than one

treatment, alpha-adjustment for multiplicity has to be made. For some settings it is

shown, that existing methods, which are incorporating the correlation between multiple

contrasts by the multivariate-t-distribution, are transferable to confidence intervals for

linear combinations of MLEs of generalized linear Poisson models. If the assumption of

Poisson distributed data is violated by the occurrence of zero-inflation or overdispersion,

the calculated confidence intervals will lose in precision, as the model fits not appropriate

to the data. A solution of this problem is the choice of a different model, for example a
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zero-inflated Poisson model, a quasi-likelihood model or a negative binomial model.

41



17 Tables

17.1 Confidence intervals for a parameter of a GLM

coverage

Profile likelihood Wald interval Wald Bootstrap
λ2 n ρ interval (every sample) interval interval % = 0
0.1 100 0.1 0.9181 0.9693 0.8857 0.985 0.7313
0.1 50 0.1 0.7998 0.9652 0.6717 0.981 0.9071
0.1 20 0.1 0.4804 0.9862 0.1471 0.991 0.9898
0.1 10 0.1 0.0833 0.9968 0 1.000 0.9988
0.1 5 0.1 0 0.9997 0 1.000 0.9997
1 100 0.1 0.9461 0.9567 0.9569 0.936 3.00E-04
1 50 0.1 0.9734 0.967 0.9657 0.963 0.0373
1 20 0.1 0.961 0.968 0.9465 0.986 0.4018
1 10 0.1 0.9158 0.9685 0.8804 0.967 0.7375
1 5 0.1 0.7879 0.9656 0.6465 0.952 0.9109
10 100 0.1 0.9506 0.9511 0.9511 0.949 0
10 50 0.1 0.9469 0.9499 0.9499 0.946 0
10 20 0.1 0.9486 0.9503 0.9503 0.927 0
10 10 0.1 0.951 0.9594 0.9599 0.904 5.00E-04
10 5 0.1 0.9723 0.967 0.9659 0.875 0.0393
0.1 100 0.2 0.9646 0.9703 0.95 0.983 0.4061
0.1 50 0.2 0.9432 0.9695 0.8953 0.977 0.7411
0.1 20 0.2 0.9372 0.9931 0.8901 0.977 0.9618
0.1 10 0.2 0.9268 0.9993 0.9268 1.000 0.9959
0.1 5 0.2 0.7778 0.9998 0.7778 0.857 0.9991
1 100 0.2 0.9474 0.9549 0.9549 0.944 0
1 50 0.2 0.9466 0.9572 0.9575 0.939 3.00E-04
1 20 0.2 0.971 0.9664 0.963 0.973 0.0908
1 10 0.2 0.9661 0.9712 0.9513 0.972 0.4132
1 5 0.2 0.945 0.9706 0.8943 0.938 0.7436
10 100 0.2 0.9492 0.9496 0.9496 0.950 0
10 50 0.2 0.9523 0.9528 0.9528 0.945 0
10 20 0.2 0.9494 0.951 0.951 0.931 0
10 10 0.2 0.9469 0.9535 0.9535 0.914 0
10 5 0.2 0.9471 0.9577 0.9581 0.867 5.00E-04
0.1 100 0.5 0.9625 0.9702 0.9712 0.960 0.0392
0.1 50 0.5 0.9753 0.9849 0.9835 0.980 0.3194
0.1 20 0.5 0.9944 0.9982 0.9994 0.994 0.8394
0.1 10 0.5 0.9957 0.9998 1 0.996 0.9769
0.1 5 0.5 1 1 1 1.000 0.9975
1 100 0.5 0.9516 0.9531 0.9531 0.946 0
1 50 0.5 0.9501 0.9534 0.9534 0.943 0
1 20 0.5 0.95 0.9597 0.9599 0.932 3.00E-04
1 10 0.5 0.9685 0.9757 0.9762 0.943 0.0383
1 5 0.5 0.9721 0.983 0.9806 0.953 0.3053
10 100 0.5 0.948 0.9487 0.9487 0.949 0
10 50 0.5 0.9505 0.9507 0.9507 0.948 0
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Profile likelihood Wald interval Wald Bootstrap
λ2 n ρ interval (every sample) interval interval % = 0
10 20 0.5 0.9468 0.9478 0.9478 0.934 0
10 10 0.5 0.9529 0.9541 0.9541 0.925 0
10 5 0.5 0.947 0.9493 0.9493 0.880 0
0.1 100 1 0.9456 0.956 0.9562 0.949 6.00E-04
0.1 50 1 0.9634 0.9809 0.9895 0.971 0.075
0.1 20 1 0.998 0.9996 1 0.998 0.645
0.1 10 1 1 1 1 0.999 0.927
0.1 5 1 1 1 1 1.000 0.9917
1 100 1 0.9507 0.9519 0.9519 NA 0
1 50 1 0.9518 0.9541 0.9541 NA 0
1 20 1 0.9477 0.9544 0.9544 NA 0
1 10 1 0.9527 0.963 0.9636 NA 7.00E-04
1 5 1 0.961 0.9813 0.9881 NA 0.0772
10 100 1 0.9518 0.9518 0.9518 NA 0
10 50 1 0.9501 0.9501 0.9501 NA 0
10 20 1 0.9506 0.9509 0.9509 NA 0
10 10 1 0.9496 0.9501 0.9501 NA 0
10 5 1 0.9475 0.9499 0.9499 NA 0
0.1 100 2 0.9473 0.9557 0.9559 NA 3.00E-04
0.1 50 2 0.9644 0.9714 0.9722 NA 0.0391
0.1 20 2 0.9782 0.9898 0.9871 NA 0.4581
0.1 10 2 0.992 0.9988 0.9981 NA 0.838
0.1 5 2 1 1 1 NA 0.9772
1 100 2 0.9506 0.9513 0.9513 NA 0
1 50 2 0.9513 0.9534 0.9534 NA 0
1 20 2 0.9486 0.9528 0.9528 NA 0
1 10 2 0.9542 0.9628 0.963 NA 2.00E-04
1 5 2 0.9656 0.9738 0.9746 NA 0.0406
10 100 2 0.9504 0.9507 0.9507 NA 0
10 50 2 0.9509 0.951 0.951 NA 0
10 20 2 0.9514 0.9514 0.9514 NA 0
10 10 2 0.9451 0.9454 0.9454 NA 0
10 5 2 0.9485 0.9493 0.9493 NA 0
0.1 100 5 0.9455 0.9561 0.9563 NA 3.00E-04
0.1 50 5 0.9689 0.9666 0.9659 NA 0.0388
0.1 20 5 0.9631 0.9685 0.947 NA 0.4057
0.1 10 5 0.9517 0.9714 0.8996 NA 0.7391
0.1 5 5 0.9368 0.9906 0.8983 NA 0.9351
1 100 5 0.9499 0.951 0.951 NA 0
1 50 5 0.9515 0.9531 0.9531 NA 0
1 20 5 0.9469 0.9506 0.9506 NA 0
1 10 5 0.9521 0.962 0.9622 NA 2.00E-04
1 5 5 0.9701 0.9685 0.968 NA 0.0402
10 100 5 0.951 0.9508 0.9508 NA 0
10 50 5 0.95 0.9501 0.9501 NA 0
10 20 5 0.9492 0.9491 0.9491 NA 0
10 10 5 0.9515 0.952 0.952 NA 0
10 5 5 0.946 0.9493 0.9493 NA 0

43



Profile likelihood Wald interval Wald Bootstrap
λ2 n ρ interval (every sample) interval interval % = 0
0.1 100 10 0.9465 0.956 0.9562 NA 3.00E-04
0.1 50 10 0.9735 0.966 0.9646 NA 0.0388
0.1 20 10 0.962 0.9656 0.9421 NA 0.4056
0.1 10 10 0.9173 0.9697 0.8883 NA 0.7305
0.1 5 10 0.8028 0.9686 0.6647 NA 0.9138
1 100 10 0.95 0.9516 0.9516 NA 0
1 50 10 0.9514 0.9521 0.9521 NA 0
1 20 10 0.9499 0.9504 0.9504 NA 0
1 10 10 0.9481 0.9592 0.9597 NA 5.00E-04
1 5 10 0.9725 0.9658 0.9644 NA 0.0393
10 100 10 0.9506 0.9503 0.9503 NA 0
10 50 10 0.9518 0.9513 0.9513 NA 0
10 20 10 0.9526 0.953 0.953 NA 0
10 10 10 0.9492 0.9513 0.9513 NA 0
10 5 10 0.9489 0.9499 0.9499 NA 0

Table 17: Coverage probability of Waldintervals, profile-
likelihood-intervals and bootstrap intervals for estimates
of a generalized linear model, comparison of two samples

17.2 Block design

coverage
- block effects + block effects random blocks

λ2 n ρ GLM GLMM GLM GLMM GLM GLMM
0.1 100 0.1 0.9768 0.9683 0.9785 0.9670 0.9987 0.9559
0.1 50 0.1 0.9762 0.9641 0.9797 0.9650 1.0000 0.9700
0.1 20 0.1 0.9884 0.9671 0.9933 0.9679 1.0000 0.9654
0.1 10 0.1 0.9979 0.9841 0.9970 0.9812 1.0000 0.9686
1 100 0.1 0.9574 0.9547 0.9671 0.9559 0.9576 0.9530
1 50 0.1 0.9680 0.9577 0.9728 0.9569 0.9797 0.9518
1 20 0.1 0.9776 0.9705 0.9736 0.9654 0.9958 0.9519
1 10 0.1 0.9790 0.9711 0.9790 0.9710 0.9988 0.9593
10 100 0.1 0.9517 0.9510 0.9497 0.9470 0.9507 0.9511
10 50 0.1 0.9517 0.9527 0.9528 0.9561 0.9529 0.9497
10 20 0.1 0.9574 0.9578 0.9588 0.9542 0.9517 0.9501
10 10 0.1 0.9604 0.9589 0.9724 0.9613 0.9587 0.9531
0.1 100 0.2 0.9766 0.9680 0.9778 0.9659 0.9961 0.9541
0.1 50 0.2 0.9809 0.9677 0.9838 0.9652 0.9991 0.9578
0.1 20 0.2 0.9936 0.9836 0.9969 0.9844 1.0000 0.9668
0.1 10 0.2 0.9980 0.9946 0.9996 0.9938 1.0000 0.9712
1 100 0.2 0.9511 0.9510 0.9570 0.9510 0.9508 0.9520
1 50 0.2 0.9536 0.9526 0.9679 0.9547 0.9593 0.9504
1 20 0.2 0.9740 0.9652 0.9760 0.9667 0.9840 0.9522
1 10 0.2 0.9791 0.9761 0.9821 0.9761 0.9963 0.9555
10 100 0.2 0.9521 0.9523 0.9476 0.9518 0.9455 0.9493
10 50 0.2 0.9545 0.9536 0.9549 0.9559 0.9518 0.9504
10 20 0.2 0.9574 0.9586 0.9566 0.9534 0.9566 0.9552
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- block effects + block effects random blocks
λ2 n ρ GLM GLMM GLM GLMM GLM GLMM
10 10 0.2 0.9574 0.9572 0.9633 0.9597 0.9567 0.9538
0.1 100 0.5 0.9614 0.9571 0.9780 0.9580 0.9784 0.9536
0.1 50 0.5 0.9808 0.9716 0.9892 0.9712 0.9952 0.9524
0.1 20 0.5 0.9977 0.9908 0.9985 0.9911 1.0000 0.9585
0.1 10 0.5 0.9997 0.9986 1.0000 0.9992 1.0000 0.9761
1 100 0.5 0.9464 0.9476 0.9484 0.9512 0.9500 0.9479
1 50 0.5 0.9503 0.9522 0.9541 0.9557 0.9556 0.9515
1 20 0.5 0.9566 0.9576 0.9684 0.9584 0.9595 0.9481
1 10 0.5 0.9695 0.9627 0.9820 0.9647 0.9803 0.9527
10 100 0.5 0.9520 0.9513 0.9486 0.9509 0.9499 0.9507
10 50 0.5 0.9548 0.9549 0.9502 0.9557 0.9516 0.9488
10 20 0.5 0.9551 0.9561 0.9527 0.9527 0.9499 0.9523
10 10 0.5 0.9556 0.9557 0.9610 0.9571 0.9567 0.9510
0.1 100 1 0.9553 0.9563 0.9628 0.9522 0.9679 0.9504
0.1 50 1 0.9675 0.9560 0.9872 0.9561 0.9869 0.9528
0.1 20 1 0.9989 0.9947 0.9995 0.9916 0.9998 0.9558
0.1 10 1 1.0000 0.9999 1.0000 0.9997 1.0000 0.9603
1 100 1 0.9481 0.9483 0.9504 0.9467 0.9509 0.9500
1 50 1 0.9524 0.9528 0.9545 0.9519 0.9533 0.9483
1 20 1 0.9546 0.9556 0.9578 0.9545 0.9566 0.9509
1 10 1 0.9610 0.9622 0.9767 0.9609 0.9661 0.9522
10 100 1 0.9497 0.9496 0.9508 0.9516 0.9491 0.9500
10 50 1 0.9526 0.9528 0.9509 0.9520 0.9507 0.9475
10 20 1 0.9571 0.9580 0.9556 0.9585 0.9521 0.9509
10 10 1 0.9575 0.9579 0.9591 0.9593 0.9546 0.9527
0.1 100 2 0.9520 0.9533 0.9586 0.9472 0.9637 0.9526
0.1 50 2 0.9648 0.9599 0.9767 0.9622 0.9806 0.9522
0.1 20 2 0.9879 0.9746 0.9932 0.9763 0.9979 0.9564
0.1 10 2 0.9981 0.9934 0.9993 0.9923 1.0000 0.9602
1 100 2 0.9477 0.9485 0.9501 0.9508 0.9505 0.9485
1 50 2 0.9523 0.9536 0.9543 0.9528 0.9510 0.9493
1 20 2 0.9550 0.9554 0.9582 0.9551 0.9548 0.9494
1 10 2 0.9631 0.9626 0.9722 0.9614 0.9628 0.9513
10 100 2 0.9496 0.9494 0.9476 0.9505 0.9494 0.9494
10 50 2 0.9507 0.9510 0.9487 0.9510 0.9516 0.9490
10 20 2 0.9530 0.9536 0.9553 0.9563 0.9548 0.9499
10 10 2 0.9580 0.9581 0.9585 0.9614 0.9538 0.9495
0.1 100 5 0.9532 0.9522 0.9619 0.9501 0.9592 0.9495
0.1 50 5 0.9655 0.9598 0.9707 0.9577 0.9784 0.9536
0.1 20 5 0.9755 0.9680 0.9758 0.9673 0.9954 0.9544
0.1 10 5 0.9837 0.9759 0.9883 0.9729 0.9989 0.9562
1 100 5 0.9479 0.9484 0.9478 0.9504 0.9509 0.9486
1 50 5 0.9541 0.9546 0.9540 0.9513 0.9553 0.9475
1 20 5 0.9548 0.9536 0.9587 0.9543 0.9560 0.9516
1 10 5 0.9642 0.9627 0.9727 0.9613 0.9584 0.9497
10 100 5 0.9496 0.9493 0.9555 0.9526 0.9499 0.9452
10 50 5 0.9550 0.9554 0.9508 0.9497 0.9526 0.9500
10 20 5 0.9565 0.9567 0.9511 0.9507 0.9517 0.9493
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- block effects + block effects random blocks
λ2 n ρ GLM GLMM GLM GLMM GLM GLMM
10 10 5 0.9593 0.9583 0.9591 0.9578 0.9504 0.9517
0.1 100 10 0.9527 0.9503 0.9650 0.9504 0.9605 0.9510
0.1 50 10 0.9670 0.9589 0.9725 0.9590 0.9790 0.9535
0.1 20 10 0.9741 0.9659 0.9724 0.9653 0.9962 0.9539
0.1 10 10 0.9808 0.9735 0.9821 0.9699 0.9987 0.9572
1 100 10 0.9480 0.9484 0.9513 0.9509 0.9541 0.9521
1 50 10 0.9521 0.9531 0.9558 0.9538 0.9489 0.9453
1 20 10 0.9587 0.9597 0.9588 0.9527 0.9479 0.9464
1 10 10 0.9606 0.9588 0.9706 0.9609 0.9582 0.9512
10 100 10 0.9501 0.9499 0.9495 0.9528 0.9516 0.9514
10 50 10 0.9494 0.9494 0.9519 0.9517 0.9532 0.9520
10 20 10 0.9525 0.9519 0.9545 0.9568 0.9556 0.9545
10 10 10 0.9590 0.9590 0.9565 0.9603 0.9494 0.9511

Table 18: Coverage probability of Waldintervals for GLM
and GLMM estimates, comparing two factor levels in a
block design
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17.3 Simultaneous confidence intervals

17.3.1 Single linear combinations

contrast coverage (for different sample sizes)
λ grp 1 grp 2 grp 3 grp 4 5 10 20 50 100

3,3,3,3 -1 0.33 0.33 0.33 0.9678 0.9611 0.955 0.9501 0.952
0.33 -1 0.33 0.33 0.9687 0.9588 0.9552 0.951 0.9493
0.33 0.33 -1 0.33 0.9703 0.9575 0.9542 0.9533 0.9507
0.33 0.33 0.33 -1 0.964 0.9593 0.9535 0.9542 0.9471
-0.5 -0.5 0.5 0.5 0.9725 0.9597 0.9524 0.9546 0.9489
-0.5 0.5 -0.5 0.5 0.9677 0.9575 0.9586 0.952 0.9527
-0.5 0.5 0.5 -0.5 0.9654 0.963 0.9566 0.951 0.9496
0.5 -0.5 -0.5 0.5 0.9654 0.963 0.9566 0.951 0.9496
0.5 -0.5 0.5 -0.5 0.9677 0.9575 0.9586 0.952 0.9527
0.5 0.5 -0.5 -0.5 0.9725 0.9597 0.9524 0.9546 0.9489

3,15,15,15 -1 0.33 0.33 0.33 0.9684 0.9618 0.9582 0.9498 0.948
0.33 -1 0.33 0.33 0.969 0.9601 0.9608 0.952 0.9504
0.33 0.33 -1 0.33 0.9689 0.9586 0.9549 0.9496 0.9494
0.33 0.33 0.33 -1 0.9662 0.9613 0.9578 0.9526 0.953
-0.5 -0.5 0.5 0.5 0.9693 0.9636 0.9577 0.9502 0.9499
-0.5 0.5 -0.5 0.5 0.9675 0.9599 0.9605 0.952 0.9505
-0.5 0.5 0.5 -0.5 0.969 0.9629 0.9556 0.9524 0.9478
0.5 -0.5 -0.5 0.5 0.969 0.9629 0.9556 0.9524 0.9478
0.5 -0.5 0.5 -0.5 0.9675 0.9599 0.9605 0.952 0.9505
0.5 0.5 -0.5 -0.5 0.9693 0.9636 0.9577 0.9502 0.9499

15,15,15,3 -1 0.33 0.33 0.33 0.9659 0.9565 0.9544 0.9546 0.9481
0.33 -1 0.33 0.33 0.9652 0.9613 0.9554 0.9461 0.9518
0.33 0.33 -1 0.33 0.9673 0.9588 0.955 0.9497 0.9476
0.33 0.33 0.33 -1 0.9693 0.9587 0.9562 0.9522 0.9499
-0.5 -0.5 0.5 0.5 0.9659 0.9577 0.953 0.9492 0.9518
-0.5 0.5 -0.5 0.5 0.9648 0.9599 0.9572 0.9486 0.9506
-0.5 0.5 0.5 -0.5 0.9681 0.9594 0.9564 0.9509 0.9485
0.5 -0.5 -0.5 0.5 0.9681 0.9594 0.9564 0.9509 0.9485
0.5 -0.5 0.5 -0.5 0.9648 0.9599 0.9572 0.9486 0.9506
0.5 0.5 -0.5 -0.5 0.9659 0.9577 0.953 0.9492 0.9518

3, 15, 15, 15 -1 0.33 0.33 0.33 0.9612 0.9535 0.9554 0.9522 0.9505
unbalanced 0.33 -1 0.33 0.33 0.9619 0.9569 0.9511 0.9544 0.95
n=n,2(n,n,n) 0.33 0.33 -1 0.33 0.961 0.9549 0.9549 0.9497 0.9491

0.33 0.33 0.33 -1 0.9581 0.9565 0.9513 0.9518 0.9542
-0.5 -0.5 0.5 0.5 0.9603 0.9539 0.9545 0.9516 0.9515
-0.5 0.5 -0.5 0.5 0.9634 0.9601 0.9548 0.9537 0.9497
-0.5 0.5 0.5 -0.5 0.9626 0.9543 0.9539 0.9503 0.9513
0.5 -0.5 -0.5 0.5 0.9626 0.9543 0.9539 0.9503 0.9513
0.5 -0.5 0.5 -0.5 0.9634 0.9601 0.9548 0.9537 0.9497
0.5 0.5 -0.5 -0.5 0.9603 0.9539 0.9545 0.9516 0.9515

Table 19: Coverage probability of confidence intervals for
single linear combinations of model estimates
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17.3.2 Various contrast settings

Interval coverage
Contrast type n with correlation unadjusted Bonferroni adjusted

Dunnett 5 0.9807 0.9267 0.9878
10 0.9653 0.9042 0.9739
20 0.9547 0.8888 0.9635
50 0.9534 0.8861 0.9607
100 0.9478 0.8806 0.9573

Tukey 5 0.9805 0.7886 0.9882
10 0.9670 0.7406 0.9773
20 0.9600 0.7399 0.9701
50 0.9539 0.7198 0.9646

Average 5 0.9794 0.8840 0.9842
10 0.9661 0.8567 0.9705
20 0.9566 0.8454 0.9616
50 0.9501 0.8368 0.9545
100 0.9518 0.8386 0.9561

Williams 5 0.9682 0.9454 0.9883
10 0.9589 0.9323 0.9811
20 0.9556 0.9323 0.9787
50 0.9508 0.9252 0.9733
100 0.9517 0.9262 0.9730

McDermott 5 0.9809 0.9116 0.9903
10 0.9672 0.8821 0.9776
20 0.9587 0.8667 0.9713
50 0.9520 0.8590 0.9632
100 0.9486 0.8529 0.9633

Table 20: Coverage probability of simultaneous
confidence intervals for different contrasts (λ1=3,
rhoi=1,1.5,2)
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18 Example Data: Eckert

2002 2003
Type Block Aphids Thrips Bugs Aphids Thrips Bugs

BT 1 700 41 8 1404 7 9
BT 2 3270 55 30 1456 16 3
BT 3 5814 50 25 2674 9 7
BT 4 3054 62 40 2141 12 3
BT 5 4024 103 13 1132 11 1
BT 6 619 26 27 370 9 1
BT 7 3679 23 10 858 10 4
BT 8 1730 24 25 735 10 4
INS 1 2339 60 8 4284 8 10
INS 2 2524 47 1 2619 2 3
INS 3 4441 66 11 3053 7 5
INS 4 2876 89 1 5809 5 1
INS 5 5692 41 8 3179 0 3
INS 6 829 15 4 444 2 1
INS 7 3432 16 0 1317 2 1
INS 8 1012 34 3 801 9 4
ISO 1 2098 65 18 1778 4 0
ISO 2 2631 62 31 2045 7 5
ISO 3 1948 60 10 3203 12 4
ISO 4 1728 74 11 2855 9 2
ISO 5 1587 89 24 1383 12 4
ISO 6 1097 17 9 651 9 4
ISO 7 884 32 8 1303 6 2
ISO 8 1417 23 7 3119 22 1

Table 21: Example dataset from Eckert (Sum of counts
over the time covariate)

19 R Code

19.1 GLM fit

A generalized linear model can be fitted in R [22] by the function glm().

glm(formula, family = gaussian, data, weights, subset,

na.action, start = NULL, etastart, mustart,

offset, control = glm.control(...), model = TRUE,

method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL, ...)

A generalized linear poisson model with one factor including three parameters can be

fitted by
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# data generation (3 groups A,B,C with mean 5,10,20)

> n=100

> mu <- rep(c(5, 10, 20), each=n)

> dat <- data.frame(count=rpois(length(mu),mu),

+ trt=rep(c("A", "B", "C"), each=n))

> # Poisson glm

> poi.glm <- glm(count ~ trt, data=dat, family=poisson(link="log"))

> # Cell-means model

> poi.glm.cm <- glm(count ~ trt -1, data=dat, family=poisson(link="log"))

> # Maximum likelihood estimates

> mle <- exp(poi.glm.cm$coefficients) #$

> mle

trtA trtB trtC

5.31 9.85 20.11

> # Variances

> diag(vcov(poi.glm.cm))

trtA trtB trtC

0.001883221 0.001015228 0.000497265

19.2 Extracting marginal means

To extract the marginal means and the matching variance-covariance matrix following

function is used:

lsmeans <- function(fit){

fmd <- fit$model

fn <- length(names(fmd))

dl <- length(fmd[,1])

ord.fmd <- fmd[do.call(order,fmd),]

sf <- character(length=dl)
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for (i in 2:fn){sf <- paste(sf, ord.fmd[,i], sep="")}

ind <- data.frame(sf, z=1:dl)

ind <- tapply(ind$z, ind$sf, min)

dat.neu <- ord.fmd[ind,]

mm <- model.matrix(as.formula(fit$call[2]), dat.neu)

rownames(mm) <- names(ind)

para <- fit$coefficients

est <- mm %*% para

vcmat <- vcov(fit)

stdr <- sqrt(diag(mm %*% vcmat %*% t(mm)))

est.sd <- data.frame(est, stdr)

vcovmat <- mm %*% vcmat %*% t(mm)

return(list(estimate = est.sd, vcovm = vcovmat)) $

}

19.3 GLMM fit

A generalized linear mixed model can be fitted in R [22] by the function lmer() in the

package lme4 (Bates, D. and Sarkar, D. (2006)).

Generating data for a block design with 10 random distributed blocks and two groups

with means λ=5,10 and sample size 20 for each block-treatment combination.

> n <- 20

> lambdas <- c(5, 10)

> nb <- 10

> N <- n*nb*length(lambdas)

> A <- rep(as.character(1:length(lambdas)), each=n*nb)

> Bl <- rep(rep(as.character(1:nb), times=n), 2)

> zz <- rnorm(nb, 0, 0.5*lambdas[1])

> lamb2bl <- (lambdas[1] + zz)/lambdas[1]

> rbl <- rep(lamb2bl, times=n*nb)
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> rlam <- rep(rep(lambdas, each=n), each=nb)

> mus <- rlam * rbl

> resp <- rpois(N, mus)

> dat <- data.frame(resp, A, Bl)

Fit of a generalized linear mixed Poisson model with lmer() and extracting estimates

and the variance covariance matrix:

> fit <- lmer(resp ~ A -1 + (1|Bl), data=dat, family=poisson())

> est <- fixef(fit)

> est

A1 A2

1.511424 2.188384

> vcmat <- as.matrix(vcov(fit))

> vcmat

A1 A2

A1 0.07779600 0.07690394

A2 0.07690394 0.07735725

These parameters can be used to compute intervals, based on normal theory.

19.4 Diagnostics

First some count data are generated for seven groups with different means.

> muT <- c(2,5,10,20,30,40,50)

> n <- c(100,100,100,100,100,100,100)

> muT1 <- rep(muT, n)

> dat <- rpois(lambda=muT1, n=sum(n))

> trt <- as.factor(rep(1:length(n),n))

> data <- data.frame(count=dat,trt=trt)

Then two generalized linear models with Gaussian- and with Poisson-family are fitted

> gmod <- glm(count ~ trt, data=data, family=gaussian(link="identity"))

> pmod <- glm(count ~ trt, data=data, family=poisson(link="log"))

Now the residuals can be plotted against the predicted values.
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> plot(residuals(gmod) ~ predict(gmod, type="response"),

+ xlab=expression(hat(mu)),

+ ylab="Deviance residuals", main="Gaussian linear model")

> abline(h=0, lty=2)

> plot(residuals(pmod) ~ predict(pmod, type="response"),

+ xlab=expression(hat(mu)),

+ ylab="Deviance residuals", main="Poisson glm")

> abline(h=0, lty=2)

> plot(residuals(pmod, type="response") ~ predict(pmod, type="response"),

+ xlab=expression(hat(mu)), ylab="Response residuals", main="Poisson glm")

> abline(h=0, lty=2)

For detecting outliers, half-normal plots can be created for the jacknife residuals

> library(faraway)

> halfnorm(rstudent(pmod))

19.5 Confidence intervals

19.5.1 Profile likelihood interval

Fit and profile of a generalized linear model:

> library(MASS)

> fit.glm <- glm(y ~ factor, data=data, family=poisson())

> pr.glm <- profile(fit.glm)

Extraction of the profile t statistic (τ) and the relevant range of θ2 for the parameter β2

(difference of the parameter ”‘trt2”’ and the intercept (”‘trt1”’)) from an glm-profile

> nam.coef <- names(d.glm$coefficients) $

> trt.nr <- 2

> trt <- nam.coef[trt.nr]

> z <- pr.glm[[trt]][,1]

> beh <- exp(pr.glm[[trt]][,2][,trt.nr])

> tdf <- sum(n)-length(nam.coef)

> alpha <- 0.025
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Plot of the profile t values for the matching θ2s

> plot(z ~ beh, type="n", xlab=expression(theta),

+ ylab=expression(tau))

# profile function

> lines(spline(beh, z))

# estimate

> int.pro.glm <- data.frame(tau=z, beh)

> est <- as.numeric(int.pro.glm[z==0,])

> lines(x=c(est[2], est[2]), y=c(est[1], min(z)), col="orange", lty=2)

> lines(x=c(min(beh), est[2]), y=c(est[1], est[1]), col="orange", lty=2)

# CIs

> sf <- splinefun(z, beh)

> cil <- sf(qt(alpha, tdf))

> lines(x=c(cil, cil), y=c(qt(alpha,tdf), min(z)), col="blue", lty=2)

> lines(x=c(min(beh), max(beh)), y=c(qt(alpha,tdf),

+ qt(alpha,tdf)), col="blue", lty=2)

> ciu <- sf(qt(1-alpha, tdf))

> lines(x=cdciu, ciu), y=c(qt(1-alpha,tdf), min(z)), col="blue", lty=2)

> lines(x=c(min(beh), max(beh)), y=c(qt(1-alpha,tdf),

+ qt(1-alpha,tdf)), col="blue", lty=2)

> MASS.cis <- exp(confint(pr.glm))

> CI <- data.frame(c(cil, MASS.cis[trt.nr,1]),

+ c(ciu, MASS.cis[trt.nr,2]),

+ row.names=c("aus grafik", "confint()"))

> names(CI) <- c("2.5 %", "97.5 %")

19.5.2 Wald interval

# data generation + model fit

> muT <- c(2,5,10,20,30,40,50)

> n <- c(100,100,100,100,100,100,100)

> muT1 <- rep(muT, n)

> dat <- rpois(lambda=muT1, n=sum(n))

> trt <- as.factor(rep(1:length(n),n))
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> data <- data.frame(count=dat,trt=trt)

> pmod <- glm(count ~ trt, data=data, family=poisson(link="log"))

# CIs

> est <- data.frame(para=pmod$coefficients,stdr=sqrt(diag(vcov(pmod))))

> df.res <- pmod$df.res

> CI.l <- est[,1]-qt(0.975, df=df.res)*est[,2]

> CI.u <- est[,1]+qt(0.975, df=df.res)*est[,2]

> CI <- data.frame(para=est[,1], lower.limit=CI.l, upper.limit=CI.u)

> exp(CI)

19.5.3 Nonparametric bootstrap interval

The bootstrab confidnce interval for the comparison of two groups on page 22 was com-

puted in R [22] with the function boot.ci() of the package boot:

library(boot)

> boot.glm2<-function(Y, GROUP, conf.level=0.95, R=100)

+ {

+ ylist <- split(Y, GROUP)

+ data<-data.frame(Y=Y, GROUP=GROUP)

+ k <- length(ylist)

+ ni <- lapply(ylist, length)

+ indlist<-split(1:length(Y), GROUP)

+ bootglm <- function(d, i)

+ {

+ datnew<-d[i,1]

+

+ c.Interest <- glm(datnew~GROUP,

+ family=poisson())$coefficients[2]

+ return(c.Interest)

+ }

+ boot.out<-boot(sim="ordinary", stype="i",

+ R=R, statistic=bootglm, data=data, strata=data[,2])

+ conf.int <- boot.ci(boot.out=boot.out, conf=conf.level,
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+ type =c("perc"))$perc[4:5]

+ estimate=glm(Y~GROUP, data=data, family=poisson())$coefficients[2]

+ return(list(conf.int=conf.int,estimate=estimate

+ ))

+ }

> bstr.ci <- exp(boot.glm2(Y=count, GROUP=as.factor(grp),

+ conf.level=0.95, R=100)$conf.int)

19.6 Simultaneous confidence intervals

Dunnett confidence intervals can be computed in R for MLEs of a generalized linear model

with the package multcomp (Bretz, F., Hothorn, T., Westfall, P. (2004)) by

# data generation

> muT <- c(2,5,10,20,30,40,50)

> n <- c(100,100,100,100,100,100,100)

> muT1 <- rep(muT, n)

> dat <- rpois(lambda=muT1, n=sum(n))

> trt <- as.factor(rep(1:length(n),n))

> data <- data.frame(count=dat,trt=trt)

# Cell means Poisson-model

> pmod <- glm(count ~ trt -1, data=data, family=poisson(link="log"))

# Extracting coefficients of the glm-object

> estpar <- pmod$coefficients

> p <- length(estpar)

> covm <- vcov(pmod)

> df <- pmod$df.res

# Building the Dunnett contrast matrix

> library(multcomp)

> names(n) <- names(estpar)
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> cm <- contrMat(n, type="Dunnett")

> cm

trt1 trt2 trt3 trt4 trt5 trt6 trt7

trt2-trt1 -1 1 0 0 0 0 0

trt3-trt1 -1 0 1 0 0 0 0

trt4-trt1 -1 0 0 1 0 0 0

trt5-trt1 -1 0 0 0 1 0 0

trt6-trt1 -1 0 0 0 0 1 0

trt7-trt1 -1 0 0 0 0 0 1

# Getting estimates and standard errors for the difference to the control

# from the parameter verctor, the variance-covariance matrix and

# the contrast matrix

> covma <- cm %*% covm %*% t(cm)

> d <- 1/sqrt(diag(covma))

> dd <- diag(d)

> cr <- dd %*% covma %*% dd

> ests <- cm %*% estpar

> ses <- sqrt(diag(covma))

# Computing the quantile of the multivariate standard normal distribution

> conf.level <- 0.95

> dim <- ncol(cr)

> eps = 0.001

> pfct <- function(q, conf = FALSE) {

+ low <- rep(-abs(q), dim)

+ upp <- rep(abs(q), dim)

+ pmvt(lower = low, upper = upp, df = df, corr = cr,

+ abseps = eps/10, maxpts = 1e+06) - conf.level

+ }

> calpha <- uniroot(pfct, lower = 0, upper = 5, tol = eps, conf = TRUE)$root $

# Computing confidence intervals for the ratio

> LowerCL <- ests - calpha * ses
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> UpperCL <- ests + calpha * ses

> cint <- cbind(ests, LowerCL, UpperCL)

> colnames(cint) <- c("estimate", "lower", "upper")

> exp(cint)

estimate lower upper

trt2-trt1 2.456311 2.026082 2.977897

trt3-trt1 4.587379 3.834961 5.487420

trt4-trt1 9.475728 7.988913 11.239254

trt5-trt1 14.378641 12.156522 17.006946

trt6-trt1 19.441748 16.460641 22.962748

trt7-trt1 24.004854 20.339835 28.330271

This code is provided by the function csimint of the library(multcomp):

> cis <- csimint(estpar, df, covm, cmatrix=cm)

> exp(cis$conf.int) $

lower upper

trt2-trt1 2.026162 2.977778

trt3-trt1 3.835103 5.487217

trt4-trt1 7.989195 11.238858

trt5-trt1 12.156943 17.006357

trt6-trt1 16.461207 22.961959

trt7-trt1 20.340530 28.329303

attr(,"conf.level")

[1] 0.95

19.7 Quasipoisson

A quasi-poisson model can be fit in R by

> fit.glm <- glm(count ~ factor, data=data,

+ family=quasipoisson(link="log"))
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For using different variance functions, like a quadratic dependency on the mean a quasi

family can be used:

> quasi.glm <- glm(count ~ factor, data=data, family=quasi(var="mu^2", link="log"))

19.8 Negative binomial GLM

A negative binomial generalized linear model can be fit with the function glm.nb() in the

package MASS.

> negbin.glm <- glm.nb(count ~ factor, data=data)

or with:

> glm(count ~ factor, family = negative.binomial(theta), data = data)
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mission vorgelegt.

(Hannover, den 12.Juni.06, Daniel Gerhard)


