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Summary 
 
The problem of estimating small binomial proportions and performing a proof of 

safety against very small threshold proportions is a methodology widely needed 

in seed production, breeding and epidemiology. For both estimation and 

performing a hypothesis test, confidence intervals can be used. Different 

methods for interval estimation for a binomial proportion are reviewed, 

discussed and compared with respect to coverage probability. All commonly 

used methods perform poor for small sample sizes and small proportions, but 

because of expensive assay methods a methodology with sufficient coverage 

probability and power is needed for these cases. The binomial group testing 

approach was shown to perform well in estimation of small proportions using a 

comparatively low number of observations. The main part of the thesis 

concerns about the use of binomial group testing for performing a proof of 

safety if contaminations exceeding a small threshold are regarded as unsafe. 

Different confidence interval methods are compared in binomial group testing 

with respect to coverage probability, power and sample size requirement. The 

effect of the different parameters of experimental design on estimation, 

coverage probability and power is discussed. Especially the possibility to 

greatly improve power for a limited number of assays and the need for 

controlling bias in experimental design is shown. Finally, real data examples 

from different areas of application are evaluated, including discussions of their 

experimental design.  
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1 Introduction 

1.1 The problem: Testing for small proportions using 

expensive assays 

This diploma thesis concerns about estimation and hypothesis testing of small 

proportions. The proportion here describes the probability of a single individual 

to exhibit one of two distinct stages: ‘0’ or ‘1’, ‘infected’ or ‘not infected’, 

‘positive’ or ‘negative’ result of an assay. These so called dichotomous data can 

be natural or generated from continuous data by a fixed or optimal selected cut 

point. A main problem in analysis of dichotomous data is discreteness of 

observation: If a sample of n individuals is randomly taken from a population, 

one will observe a discrete number of positive individuals: 0,1,2,…,n.  

If f.e. positive individuals are very rare, e.g. less than 1% in a population, one 

usually needs to evaluate many single individuals to estimate the true 

proportion. If only a small sample is taken from a population, the probability to 

observe positive individuals at all is low.     

If the trait of interest of an individual can be observed very easily, evaluation of 

single individuals provides most information. This might be the case in 

assessing f.e. viability of seeds or visible disease symptoms on plants. If the 

character of interest can only be observed by application of laborious, 

expensive assays, it might be desired to perform only few assays, resulting in 

only few observations for estimation. Binomial group testing compromises the 

economical limitation of number of assays with the need to include many 

individuals into the experiment. 

In a binomial group testing experiment, groups of individuals are pooled, and 

each pool is evaluated whether no or an unknown number of positive 

individuals are member of the pool. The group is classified positive, if one or 

more members are positive and is classified negative, if no member is positive. 

The few resulting observations are based on a larger number of individuals. 

For compromising few observations and a high number of contributing 

individuals, a price has to be paid: information is lost, additional assumptions 

need to be fulfilled and experimental design has to be chosen carefully. 
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1.2 Areas of application 

Binomial group testing can be useful, if low proportions shall be estimated or 

hypothesis tests against very small thresholds shall be performed and the 

character of interest can be observed only using expensive assays, f.e., PCR 

methods, other molecular markers or ELISA. 

1.2.1 Contamination by GMO 

The Regulation 1829 of the European Parliament and Council (Anonymous, 

2003) requires labelling of food and feed containing GMO unless it contains 

less than 0.9 % GMO, if these GMO are approved in the European Union. 

Contaminations with GMO not approved in the European Union, which are 

assessed as favourable by the European scientific committee are allowed to be 

present until a threshold of 0.5%. 

According to the Deutsche Gentechnikgesetz (GenTG) § 14 (2a), the 

regulations for releasing and marketing of a GMO containing product (§ 14, 15, 

16) are not applied, if it contains less than 0.5% of the GMO and several 

additional conditions met.  

Because of this, seed companies might want to ensure, that their marketed 

seed lots have contents of GMO below these thresholds. This is of special 

importance in species where outcrossing during mass production of seed can 

hardly be totally controlled, because pollen is disseminated by wind, as are 

maize (Zea mays), rhy (Secale cereale) or sugar beet (Beta vulgaris). 

For any decision based on sampling from a population, false positive and false 

negative decisions may occur, the risks of erroneous decisions can not be 

avoided, unless n →∞ . 

In this context the terms ‘consumers risk’ and ‘producers risk’ are frequently 

used (Remund et al. 2001): The consumers risk is the probability that a seed lot 

is allowed to be marketed although its content of GMO is higher than the 

threshold, whereas the producers risk is the probability that a seed lot is not 

allowed to be marketed, although its GMO content is below the threshold. 

Depending on the formulation of hypotheses, these terms correspond to the 

false positive and false negative error rates in hypothesis testing, the focus of 

section 4. 
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Assays for GMO detection 
Depending on the assay method, further sources of erroneous decisions can 

occur: The probability of an assays, to detect a positive individual as positive  is 

called sensitivity, while the probability that the assay detects a negative 

individual as negative is called specificity (Sachs,1991). 

For GMO detection, various methods are reviewed in the references, which 

differ in their sensitivity and specificity. GMO can be detected either by labelling 

special gene products with antibodies or by detection of special DNA 

sequences in a sample using PCR or related methods. DNA-based methods 

have the advantage to be very sensitive (Giovannini et al. 2002). Sensitivity is 

of main importance because a sufficient sensitivity of the assay method is 

crucial for the validity of group testing methods. 

According to Holst-Jensen et al. (2003) the level of detection (LOD) of a PCR 

assay can be defined in different scales, either as absolute copy number of the 

target sequence or as percentage of the target molecule relative to the total 

DNA. The level of detection mainly depends on the quality of extracted DNA, on 

the presence of inhibitory substances, or can be reduced due to processing of 

the material in food production. Jankiewicz et al. (1999) thus distinguished 

between theoretical LOD in serial dilutions of DNA from seeds and practical 

LOD in processed material with known content of GMO. They found a 

theoretical LOD of 0.005 % or 30 copies for Round-up-Ready soybeans and 

0.005 % or 9 copies for a Bt maize variety. The practical LODs were 0.1 % for 

both, which is close to the threshold.  

Moreover, assay methods might differ in their specificity: Holst-Jensen et al. 

(2003) classify different approaches according to the target sequence and the 

resulting sensitivity. Primers for target sequences, which were introduced in 

most GMO (certain vector, promotor sequences or resistance genes) can be 

used for general screenings on GMO, but might have higher false positive 

rates. More specific primers for a certain gene, a certain construct of promotor, 

gene, terminator and vector sequences or for a special transformation event 

allow more specific screening, but require more prior knowledge of sequences. 

Although methods might differ in sensitivity and specificity, the statistical 

examinations in this thesis assume both =1. The user of the shown 
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methodology has to ensure that these assumptions come true for the chosen 

assay method, species, organ or tissue type and the size of bulk samples. 

1.2.2 Plant Breeding 

In plant breeding it can be of interest to show that a certain trait (f.e. 

susceptibility for a disease) reaches only a small incidence in breeding material. 

An objective might be selection of inbred lines or other breeding material with a 

low level of plants carrying a certain allele using molecular markers. Here a 

clear threshold is unlikely to exist, so estimation using confidence intervals is 

more important. 

1.2.3 Vector transfer design 

Many viral plant diseases are transmitted during the process of feeding of 

certain animal species on the host plant. The rate of disease transmission by 

these so-called vectors is of importance for the epidemiology of these diseases. 

Vector transfer designs have the aim to estimate the probability of a single 

vector to transmit the disease to a plant: a certain number of infected vectors 

are placed on each of n isolated healthy test plants. Then a known number of 

vectors have the opportunity to transmit the disease to each test plant by 

feeding on it. After sufficient periods of feeding and allowing appearance of 

disease symptoms, each single plant is evaluated for showing the disease or 

not. Each infected plant has received the disease from at least one of the 

vectors. The plants and their evaluation are the biological assay, where the 

number of plants might be limited due to capacity of greenhouses and isolation 

cages or by the costs of performing an ELISA or PCR on each single plant for 

disease detection (Tebbs and Bilder 2004, Swallow 1985).   

1.2.4 Estimation of infection rates, incidence of viruses 

In epidemiological studies it might be of interest to estimate the incidence of 

individuals carrying the pathogen in natural vector populations. If this incidence 

is expected to be small, group testing might be applied. The caught individual 

vectors can be randomly assigned to bulk samples and the assays for detecting 

the virus are performed on these single bulks. For example, Tedeschi et al. 

(2003) used group testing to estimate the rate of infection with the Apple 
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Proliferation phytoplasma in natural populations of the vector of this disease, a 

psyllid. 

This application is also interesting for epidemiology of some human diseases: 

Gu et al. (2004) used group testing to assess the incidence of West Nile virus 

(WNV) in natural populations of mosquito. 

1.2.5 Seed borne pathogens 

For the control of seed borne diseases, incidence of the viable pathogen in a 

marketed seed lot has to be very low to avoid economical losses due to the 

disease. Seed companies might want to fulfil internal quality standards. Walcott 

(2003) reviewed methods for detection of seed borne pathogens. Combinations 

of PCR with pre-enrichment of viable cells using selective media (BIO-PCR), 

enrichment of cells using antibodies (IMS-PCR) or enrichment of DNA-

fragments using single stranded probes (MCH-PCR) can achieve much higher 

sensitivity than conventional detection methods, but are expensive. Thus, group 

testing might be applied for screening seed lots on seed borne pathogens. 

1.3 Assumptions  

In the following it is assumed that: 

 

1. The probability to show the trait of interest is independent and identically 

distributed Bernoulli (π) for each unit in the population. This is also 

assumed for simple binomial testing. 

For group testing, additional assumptions are needed: 

2. The units are randomly assigned to the groups. 

3. All groups contain the same number of units. 

4. The chosen group size does not influence the probability of a single unit 

to show the trait of interest. The sensitivity of the assay must be 

sufficient to detect a group as positive if only one single member is 

positive.  

5. The assays do not misclassify groups, i.e. they have sensitivity=1 and 

specificity=1 and do not vary in specificity and sensitivity.  

(see Tebbs and Bilder, 2004)  
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The experimenter has to ensure, that these assumptions are fulfilled. To fulfill 

assumption 1 the sample of individual units has to be taken representative for 

the population and has to account for possible clustering f.e. of GMO in big 

seed lots (Remund et al. 2001). 

Assumption 3 might be problematic in vector transfer designs, where single 

vectors might escape or die and decrease the group size in this case. Hepworth 

(1996, 2004) reviews and proposes methods for evaluation of group testing 

experiments with variable group size (see section 5.1). 

Assumption 4 greatly depends on the assay method: For vector transfer 

designs, the feeding behavior of insects might change with increasing number 

of individuals on one plant. Using ELISA, a decreasing sensitivity to detect 

single positive units in a group can be expected with increasing group size, due 

to dilution effects or an increasing proportion of inhibitory substances. Hung 

and Swallow (1999) examined the problem of dilution effects and testing errors 

for binomial group testing and give recommendations for experimental design 

(see section 5.2), if violation of assumptions 4 and 5 can not be excluded. 

1.4 Notation and definitions 

π denotes the binomial probability of a single unit to be ‘positive’, where π 

is assumed to be the same for all individuals in the population.  

 

π0 denotes the threshold proportion to test against in a hypothesis test. π0 

corresponds to the LQL (lowest quality level) in guidelines and papers on 

seed testing in common and GMO-testing in special (Remund et al. 

2001). 

 

n denotes the number of observations, i.e. for binomial group testing the 

number of groups tested or the number of assays performed.  

 

s is the number of individuals per group i.e. the group size. It is assumed 

to be equal for all groups. n*s then is the total number of individuals in 

the experiment. The observations are performed on the group level: A 

group is counted positive if at least one individual in the group is positive. 

These observations are assumed to be free of misclassifications. 
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θ binomial probability of a group to be positive, depending on π and the 

group size s. 

 

Y Y is the observed number of positive groups, i.e. a certain realization of 

the random variable y following a binomial distribution Bin(n, θ). 

  

t t=Y/n is the observed fraction of positive tested groups, the estimator of 

θ. 

 

p p is the estimated probability π of a single individual to be positive.  

 

α denotes the probability of rejecting a null hypothesis in case that it is 

true, commonly called error of first kind. 

 

β denotes the probability not to reject the null hypothesis although the 

 alternative hypothesis is true, commonly called error of second kind. 

 

E denotes the expected value of the random variable, which is defined as 

 E(y)= ( )i i
i

Y P y Y=∑  for a discrete random variable y (Sachs, 1991).  

 
Var denotes the variance of a random variable, i.e. the expected value of the 

squared difference between its single realizations and its expected 

value, which is ( ) ( )( ) ( )2
i i

i
Var y Y E y P y Y= − =∑ for a discrete random 

variable y (Sachs, 1991). 

 

Bias denotes the bias of an estimator, i.e. the difference between the true 

unknown parameter and the expected value of its estimator (Sachs, 

1991). 

 

MSE denotes the mean square error of an estimator, which is the expected 

value of the squared difference between the true unknown parameter 



 12

and its estimator and is used as a measure for the goodness of an 

estimator. In case of an unbiased estimator, MSE=Var, whereas for a 

biased estimator it includes the variance and the square of its bias (Kotz 

and Johnson 1985, Sachs 1991). 

 

‘(1-α)*100%-confidence interval’ (CI) for a parameter π is defined as an 

estimated interval [pL,pU] fulfilling the condition that 

[ ]( ), 1L UP p pπ α∈ ≥ −  

 

‘Consumers risk’ denotes the probability that a marketed product does contain 

 contaminations higher than the threshold. 

 

‘Producers risk’ denotes the probability that a product is not allowed for 

 marketing although its contamination is below the threshold. 

 

‘Coverage probability’ denotes the actual probability of a confidence interval to 

 contain the true parameter [ ]( ),L UP p pπ ∈ . 

 

‘Power’ denotes the actual probability to reject the null hypothesis in a case 

 where the alternative hypothesis is true, i.e. the probability 1-β, in case 

 of a confidence interval it is [ ]( )0 ,L UP p pπ ∉  
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2. Point estimation 

2.1 Estimator for π 

A single group is assumed to be positive in the assay if 1,…,s individuals units 

of the group are positive. Thus, several events on the individual scale can lead 

to the appearance of positive groups. According to the assumptions, negative 

groups can only result from one event on the individual scale, which is: none of 

the s individual units in the group is positive. 

Therefore the probability 1-θ of a group to be negative equals the probability 

that s negative individuals were assigned independently to the group: 

( )sπθ −=− 11  

From this equation the estimator p is derived by solving for π and replacing θ by 

its estimator t: 

  ( ) stp 111 −−=  

In group testing, the number of negative groups provides the information, that 

no individual in this group was positive, while positive groups can result from 1 

to s positive individuals in a group. The estimator p is biased due to the fact that 

the information about the events leading to a positive group is very limited. Bias 

increases as the probability of observing only positive groups increases. This 

occurs if the group size s is chosen too high in relation to the unknown 

probability π. Bias and variance of the estimator can be calculated from n, π 

and s using the formulas in Swallow (1985). 

2.2 Probability to observe y=Y  

The probability to observe a certain realization Y in a group testing experiment 

depends on n and the binomial probability θ to observe a positive group: 

( ) ( ) YnY

Y
n

nYy −−







== θθθ 1,|Pr   

Because θ itself depends on π and the group size s, it can be calculated from 

n, s, π  as  
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( )( ) ( ) ( )YnsYs

Y
n

snYy −−−−







== πππ 111),,|Pr( . 

This can be used for closed calculation of the expected value of the estimator 

p, its bias, variance and mean square error and later on for the closed 

calculation of coverage probability, power and interval length of confidence 

intervals in group testing experiments. 

2.3 Expected value of p 

The expected value of the estimator p then is: 

( ) ( )( ) ( ) ( )ynsys
n

y

s

y
n

n
ypE −

=

−−−













 −−= ∑ ππ 11111

0

1

  

(see Swallow, 1985, with different notation) 

2.4 Bias of estimator p 

( ) ( ) π−= pEpBias  

2.5 Variance of estimator p 

( )( )2)( pEpEpVar −=  

( )( ) ( )( ) ( )( )2
0

2

11111)( pE
y
n

n
ypVar

ysyns
n

y

s
−−−−−














 −=

−

=
∑ ππ  

see Swallow (1985), with different notation. 

2.6 MSE of the estimator p 

( ) ( ) ( )( )2
MSE p Var p Bias p= +  
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3 Methods for interval estimation for the binomial 
parameter π 
 

Confidence intervals take the uncertainty of estimation into account. Assuming 

a certain distribution of the estimator, the confidence interval promises to 

contain the true, unknown parameter within its limits with a high, pre-specified 

probability. Thus confidence intervals allow for both, estimation with a specified 

probabilistic precision and hypothesis testing with a controlled type-I-error rate 

α. 

Hypotheses of interest in testing might be one-sided 

H0: π ≥ π0 vs. H1: π < π0 

H0: π ≤ π0 vs. H1: π > π0 

or two-sided 

H0: π = π0 vs. H1: π ≠ π0 

   

The null hypothesis is rejected with error probability α, if the (1-α)-confidence 

interval does not contain the threshold value π0.  

The proof of safety 

In the case of testing a seed lot for a low content of contaminations, the 

decision on the hypotheses 

H0: π ≥ π0 vs. H1: π < π0,  

requires a upper (1-α)-confidence limit [0; pU]. The probability to erroneously 

decide against H0 by excluding π0 is then controlled only upwardly and the 

consumers risk =α. This is known as ‘proof of safety’: the seed lot is assumed 

to be hazardous under H0 and is only allowed for marketing, if H0 is rejected, 

i.e. the seed lot has been shown to be ‘safe’. The producer of seed is interested 

in controlling the risk to classify a seed lot as contaminated although its 

proportion of GMO is in fact lower than the threshold, what corresponds to 

controlling β via choice of experimental design (section 4.5).  

The proof of hazard 

Oppositely, one might approach this problem testing the hypotheses  
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H0: π ≤ π0 vs. H1: π > π0,  

then H0 will be rejected if the threshold π0 is not included in the lower 

confidence limit of a confidence interval [pL,1]. This is known as a ‘proof of 

hazard’: under H0, the seed lot is assumed to be ‘safe’, i.e. equal or below the 

threshold. If H0 is rejected, one can conclude that the proportion of GMO is over 

the threshold, i.e. the seed lot is ‘hazardous’. Because of the falsification 

principle one can not conclude that the seed lot is ‘safe’ in case that H0 is not 

rejected. Here the consumers risk equals β, while the producers risk is 

controlled via the pre-specified error rate α.  

 

Also for testing against other contaminations than GMO or in situations where 

low contents of an undesired trait shall be estimated, it seems more reasonable 

to perform a proof of safety than to perform a proof of hazard. Because of this, 

main focus will be on the performance of upper confidence limits: with respect 

to the actual consumers risk (section 4.3, 4.4) and to experimental design with 

the objective of a low producers risk (section 4.5).  

3.1 Confidence intervals for simple binomial testing 

The following methods can be applied for binomial probabilities, thus either for 

CI estimation for a binomial probability π in a simple binomial experiment with 

evaluation of each unit (s=1), or for CI estimation for the probability θ in a group 

testing experiment. In the following, they are given in the notation to estimate a 

simple binomial probability π. 

3.1.1 Confidence intervals based on normal approximation 

The following asymptotic methods all assume gaussian distribution of their 

estimator. 

Wald interval 
The Wald CI is based on the large sample approximation that 

( )
( )

( )~ 0,1
1

p
N

p p n
π−

−
. 

Then a nominal 95%-confidence interval for π is 
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( )







 −
±

n
ppzp 1

2α (Santner and Duffy,1989) 

This interval is known to be liberal (Santner and Duffy, 1989, Brown et al., 

2001) and will therefore not be used for construction of CI on the group scale. 

But it will be shown for comparison of CI for simple binomial experiments 

because it was often used as a standard method in textbooks and software. 

Wilson score interval 

This interval introduced by Wilson (1927), is derived from the inversion of the 

Score test, which compares the observed proportion with a hypothetical 

proportion using the standard error under the null hypothesis. Blyth and Still 

(1983, normal approximation I) derive the Wilson Score Interval and the Wilson 

Score Interval with continuity correction from the following test: 

 

H0: π=π0 is rejected if  

 

( )
c

n
nX

>
−

−

00

0

1 ππ

π
, with { } α−=≤ 1cZP  for a Standard Normal Z. 

 

The standard error under a hypothetical binomial parameter ( )00 1 ππ −n  is 

used here instead of the standard error estimated from the sample ( )pnp −1 , 

which is used in the test underlying the Wald interval for a simple binomial 

parameter. This main difference to the Wald interval for a simple binomial 

proportion results in much better coverage probabilities of the two-sided Wilson 

Score Interval and the methods derived from it. The midpoint of this interval is 

shifted towards 0.5, depending on the chosen α. The shifting of the interval 

midpoint compared to the point estimate is stronger for small point estimates 

and small n. Additionally, the width of the interval becomes larger for small 

point estimates and smaller for point estimates near 0.5, compared to the Wald-

Interval. For details see Agresti and Coull (1998), Brown et al. (2001). 
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The two-sided (1-α)-Wilson score Interval for π is  

( ) ( )













+


























+−±+ nzn

n
z

ppz
n

z
p 2

2

2
2

2

2
2 1

4
1

2 α
α

α
α

  

(Agresti and Coull, 1998; Piegorsch, 2004) 

A modification exists, removing the most extreme violations of nominal 

confidence level for small values of π (see Brown et al. 2001). 

Generalized Agresti-Coull-Interval 

The generalized Agresti-Coull Interval (Piegorsch, 2004, Brown et al., 2001) 

uses a re-centered estimator ( )2
2

2
22

1~
αα znzyp +






 += . Then the two-sided 

(1-α)-confidence interval for π is: 

 

( )







 −
±

n
ppzp ~
~1~~

2α where 
2

2
~

αznn +=  

Since this interval is derived from the Wilson Score interval, it shows similarly 

good coverage probabilities, but is more conservative for binomial probabilities 

near 0 (Brown et al., 2001). Additionally it has the disadvantage to have lower 

limits pL < 0 and upper limits pU > 1 for Y close to 0 and Y close to n, 

respectively. 

Add-4-Interval 

The add-4 method is a simplification of the generalized Agresti-Coull method 

for the two-sided case and α = 0.05. The term 22
2 96.1=αz  is replaced by 4, the 

re-centered estimator is simply ( ) ( )42~ ++= nyp  and 4~ += nn . 

Because this two-sided CI only is a special case for α = 0.05, it cannot be 

expected to maintain good coverage properties for other cases, f.e. if a one-

sided 95%-CI shall be constructed or another confidence level is required. 

Therefore it will not be used for further examinations. 

The add-4- and generalized Agresti-Coull-Interval have the same re-centered 

midpoint p~ as the Wilson-interval (Agresti and Coull, 1998, Brown et al., 2001) 
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and are slightly broader in length. Thus they show the same shifting of the 

interval towards 0.5, depending on the estimator, n and α, but are slightly more 

conservative. 

Wilson Score Interval with continuity correction 

Blyth and Still (1983) recommend this interval for moderate sample sizes (n ≥ 

30), for which their improved exact interval is not tabulated anymore. It is 

derived from the same approximation as the Wilson Score Interval but Y is 

replaced by (Y+0.5) for calculating the upper bound and by (Y-0.5) for 

calculating the lower bound. Additionally, it is defined to have a lower bound = 0 

for Y = 0 and an upper bound = 1 for Y=n. The two-sided (1-α)- Confidence 

Interval for π then is. 

( ) ( ) ( )22 2
2 ´2 2

2
2

0.5 2 0.5 0.5 4Y z z Y Y n z
n z

α α α

α

 ± + ± ± − ± + 
 +
  

 

The continuity correction results in an actual confidence deviating only 

upwardly from the nominal level (for details see Blyth and Still, 1983), so this CI 

shows an actual coverage probability much higher than the nominal level 

(Brown et al. 2001b), thus cannot be recommended. 

3.1.2 Further approaches for binomial confidence intervals 
Brown et al. (2001) reviewed additional methods as the Jeffreys prior interval 

(an originally bayesian approach, but corresponding to a mid-p version of the 

Clopper-Pearson CI) and its modification, the Logit interval and the arcsine 

interval. In terms of coverage, they are not superior to the intervals 

recommended, because for some values of π they are more conservative for 

others they are more liberal than the Wilson or Agresti-Coull interval (Brown et 

al., 2001). 

3.1.3 Exact confidence intervals 

Exact confidence intervals guarantee the nominal confidence level. But 

because of discreteness of the binomial distribution they tend to be 

conservative. An exact confidence interval is derived from an exact test for π. 

The probability of a certain realization Y under the null hypothesis π = π0 can be 



 20

calculated exactly. The null hypothesis is rejected if the probability of 

occurrence of the observed Y under the null hypothesis is lower than a pre-

specified level α. 

The idea of exact confidence intervals for π is then to perform an exact tests on 

each null hypothesis π = π0 in π0 = 0,…,1. The confidence region for π consists 

of all values of π0 for which the null hypothesis was not rejected for the 

observed Y. The resulting confidence interval has a confidence coefficient ≥ 1-

α if the family of tests performed has a size < α (Blyth and Still, 1983). 

 

Exact confidence intervals can be calculated fulfilling different conditions (see 

Blyth and Still, 1983). If the interval requires a probability to exclude true π of 

less than α/2 in each of both tails, this results in the longer, more conservative 

Clopper-Pearson Interval, whereas requiring a probability to exclude true π of 

less than α for both tails together results in shorter intervals, which are subsets 

of the Clopper Pearson Interval (Blyth and Still, 1983). 

Because of this, the upper or lower bound of a two-sided (1-2α)- Clopper-

Pearson-confidence-interval can be used as a one-sided (1-α)-Confidence 

interval, as recommended by Reiczigel (2003). This cannot be done using the 

bounds of the Blyth-Still Interval (see Agresti and Min, 2001). Agresti and Min 

(2001) recommend to define special one-sided CI for one-sided hypothesis. 

Clopper-Pearson interval  
The Clopper-Pearson Interval [pL,pU] is constructed by inversion of an exact 

test to fulfill the conditions, that the probability of pL to be greater than the true 

value is ≤ α/2 and the probability of pU to be smaller than the true value is ≤ α/2, 

too. The upper and lower limit can also be calculated using the beta-distribution 

or the F-distribution (Santner and Duffy, 1989, Tebbs and Bilder, 2004). 

Using the quantiles of the F-distribution, the Clopper-Pearson CI is denoted as: 
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(Santner and Duffy, 1989, Remund et al., 2004) 
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As can be seen from the formula, the lower bound is not defined for Y=0 and 

the upper bound is not defined for Y=n. Thus in case that Y=0, the lower bound 

is set 0 (as the estimator) and for Y=n, the upper bound is set 1. 

Improved exact confidence intervals: Blyth-Still-Casella, Blaker 
Blyth and Still (1983) and Casella (1986) describe computational methods to 

derive two-sided intervals which are exact but less conservative than the 

Clopper-Pearson Interval and are improvements of the method given by Sterne 

(1954). Tables of the Blyth-Still-Interval for n ≤ 30 for confidence levels of 0.95 

and 0.99 are given in Blyth and Still (1983) and Duffy and Santner (1989). Its 

modification by Casella is tabulated in Casella (1986). They have in common 

not to require equal probabilities α/2 to exclude the true parameter for the 

upper and the lower bound. Thus, these methods cannot be applied as one-

sided intervals in the usual way of replacing α/2 by α (Reiczigel, 2003). 

According to Reiczigel (2003), the exact confidence Interval proposed by Blaker 

(2000) is nearly equivalent (fulfilling slightly different conditions) to that of 

Sterne, but is easier to compute. 
 

3.2 Confidence intervals for binomial group testing 
In group testing experiments, confidence intervals for π can be constructed in 

two basic ways: on the individual scale or on the group scale. 

  

1. On the individual scale, the estimator p and its variance are used for 

construction of the confidence limits. The structure of the variance of p 

(including Y,n,s) makes it complicated to implement adjustments for 

improved confidence intervals straightforward into these methods. 

 

2. The construction of intervals on the group scale uses the fact that θ is a 

binomial proportion too. A confidence interval [tL,tU] for θ is first 

constructed using the estimator t=Y/n. This interval is transformed in a 

second step to a confidence interval [pL,pU] for the individual probability 

by applying ( ) stp 111 −−=  on the confidence limits of [tL,tU]. This is 

possible since the relation between p and t is monotone for all sets of p 
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and s (Tebbs & Bilder, 2004). Because t is the estimator of a simple 

binomial proportion with the simple variance term ( ) ( ) nttt −= 1var , the 

usual methods for construction of confidence limits for the binomial 

proportion can be applied this way. 

3.2.1 Asymptotic confidence interval constructed on the 
individual scale 

The individual scale Wald CI 
A Wald-type confidence interval can be constructed using the estimator p and 

its variance multiplied with the appropriate quantile of the standard normal 

distribution. 

The two-sided Wald-Interval is  

( ) 



 ± ;ˆ

2/ parVzp α  

where ( ) ( )[ ] ( )[ ]22 111ˆ −−−−= ss pnspparV is the asymptotic variance of p, 

recommended by Thompson (1962) and Swallow (1987) for appropriate sets of 

n, s and p. This asymptotic variance estimator is problematic for small n and 

large values of s and π, as shown by Thompson (1962). Alternatively, the Wald-

Interval can be calculated using the formula for closed calculation of the 

variance given in section 2.5. 

Tebbs and Bilder (2004) examined further confidence intervals constructed on 

the individual scale, which did not show advantages compared to some of the 

intervals constructed on the group scale. 

3.2.2 Confidence intervals constructed on the group scale 

The confidence intervals recommended for simple binomial testing (section 3.1) 

can be applied here to estimate an interval [tL, tU] for the group scale parameter 

θ. The methodology of transferring confidence intervals from the group scale 

[tL, tU] to the individual scale [pL, pU] assumes that the relation between t and p 

is monotone for fixed values of s (Tebbs and Bilder 2004, Tebbs and Swallow 

2003b). Then it is provided, that a positive difference t2 - t1 will result in a 

positive difference p2 - p1, and that a confidence interval for θ which excludes a 
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certain θ0 will result in a corresponding interval for π which as well excludes the 

corresponding π0. 

Figure 1 illustrates the relationship ( ) ( )1, 1 1 sp f t s t= = − −  for different group 

sizes s. 

 
Figure 1: relation between p and t for different group size s= 1,2,5,10,50, 100 
 
As expected there is a linear relation between t and p for group size s=1. For 

group sizes s>1 the relation is not linear but still monotone. Thus t ranges from 

0 to 1 and can have only i = n + 1 possible values, where (ti – ti-1) always equals 

1/n, the possible estimators p of a group testing experiment also can have only 

i=n+1 values. For large group sizes, the differences (pi – pi-1) become much 

smaller than (ti – ti-1), so rounding of outcomes should be avoided for large n 

and s. 
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That the assumption of monotony is true for all sets of p and s can be shown by 

application of the resampling function given in section 6. Ordering and 

construction of a confidence interval on the group scale always results in the 

same order of outcomes and thus in the same confidence interval as if this is 

done on the group scale.  

Because of this monotony, the performance of confidence interval procedures 

in simple binomial testing can be expected to be transferred from the interval on 

the group scale to the interval on the individual scale.  

3.3 Binomial confidence intervals and tests used in statistical 
standard software 

StatXact 6 
For a single binomial proportion, StatXact 6 allows computation of the Clopper-

Pearson confidence interval and the improved method of Blyth and Still (1983) 

and Casella (1986), as well as one- and two-sided p-values of the exact test. 

R 2.0.1 
In R the standard method in the package ‘stats’, implemented in the function 

binom.test, is the Clopper-Pearson CI and p-values of the exact test. The 

CRAN package ‘epitools’ additionally provides the functions binom.wilson and 

binom.approx for calculation of the Wilson and Wald CI, respectively. 

SAS 8.2 
In SAS, methods for a single binomial proportion are implemented in the 

procedure FREQ. Here, either the Clopper-Pearson or the Wald CI can be 

calculated while p-values are available for the Score test (corresponding to the 

Wilson CI) and the exact test.  

 

At the moment, methods for group testing are not implemented in these 

programs, neither for analysis of experiments, nor for experimental design 

depending on bias, MSE or power. 
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4 Comparison of the methods 

4.1 Criteria 
Because main interest is in a proof of safety, focus will be on upper confidence 

limits, which will be compared with respect to their coverage probabilities and 

their power against a null hypothesis of interest. If the intended use of the 

interval is mainly estimation and not decision on a hypothesis, interval widths 

might be compared instead of power, as done in the references (Brown et al. 

2001, Tebbs and Bilder, 2004).  

Since objective is a proof of safety using upper confidence limits, the actual 

consumers risk corresponds to α, i.e. methods with an actual coverage 

probability close to (1-α) are required. Since the producers risk for the proof of 

safety H0: π ≥ π0 vs. H1: π < π0 corresponds to β, a high power 1-β is 

required what can be achieved by application of an appropriate experimental 

design. If the actual coverage probability is smaller than the nominal level (1-α), 

the method is called ‘liberal’, if the actual coverage of a method is greater than 

this pre-specified confidence level, it is called ‘conservative’. In this second 

case, the actual power (1-β) will be lower than necessary, whereas liberal 

methods exhibit a higher tendency to reject the null hypothesis, because they 

allow a higher type-I-error α.  

4.2 Methods for calculation of power and coverage probability 
Coverage probability denotes the actual probability of a confidence interval to 

contain the true parameter which it is supposed to contain with probability 1-α, 

i.e. in case of using an upper limit [ ]( )0, UP pπ ∈ . Power denotes the actual 

probability 1-β, i.e. the probability to reject the null hypothesis in a case where 

the alternative hypothesis is true. If the hypotheses H0: π ≥ π0  vs.  H1: π < π0 

are tested using the upper limit of a confidence interval, power is the probability 

that the confidence interval [0, pU] does not contain the threshold π0. 

Coverage probability, power and interval length can be either simulated or 

calculated closed. The closed calculation is preferable in terms of calculation 

time at least for small n. Here closed calculation will be used, but the underlying 

R code was checked by comparing the results with simulations. Due to overflow 
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of the value of the binomial coefficient 
n
k
 
 
 

 for n>1020, closed calculation can 

not be used for very large sample sizes. In this case simulation will be applied. 

 

Simulation 
For simulations a single binomial or binomial group testing experiment was 

created using the binomial pseudo random numbers of the function rbinom() in 

the ‘stats’ package of R 2.0.1. The event of interest (“CI contains the true 

parameter”, “H0 is rejected” or “actual interval length”) is evaluated and saved. 

Experiments with a given, common set of parameters are repeated a sufficient 

number of times, and the probabilities of events or the expected lengths can be 

calculated from the saved values. 

The R code (programmed under R.2.0.1) is given in the Annex, section 11. 

Closed calculation 
Closed calculation uses the fact that the observation y can only have the 

realizations Y = 0,…,n. The probability of a certain realization of y can be 

calculated for a given set of parameters from binomial distribution. Furthermore, 

for each realization of y it can be calculated which event (“CI contains the true 

parameter”, “H0 is rejected”, “actual interval length”) comes true for the given 

parameters. Expected value of an event for a given CI method applied for n 

observations can then be calculated by summation over all possible realizations 

of y: 

for simple binomial testing (s=1, π=θ): 

( ) ( )
0

| , ( , ) 1
n

n yy

y

n
E I n I y n

y
π π π −

=

 
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(Brown et al. 2001) 

 

for binomial group testing: 

( ) ( ) ( )( ) ( ) ( )
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n ys s n y

y

n
E I n s I y n s
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π π π −

=
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∑  

(Tebbs and Bilder, 2004) 
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where I(y,n,s) is an indicator function which gives a ‘value’ of the confidence 

interval constructed for a certain value y and given n, s. This value might be the 

length of the interval for a certain Y or it might be 1 or 0 if this interval contains 

a hypothetical value π0 or not.  

 

The following formulas can be used for comparing coverage probabilities (see 

Tebbs and Bilder, 2004) and power of the different methods for construction of 

confidence intervals for group testing. 

( ) ( ) ( )( ) ( ) ( )

0

, , , , , 1 1 1
n ys s n y

y

n
C n s I y n s

y
π π π π −

=

 
= − − − 

 
∑  

calculates the exact coverage probability, where I(y,π,n,s) is the indicator 

function, which has the value 1 if the confidence interval contains π and has the 

value 0 if not (Tebbs & Bilder, 2004). 

 

Analogously, the exact power for a group testing confidence interval is given by 

( ) ( ) ( )( ) ( ) ( )
0 0

0
, , , , , , 1 1 1

n ys s n y

y

n
P n s I y n s

y
π π π π π −

=

 
= − − − 

 
∑  

where I(y,π0,n,s) denotes an indicator function with the value 1 if a confidence 

interval does not contain the hypothetical value π0 and has the value 0 if it 

contains the value π0. 

The code for calculation is given in the Annex, section 11. 
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4.3 Comparison of intervals for simple binomial testing 
The CI for simple binomial testing are the basis of the group testing CI which 

are constructed first on the group scale. Although interest is in small 

proportions π, the interval procedures have to be compared over the entire 

range (0,1) because these methods are later on used to construct intervals for 

θ and the range of θ depends on the chosen group size s.  

4.3.1 Two-sided intervals 

The coverage probabilities of two-sided intervals were examined by Agresti and 

Coull (1998) for the Wilson Score and Clopper-Pearson interval; Brown et al. 

(2001a, 2002) reviewing many methods including the Wilson, the Clopper-

Pearson; Jeffreys prior and the generalized Agresti-Coull interval; Casella 

(2001) and Blyth and Still (1983) for the Blyth-Still-interval; Brown et al. 

(2001b), Blyth and Still (1983) for the continuity corrected Wilson Score interval, 

Reiczigel (2003) for the Sterne, Blaker and Wilson interval. 

 

Although recommendations are discussed controversy, the following can be 

resumed: 

A coverage probability ≥ (1-α) for all n and π is only guaranteed by the exact 

methods as Clopper-Pearson, Sterne, Blyth-Still, Casella and Blaker. Because 

of discreteness, all of them tend to be conservative, with an actual mean 

coverage higher than the nominal. The two-sided (1-α)-Clopper-Pearson 

confidence interval guarantees to exclude the true parameter with a probability 

≤ α/2 for each bound of the interval (Santner and Duffy, 1989, Blyth and Still, 

1983). The actual coverage of the two-sided Clopper-Pearson CI is higher than 

1-α. Especially for small n, it is between (1-α/2) and 1 (see Blaker, 2000). 

Several Comments on the paper of Brown et al. (2001a) recommend the 

confidence interval of Blyth and Still (1983) which was modified by Casella 

(1986), because it holds the nominal confidence level and is less conservative 

than the Clopper-Pearson Interval (Agresti and Min, 2001). The Blyth-Still-

Casella interval is also used as less conservative option in StatXact 6. 
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For large sample sizes also authors favoring exact solutions recommend 

approximative methods. F.e. for π between 0.3 and 0.7, Blyth and Still (1983) 

recommend the Wilson CI  for n > 90, 140, 550 and 2200, if exceeding of the 

nominal α=0.05 by 25, 20, 10 and 5 % is acceptable, respectively. 

 

If a mean coverage close to and slightly higher than (1-α) and a low probability 

of heavily violating (1-α) is the criterion for a recommended interval, the Wilson 

Score and generalized Agresti-Coull are recommended (Brown et al. 2001, 

Agresti and Coull, 1998). Here, the Agresti-Coull CI has the advantage to avoid 

severe violation of the nominal confidence level for π close to 0 or 1. Reiczigel 

(2003) proposes a computational intensive method to reduce the nominal level 

of exact CI-methods until the actual mean coverage is close to but higher than 

the required (1-α) and shows that then exact Sterne / Blaker intervals are better 

than Wilson Score and Agresti-Coull CI. 

Since main interest is in one-sided CI, the improved exact confidence intervals 

of Blyth, Still, Casella and Blaker will not be shown because they are inherently 

two-sided procedures (Reiczigel, 2003). Their performance is discussed and 

illustrated in the references. The continuity corrected Wilson CI will be omitted 

because of its conservatism (Brown et al. 2001b). Thus, from the methods 

discussed in section 3, only the Wald-, Wilson Score, Agresti-Coull and 

Clopper-Pearson interval will be compared according to their one-sided 

performance. 

For the asymptotic methods, the question remains, for which n and π the 

central limit theorem suffices. The calculations of Blyth and Still (1983) for the 

Wilson CI reveal that even for intermediate π sample sizes of more than 1000 

will be needed for an actual coverage probability close to the nominal level. For 

small π, the required sample size might be much higher, because the binomial 

distribution becomes asymmetric for extreme π, and a normal approximation 

becomes more unlikely to be sufficient. 

The following graphs show simulated (20000 times for each point) coverage 

probabilities of two-sided 95% Wald, Wilson, Agresti-Coull and Clopper-

Pearson CI for n=10000 and n=5000 and values of π between 0 and 0.5. All 
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methods differ only slightly, the approximate methods and the exact Clopper-

Pearson both approach the nominal confidence level. 

 
Figure 2: Coverage probabilities of two-sided 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson CI, n=10000 and 5000, π=0 ,…,0.5 
 

Figure 3 shows calculated coverage probabilities for two-sided 95% Wald, 

Wilson, Agresti-Coull and Clopper-Pearson CI for n=1000 and n=500 and 

values of π between 0 and 0.5. Due to increasing effect of discreteness, the 

coverage probabilities increasingly oscillate about the nominal level, where 

Wald especially for small values of π has lower coverage than the nominal 

level, while Wilson is in average close to the nominal level and Agresti-Coull 

and Clopper-Pearson become conservative. The performance is symmetric 

around π=0.5, so the same happens for π close to 1. For intermediate values of 
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π, the three approximate methods are close to the nominal level, whereas the 

Clopper-Pearson CI becomes slightly conservative even for these large n. 

 
Figure 3: Coverage probabilities of two-sided 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson CI, n=1000 and 500, π=0 ,…,0.5 
 

However, there is a need for smaller sample sizes than 500, if assay methods 

are expensive and laborious or sample size is simply limited by space 

capacities or the number of isolation cages in vector transfer designs. These 

are situations where group testing might be applied.  

 

Figure 4 shows coverage probabilities of two-sided nominal 95%-CI for n=50 

and 20 and π=0, …,0.5 
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Figure 4: Coverage probabilities of two-sided 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson CI, n=50 and 20, π=0 ,…,0.5 
 

The Wald interval is much too liberal, while the Wilson Score Interval uses a 

much more appropriate normal approximation but still shows downward spikes 

of coverage for small values of π. The Agresti-Coull interval avoids these 

downward spikes for extreme π but is still much closer to the nominal level than 

the conservative Clopper-Pearson CI. For extreme π, the Clopper-Pearson CI 

even shows actual coverage between (1-α/2) and 1. 

In practice, even smaller sample sizes might be required; then the shown 

properties become more extreme. 
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4.3.2 Upper confidence limits 
None of the publications mentioned in sections 3 and 4.3.1 describes coverage 

probabilities of upper and lower bound separately. If group testing is applied in 

plant breeding and GMO-testing, objective is performing a proof of safety: to 

decide on H0: π ≥ π0 vs. H1: π < π0. Then we are mainly interested in the 

properties of upper confidence limits. The coverage of lower limits will not be 

shown but their performance is symmetric on π =0.5 for Wald, Wilson, Agresti-

Coull and Clopper-Pearson, i.e. they exhibit the same problems for π close to 1 

as upper limits do for π close to 0 and the other way round. 

Again, the methods all perform well for large sample sizes. In figure 5 their 

simulated coverage probabilities (20000 times for each point) will be compared 

only for small π =0,…0.05 and n =10000, 5000. 
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Figure 5: Coverage probabilities of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits, n=10000 and 5000, π=0 ,…,0.05 
 

For n=10000 and 5000, the Score type methods have an actual coverage very 

close to the nominal level and only become slightly conservative for π <0.0025 

and 0.005, respectively. The Wald interval already for this large sample size 

slightly violates the nominal level. This performance becomes more extreme as 

π decreases. Also Clopper-Pearson appears slightly conservative compared to 

the Wilson CI. 

Figure 6 gives the calculated coverage probabilities of upper nominal 95% 

limits for n=1000 and 500 and π =0,…0.05. 

 

 
Figure 6: Coverage probabilities of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits, n=1000 and 500, π=0 ,…,0.05 
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Obviously, the shape of coverage probabilities is different from the two-sided 

CI: for small n and π close to 0, a very conservative region appears. In other 

words, some values of π are always included in the confidence limit, so that a 

null hypothesis π ≥ π0 with π0 included in this region can never be rejected. This 

very conservative region increases with decreasing sample size. Using a 95% 

upper confidence limit, even for n=500 it is not possible anymore to reject H0: π 

≥ π0 with π0 < 0.0054, 0.0065, 0.0060 using 95% upper limits of the Wilson, 

Agresti-Coull and Clopper-Pearson CI, respectively. Thus, using simple 

binomial testing for a proof of safety in GMO-testing, also using 500 

observations will never result in a rejection of H0: πGMO ≥ 0.5%. 

 
Figure 7: Coverage probabilities of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits, n=50 and 20, π=0 ,…,0.05 
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Again in practical application much smaller sample sizes might be required. For 

these small sample sizes as n = 50, 20, 10, 5, coverage probabilities will be 

calculated over the entire range of π from 0 to 1.  

Figure 7 shows coverage probabilities of upper nominal 95% confidence limits 

for n = 50 and 20. The upper bound of the Wald CI again is much too liberal for 

small π, but becomes conservative for π near 1. The other asymptotic methods 

are very conservative for a range of π near 0, and become liberal for large π. 

Again, Wilson shows larger downward spikes than Agresti-Coull, but has a 

slightly shorter conservative area for π near 0. Clopper-Pearson also shows the 

very conservative range for small π. For other values of π, Clopper-Pearson is 

less conservative than in the two-sided case, because the one-sided Clopper-

Pearson corresponds to the inversion of a one-sided niveau-α-test, while the 

two-sided Clopper-Pearson is derived from two one-sided tests, each with 

niveau α/2 (see Agresti and Min, 2001, Blyth and Still, 1983). 

If an experiment is limited to 50 assays, π < 0.051, 0.061, 0.058 will be always 

included in the upper 95% limit of Wilson, Agresti-Coull and Clopper-Pearson 

CI, respectively. 

These properties become more extreme for small sample sizes, because of 

discreteness as shown in Figure 8 for n=10 and 5: 
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Figure 8: Coverage probabilities of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits, n=10 and 5, π=0 ,…,0.05 
 

For this sample size n, the normal (large sample) approximations are clearly 

inappropriate. The Wald and to smaller extend the Wilson Score and Agresti-

Coull method violate the nominal confidence level to a not acceptable extend. 

Thus, for these small sample sizes, only the Clopper-Pearson CI can be 

recommended. For n=5, this method shows a very conservative performance if 

π < 0.45. 

Power to reject a null hypothesis 
 
The upper bounds of Clopper-Pearson, Agresti-Coull and Wilson Score show a 

very conservative performance for small π, where the probability to exclude the 

true parameter is 0. These regions are necessary and natural, because 
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obviously a CI has to be broader than 0 even if no positive individual was 

observed (Y=0), to take uncertainty of sampling into account. Upper confidence 

limits increase for increasing Y, and all intervals for Y>0 will also include those 

π included in the limit for Y=0. Thus, it is impossible that an upper confidence 

limit (n, Y) has any power to exclude π0 ∈ CI (n, Y=0). 

The first plot in figure 9 shows the coverage probabilities of 95%-Wilson, 

Agresti-Coull (AC) and Clopper-Pearson (CP) CI for n =20 for values of π = 

0,…,0.2. For this n=20, the upper 95% confidence limit (Y=0) is for Wilson [0, 

0.119], for Clopper-Pearson [0, 0.139] and for Agresti-Coull [0, 0.141].  

 
Figure 9: Coverage probability and power of upper 95% Wilson, Agresti-Coull and 
Clopper Pearson limits, n=20, π=0 ,…,0.2 
 

If one wants to test H0: π ≥ π0, where π0 is included in the upper limit for n=20, 

Y=0 of a given method, the power to reject the null hypothesis is 0 for any π. 

The second plot in figure 9 shows that for π0=0.13 this is the case for Clopper-

Pearson and Agresti-Coull, but not for the Wilson-CI, which allows a proof of 

safety with a sufficient power at least for small π.   

As shown in the figures above, the range of π always included in the upper 

confidence limit strongly decreases with increasing n. Figure 10 shows for 
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Wilson, Agresti-Coull and Clopper-Pearson the smallest thresholds π0, for 

which H0: π ≥ π0 can be rejected using an upper 95 % confidence limit. 

Generally, Wilson has a slightly shorter conservative region than Clopper-

Pearson and Agresti-Coull is similar to Clopper-Pearson or more conservative. 

With a sample size n=50, null hypotheses H0: π ≥ π0 with π0 < 0.06 for Clopper-

Pearson or π0 < 0.052 for Wilson will never be rejected. Or, if a H0: π ≥ 0.01 

shall be rejected, one will need at least about n=270 if Wilson is used, n=300 

for Clopper-Pearson and even n=340 for Agresti-Coull. 

 
Figure 10: the smallest threshold π0 for which H0: π ≥ π0 can be rejected using upper 95% 
Wilson, Agresti-Coull and Clopper Pearson limits, n=2,…,500  
 

In section 4.3 it was shown, that for performing a proof of safety if small 

threshold proportions regarded as unsafe, simple binomial procedures require a 

large number of observations. If expensive assays are necessary for detection 

of the unsafe trait, these large sample sizes can hardly be provided. 

In the sections 4.4 and 4.5 it will be shown, that the performance of CI methods 

for small numbers of observations and small threshold proportions can be 

greatly improved, if they are applied in binomial group testing experiments.  
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4.4 Confidence intervals for binomial group testing: Coverage 
probability 
The consideration of coverage probability and power of CI for simple binomial 

testing was important for explanation of the corresponding characteristics of 

group testing CI, which are first constructed for the group scale parameter θ 

and then transformed to the individual scale π. If the CI performs poor for a 

given parameter θ on the group scale, the transformed individual scale CI will 

perform similarly, because of monotony. The advantage of group testing now is 

that θ depends on π and the group size s. Thus, in case that it makes sense to 

assume a certain range of π, group size s can be chosen so that θ has values 

for which the known procedures perform well.  

Another factor will influence coverage probability and power of group testing CI: 

bias of the estimator. A large positive bias means that the expected value of the 

estimator p is much higher than the true unknown parameter π. Thus, also the 

CI constructed according to the estimator will tend to have the wrong position. 

Because of this, one-sided CI [0, pU] can be expected to become very large and 

conservative if the estimator is positively biased. For one-sided CI [pL,1] the 

same happens because these are very conservative for values of π close to 1 

(not shown). 

 

The methods of individual scale Wald interval, and the group scale Wilson 

Score, Agresti-Coull and Clopper-Pearson CI will be compared depending on 

three different scenarios: 

 

1) The number of assays is limited (by costs), but the total number of units can 

be chosen without serious limitation. Then the group size s might be chosen in 

a way that maximizes power. In the same time it has to be controlled, that bias 

does not exceed a certain level. In this case of fixed n and varied s, of course 

the total number of observed units increases linear with s. 

 

2) The group size might be restricted to fulfill the assumptions 4 and 5 of assay 

sensitivity for even a single individual and to avoid misclassifications in the 
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assay. Then the number of assays n might be the only factor, which can be 

varied to improve the power of an experimental design. As increasing n 

decreases the bias of p, bias does not have to be considered in case that 

 

3) In some practical applications, the total number of units might be limited. 

Then a large group size s corresponds to a low number of assays n, and the 

other way round. In this case, objective of experimental design is to allocate the 

available units to n and s in a way that achieves maximal power within a 

restricted bias. If the total number n*s is fixed at one certain value, the set of 

possible integers (n, s) is very restricted, so that additional discreteness is 

added to the problem.  

4.4.1 Restriction 1: Limited number of assays n 
If the number of assays is limited by costs, one should usually perform the 

maximal number of assays, which still might be very small. Then increasing 

group size is the only way to further improve performance of a given statistical 

method.  

Increasing group size s results in higher expected values of θ, thus 

characteristics of the CI more correspond to the characteristics for higher 

values of binomial parameter. In other words, the group scale interval for [tL, tU] 

is constructed according to t=Y/n and is transformed to individual scale π by 

application of ( ) stp 111 −−= . Because this function is non-linear, the 

properties of the group scale interval are distorted towards smaller values of π if 

group size is increased (compare figure 1 in section 3.2.2). The methods 

become appropriate for small π, but insensitive for large π. This occurs for all CI 

methods in the graphs shown later. The magnitude of up- and downward spikes 

depends on n, because n determines the number of possible observations and 

thus the discreteness of the problem. 

4.4.1.1 Comparison of upper confidence limits 
Figures 11 and 12 show the coverage probabilities of the upper limits of the 

four interval methods for n=10, a nominal coverage of 95%, a range of π = 0, 

…, 0.05 and group sizes of s=10, 20, 50 and 100. At the same time, the total 
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sample size n*s = 100, 200, 500 and 1000, respectively. Thus, the number of 

individual units contributing to the 10 observations is increased. 

Although the range of π is the same, increasing group size results in coverage 

probabilities similar to those for higher values of π for simple binomial CI: The 

magnitude of the conservative region near π=0 decreases.  

 
Figure 11: Coverage probability of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits and bias of the estimator p for n=10, s=10,20, π=0,…,0.05  
 
Comparing the four CI methods reveals that: 

The upper bound of the individual scale Wald Interval is again liberal to 

inacceptable extend (see Tebbs and Bilder, 2004 for the two-sided case). The 

upper bound of Wilson Score interval has the shortest very conservative region 

near π=0, but also shows larger downward spikes than Agresti-Coull or 

Clopper-Pearson. Clopper-Pearson always holds the nominal confidence level, 
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also for clearly inappropriate combinations of π and s (π>0.015, s=100). The 

upper bound of the Agresti-Coull-CI has coverage probabilities close to 

Clopper-Pearson for small π but becomes more close to Wilson for larger π. 

 
Figure 12: Coverage probability of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits and bias of the estimator p for n=10, s=50,100, π=0,…,0.05  
 

If the group size s is inappropriate for π, the intervals perform similar to the 

corresponding CI methods for simple binomial experiments do for binomial 

parameters close to 1. Thus, Wilson Score and Agresti-Coull become liberal 

(Compare figures 7 and 8). 

If s becomes much too large for a given group size, the probability to yield any 

negative groups becomes very low. If all outcomes are positive, the estimator 

will always be t=p=1, resulting in a huge bias and very broad CI that always 

includes 1. The same happens for two-sided and lower bounds coverage, 
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whereas for lower bounds this phenomenon is more extreme because the very 

conservative region for π close to 1 becomes enlarged. 

Figure 13 shows coverage probabilities of upper confidence limits and bias for 

π = 0,…, 0.4 in a design n=10, s=50. 

 
Figure 13: Coverage probability of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits and bias of the estimator p for n=10, s=50, π=0,…,0.4: The effect of a 
group size inappropriate for π.  
 

The amplitude of coverage probability does not depend on the group size s but 

on the chosen n. F.e. for the upper limit of the Wilson CI, the first downward 

spike shows minimal coverage of approximately 0.89 for n=5, 0.91 for n=10 and 

0.93 for n=50 independent of the group size. 
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4.4.1.2 Two-sided confidence intervals 
The performance of two-sided CI is to smaller extend shown in Tebbs and 

Bilder (2004). What happens to coverage probability is basically the same as 

for the upper limit: the ‘shape’ of coverage probabilities depending on θ is 

shifted to smaller π if group size s is increased. 

Figures 14 and 15 show the coverage probabilities of the individual scale Wald 

interval, the Wilson, Agresti-Coull and Clopper-Pearson-method applied as two-

sided 95%-CI for n=10, different group sizes and a range of π=0,…,0.05. 

 

 
Figure 14: Coverage probability of two-sided 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson CI and bias of the estimator p for n=10, s=10,20, π=0,…,0.05  
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Comparing the different methods results in more messy graphs than for the 

upper limit, but still the shape of coverage probabilities corresponds to those of 

the simple binomial methods (compare Figure 4 in section 4.3.1). 

 
Figure 15: Coverage probability of two-sided 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson CI and bias of the estimator p for n=10, s=50, 100, π=0,…,0.05  
 

As in application for simple binomial estimation, the two-sided Clopper-Pearson 

CI is much more conservative than in the one-sided case because of the 

stronger condition to invert two one-sided niveau-α/2-tests instead of inverting 

on single niveau-α-test. Wilson shows the same downward spikes of coverage 

as in simple binomial testing if π is small, whereas Agresti-Coull tends to be 

conservative for small π. The Wald interval shows a not acceptable low 

coverage. For obviously inappropriate group sizes, indicated by a large bias, all 

methods fail, because they show the same performance as the corresponding 
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simple binomial methods do for π close to 1: Clopper-Pearson and for larger π 

also Agresti-Coull again become conservative, while Wilson again exhibits the 

liberal spikes as it does in simple binomial testing for large π.  

4.4.2 Restriction 2: Limited group size s 
What happens if number of assays is increased is basically the same as 

increasing the sample size in simple binomial testing. For comparison with the 

situation of varying group size, n and s were chosen to result in the same total 

numbers n*s=100, 200, 500, 1000 as in figures 11 and 12 in section 4.4.1.1. 

The following graphs show the coverage probabilities for π=0,…, 0.05 and a 

fixed group size s=10 for different sample sizes.  

 
Figure 16: Coverage probability of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits for constant group size s=10, n=10,20,50,100 π=0,…,0.05 
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Increasing n while s is constant decreases the very conservative region near 

π=0, decreases the oscillation of coverage probability for different π and actual 

confidence levels become closer to the nominal level.   

4.4.3 Restriction 3: Limited total number of units n*s 
As shown in the previous sections, increasing n and s have similar effects on 

the performance of the methods, as far as the group size is appropriate for π. 

This leads to the question, whether it makes sense to look for an optimal 

allocation of a limited total number of units to n and s. 

In figure 17 the first plot shows coverage probability for a fixed n=20, while 

increasing s= 5,…, 100, in the second plot group size is kept at s=20 and the 

number of n is increased from 5 to 100, resulting in equal total sample sizes 

n*s=100,…, 2000, for constant π =0.0025. 

 
Figure 17: Coverage probability of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits π=0,…,0.05 for 1) constant group size s=20, n=5,…100, 2) constant 
number of assays n=20, s=5,…100  
 
The resulting coverage probabilities are very similar. From this, it seems 

reasonable that there is no clear optimal combination (n,s) if the total number of 

units n*s is fixed. 
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The first row of plots in figure 18 shows coverage probabilities of 95%-CI [0, pU] 

for π=0.0025 and in dependence of sets of n and s resulting in a total sample 

size of 1000, 5000 and 10000. The number of assays n starts from 1000, 5000, 

10000 in the beginning of the plots and ends up at 5 in all plots. At the same 

time s increases from 1 to 400, 1000 and 2000. Both results in an increasing 

bias, plotted in the second row of plots. Thus, the starting points of each plot 

show the performance of methods for simple binomial testing. The restriction of 

a fixed total sample size adds additional discreteness. The plots are based on 

13, 17 and 22 (n,s)-combinations for n*s=1000, 5000 and 10000, respectively. 

 
Figure 18: Coverage probability of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits and bias (p) for combinations (n,s) resulting in constant total sample size 
n*s=1000, 5000, 10000, π=0.0025 
 

Obviously, the coverage probability does not vary with a clear tendency 

between different sets of n, s as long as the group size s is appropriate for the 

given π. This is due to the fact that the effect of reducing n counteracts the 

effect of increasing s. 
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4.4.4 Conclusions 
Which interval method to choose first of all depends on the level of security 

wanted for the decision or estimation. The Clopper-Pearson always guarantees 

the nominal level, whereas Wilson Score and Agresti-Coull do not. As will be 

shown in the section 4.5, the Wilson Score CI has in average a higher power 

than Clopper-Pearson, because of its lower mean coverage. Whether Wilson 

Score has lower or same actual coverage as Clopper-Pearson, depends on the 

particular combination of n, s and π. Correspondingly, whether Wilson Score 

has higher or same power as Clopper-Pearson depends on the combination of 

n, s, π0 as will be shown in the next section. 

Additionally, the decision depends on whether one- or two-sided hypothesis are 

tested. Unless Clopper-Pearson is much more conservative if applied two-

sided, the Wilson Score and Agresti-Coull loose much of their superiority 

compared to Clopper-Pearson, if they are applied as upper limit: for small π, 

Agresti-Coull is as conservative as Clopper-Pearson, for some cases even 

slightly more conservative. In group testing, the differences between the 

methods become less important if design can be chosen appropriate: the very 

conservative region decreases in length with increasing s. 

 

4.5 Confidence intervals for binomial group testing: Power and 
experimental design 

4.5.1 Criteria for choice of n and s 

Bias(p) and MSE(p) 
One criterion for choice of optimal group size might be minimization of the point 

estimates bias, as discussed f.e. in Thompson (1962) and Swallow (1985). Bias 

is of main importance, if estimation is main objective of the study and decision 

on a hypothesis is less important.  

Bias of p increases for increasing group sizes s or increasing probabilities π. If 

group size is chosen to large for a given π, the expected value of the estimator 

is much higher than the true value.  

Oppositely, the variance of p decreases for large group sizes s. Swallow (1985) 

thus gives the mean squared error of the estimator p  
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MSE(p)= variance(p)+[bias(p)]2 

as main criterion for the goodness of the estimator p. Thompson (1962) and 

Swallow (1985) recommend to choose s for a given n and an expected π so 

that a minimal MSE(p) results. Thompson (1962) gives a simple approximation 

to solve this problem. 

Increasing n decreases the MSE(p) and the advantage of group testing 

compared to conventional binomial testing (s=1) in terms of MSE(p). If the total 

number of individuals n*s is limited by costs and n is not limited, s=1 is the 

optimal choice. But for small values of π there are s > 1 for which the MSE(p) is 

only slightly higher (Swallow,1985). 

If the total number of units is fixed, then a group size of s=1 generally results in 

minimal MSE(p). Then cost relation of assays vs. units might be an additional 

criterion for optimization of the design (Thompson, 1962). 

Power 
A second criterion for choice of the experimental design might be the power to 

decide against the null hypothesis. The power again depends on n, s, π, but 

additionally on the required confidence level (1-α), the difference between the 

true proportion, the threshold π0 and on the confidence interval or testing 

procedure used for evaluation.  

Power will be examined for the proof of safety in testing against GMO 

contamination, where the hypotheses are 

  H0: π ≥ π0 vs. H1: π < π0, with thresholds π0 = 0.005 or 0.009. 

Again, the design is examined for the 3 relevant situations of 1) limited number 

of assays and free group size, 2) limited group size and variable number of 

assays, and 3) limited total number of units. 

4.5.2 Restriction 1: Limited number of assays, variable group 
size 
Figure 19 shows power for n=10, s=10, 20, 50, 100 and relevant values of the 

binomial parameter π against the hypothesis H0: π ≥ 0.005 (compare the 

coverage probability and bias in figures 11 and 12 for the same n and s but 

π<0.05). For the shown values of π, n, s, bias is negligible. Obviously it is 

impossible to show significance using very small values of s for this hypothesis, 
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using the valid methods Wilson, Agresti-Coull or Clopper-Pearson because of 

the very conservative performance of these procedures for small n, s and π.  

The Wald interval has higher power to decide against H0 due to its violation of 

the nominal coverage probability. Whether a method has equivalent or superior 

power compared to the others depends on n, s, π0. Here, for n=10, s=50, Wald 

and Wilson Score CI show the same power whereas Clopper-Pearson and 

Agresti-Coull perform similarly poor. With s=100 Clopper-Pearson, Wilson and 

Agresti-Coull perform similar and Wald is different. 

 
Figure 19: Power to reject H0: π ≥ 0.005 using upper 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson limits for constant number of assays n=10, s=10, 20, 50, 100 
π=0,…,0.05 
 
Superiority in terms of power also depends on the hypothesis, what is shown in 

figure 20 for H0: π ≥ 0.009 and the same combinations of n and s. 
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Figure 20: Power to reject H0: π ≥ 0.009 using upper 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson limits for constant number of assays n=10, s=10, 20, 50, 100 
π=0,…,0.05 
 

The objective in design of experiments with limited number of assays can be  to 

find a group size promising sufficient power. In this situation the exact value of 

the true parameter is of course unknown, so the decision on s must be made 

for an assumed range of values of π. Figure 21 illustrate this problem for the 

hypothesis H0: π ≥ 0.005, with a fixed number of assays n=10 and increasing 

group size s from 1 to 200, resulting in increasing total number of units 

n*s=10,…, 2000 These combinations n, s are shown for four different values of 

π = 0.001, 0.002, 0.003, 0.004. For the shown combinations of n, s and π, bias 

is negligible. 
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Figure 21: Power to reject H0: π ≥ 0.005 using upper 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson limits for constant number of assays n=10, s=1,…,200, π=0.001, 0.002, 
0.003, 0.004 
 
It reveals that for these combinations power increases with increasing group 

size s and increasing difference π0 - π, i.e. increasing non-centrality. Whereas 

Wald has highest power in nearly all cases due to its low coverage probability, 

Clopper-Pearson has either same or lower power than Wilson and Agresti-

Coull. Important for experimental design is the issue that with increasing group 

size s, power does not increase monotonous, but with local maxima and 

minima. The position of maxima stays the same for different values of π, but 

changes for other hypotheses (f.e. π0=0.009, π0= 0.01). This is shown by the 

following graphs: In the first row, power against the hypotheses H0: π ≥ 0.005 

and H0: π ≥ 0.009 is plot for n=10, s=1,…,200 and π=0.0025. In the second row, 
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the corresponding coverage probabilities for π = 0.005 and π = 0.009 and the 

same n and s are shown. Local maxima of power appear for those 

combinations of n and s, for which coverage at π0 shows local minima. 

 
Figure 22: constant number of assays n=10, s=1,…,200, upper 95% Wald, Wilson, 
Agresti-Coull and Clopper-Pearson limits  
First row: power to reject H0: π ≥ 0.005 and H0: π ≥ 0.009 at π = 0.0025 
Second row: Coverage in case that H0 is true: π = 0.005 and π = 0.009 
 
The actual coverage probability of a CI method in a given group testing trial 

with a given design (n,s) depends on the true, unknown parameter π. This is 

illustrated by figure 23, showing the coverage probabilities of upper 95%-

confidence limits for n=10, increasing group size s=1,…, 200 and values of π= 

0.001, 0.002, 0.003 and 0.004. 

Obviously, it depends on π, which actual coverage probability results for a given 

design (n, s). 
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Figure 23: Coverage probability of upper 95% Wald, Wilson, Agresti-Coull and Clopper 
Pearson limits for constant number of assays n=10, s=1,…,200, π=0.001, 0.002, 0.003, 
0.004 
 

Thus, increasing the group size s until a certain power is achieved will end up 

at local maxima, which depend on the given hypothesis and CI-method. This 

procedure does not select the group size for which a procedure is generally 

most liberal, but these values of s are those for which the coverage probability 

is minimal for π=π0. In case of Clopper-Pearson, this means choosing the group 

size for which coverage is closest to the nominal level, whereas Wilson or 

Agresti-Coull will be most liberal for this s if π=π0.  
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4.5.3 Restriction 2: Limited group size, variable number of 

assays 

For s=10 and n=10, 20, 50, 100, power was calculated for the null hypothesis 

H0: π ≥ 0.005. Obviously, the group size s was chosen too small: even with 50 

assays Wilson, Agresti-Coull and Clopper-Pearson failed to show any 

significance. Again, whether a single CI-method has the same of different 

power than another, depends on the chosen n, s and π0. 

 

 
Figure 24: Power to reject H0: π ≥ 0.005 using upper 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson limits for constant group size n=10, n=10,20,50,100, π=0,…,0.05 
 

Objective of planning an experiment with a fixed group size s might be to 

increase the number of assays n until a sufficient power is achieved. If this is 

done, one will end up again at the local maxima of power. The values of n for 
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which power has a local maximum again depend on the hypothesis and are 

those n, for which the given method shows minimal coverage probability if π=π0.  

The following graphs show that the position of local optima of power are not 

dependent on the true parameter π. Here always power against H0: π ≥ 0.005 is 

calculated for s=10, n=5,…,100 and π=0.001, 0.002, 0.003, 0.004. 

 
Figure 25: Power to reject H0: π ≥ 0.005 using upper 95% Wald, Wilson, Agresti-Coull and 
Clopper-Pearson limits for constant group size s=10, n=2,…,100, π=0.001, 0.002, 0.003, 
0.004 
 

For decreasing non-centrality, the general level of power decreases, again 

Wald has much higher power than exact and Score type CI because of its low 

coverage probability. Here also the conservative performance of Agresti-Coull 

CI becomes more obvious: Its very conservative region is longer than that of 

Clopper-Pearson. 
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The first row of figure 26 shows the power for a fixed s=10 and n increased 

from n=5 until n=100, where the true binomial parameter is always kept 

π=0.0025. Power is shown for two hypotheses: H0: π ≥ 0.005 and H0: π ≥ 0.009. 

The second row then shows the corresponding coverage probabilities of the 

methods for the same s and n but π=π0=0.005 and π=π0=0.009. Obviously, the 

position of local power optima corresponds to the local minima of coverage 

probability at the hypothetical parameter π0. 

 
Figure 26: constant group size s=10, s=1,…,100, upper 95% Wald, Wilson, Agresti-Coull 
and Clopper-Pearson limits  
First row: power to reject H0: π ≥ 0.005 and H0: π ≥ 0.009 at π = 0.0025 
Second row: Coverage in case that H0 is true: π = 0.005 and π = 0.009 
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Minimal n and s in the proof of safety 

In section 4.3.2 it was shown that for small and intermediate numbers of 

observations n, a certain range of small π is always smaller than the upper 

bound of Wilson, Agresti-Coull and Clopper-Pearson CI. This very conservative 

performance of the valid methods results in the fact that the null hypothesis of a 

proof of safety H0: π ≥ π0 can never be rejected for small π0. As shown in the 

previous figures of section 4.4.1 and 4.4.2, increasing the group size s leads 

results in decreasing this conservative range of π as well as increasing the 

number of observations n if group size s is fixed. Thus, even for a very limited 

number of assays, H0: π ≥ π0 can be rejected if the group size is chosen 

appropriate. Figure 27 summarizes the relation between n, s, and the smallest 

rejectable π0 for a 95% upper Clopper-Pearson and Wilson confidence limit, 

respectively.  

Figure 27: smallest threshold π0 for which H0: π ≥ π0 can be rejected for variable n and 
s= 5, 10, 20, 50, 100 
 

To reject H0: π ≥ 0.005 in a group testing experiment, using a common group 

size s=10, at least n > 61, 55 groups will be required for Clopper-Pearson and 

Wilson respectively. If group size s=20 is used, only n>31 groups are needed 

for Clopper-Pearson and about n>27 if the upper Wilson limit is used. Clopper-

Pearson in general will require higher minimal sample sizes because of its 

more conservative performance. Using larger groups enables to perform a 
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proof of safety for even smaller thresholds, as long as assumptions for group 

testing can be fulfilled. In simple binomial testing, much higher minimal 

numbers of observations n are needed for rejection of the same hypotheses 

(compare figure 10). 

4.5.4 Restriction 3: limited total number of units: allocation to n 

and s 

The two previous sections showed the effect of increasing total number of units 

either by increasing number of assays n while the group size is constant or by 

increasing the group size s while the number of assays is kept the same. Both 

has similar effects on power. In case of a fixed total number of units different 

allocations either to higher number of groups or a higher group size are 

possible. The question arises whether an optimal design can be found in this 

case. Figure 18 revealed, that coverage probability does not show a clear 

tendency for increasing group size for a constant total sample size n*s. 

Figure 28 shows the power of the CI methods against H0: π ≥ 0.005 for different 

sets of n, s resulting in a total sample size of 1000, 5000 and 10000. The true 

probability in all plots is π = 0.0025. While increasing group size s from 1,2,4,8 

to 200 in the first plot, the number of assays n is decreased from 1000, 500, 

250, 125 to n=5. Each plot starts in the left side with simple binomial testing of 

n*s units, in the middle of each plot the power for n=10 is shown. If the number 

of assays n is decreased in a constant total number of units, power remains 

close to the power of simple binomial testing, as long as bias stays negligible 

and number of assays does not become too small (<10). Compared to simply 

increasing the group size s while keeping n constant (5.2.1), here the increase 

of bias is accelerated because both increasing s and decreasing n leads to 

higher bias. Figure 29 shows power for the same π =0.0025 and the same sets 

of n and s but against H0: π ≥ 0.009.  
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Figure 28: Power to reject H0: π ≥ 0.005 using upper 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson limits and bias (p) for combinations (n,s) resulting in constant total 
sample size n*s=1000, 5000, 10000, π=0.0025 
 

 
Figure 29: Power to reject H0: π ≥ 0.009 using upper 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson limits and bias (p) for combinations (n,s) resulting in constant total 
sample size n*s=1000, 5000, 10000, π=0.0025 
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Figure 30: Power to reject H0: π ≥ 0.009 using upper 95% Wald, Wilson, Agresti-Coull and 
Clopper Pearson limits for combinations (n,s) resulting in constant total sample size 
n*s=1000, for π=0.001, 0.003, 0.005, 0.007 
 

Figure 30 shows the power of the 95%-CI against a given H0: π ≥ 0.009 and a 

total number of units n*s = 1000, but different values of the true parameter π.  

The graphs show power in dependence of s=1,…, 200, but in the same time, 

number of assays n reduces from 1000 for s=1 to 5 for s=200. The power in 

average only slightly decreases with decreasing n, but local optima may exist. 

Again, the local optima seem to depend not on the true parameter π, but are 

the same, as long as the hypothesis and total number of units are the same.  

For experimental design, it can be concluded: Beside the required α and the 

difference between π and π0, a sufficient total number of units in the experiment 

is most important for a high power. For a fixed total number of units, the mean 

power stays nearly constant, independent of the allocation to either group size 

or number of assays, as long as the group size is appropriate for the given π. If 

the number of assays is chosen to small, power decreases. In other words, 

starting from a simple binomial experiment (group size s=1), the number of 
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assays n can be reduced by increasing group size without greatly reducing 

power. The minimal n (or the maximal s) until which power does not decrease 

greatly, depends on the total number of units available, the true but unknown π 

and of course the difference between π and π0. 

The graphs illustrate again the dependency of the general level of power on the 

difference between π and π0 and that Clopper-Pearson in average has a lower 

power than Wilson Score.  

4.5.5 Approximate sample size calculation 
As shown in sections 4.5.3 and 4.5.4, simply increasing n until the desired 

power is achieved for a fixed s or n*s, will result in the n, for which the CI 

method shows the lowest actual coverage in case that H0 is true. This is 

appropriate for exact methods as Clopper-Pearson, but for the Wilson and 

Agresti-Coull CI sample sizes will be chosen for which these methods are most 

liberal under H0. Alternatively, an approximate sample size calculation can be 

derived for the Wilson CI, using its correspondence to the Score test. 

Corresponding to the derivation of an approximate formula for sample size 

calculation for the one-sided Wald test (shown in Bock, 1998), a formula for the 

Score test will be derived. 

The Score test for simple binomial testing is based on the assumption: 

( )0 0

~ (0,1)
1
p N

n
π

π π
−

−
 

For performing a test with a type I error rate α in case that H0 is true (π=π0) and 

a type II error rate of β in case that π has a certain value π1 under H1, the 

following is required to hold: 
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resulting in the relation: 
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from which the required sample size n for the Score test and the corresponding 

Wilson CI can be approximated for a given (π1-π0) and a required α and β. The 

power (1-β) for given n, α, π1, π0 can be calculated from: 
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The Score test corresponding to the Wilson CI for binomial group testing is a 

Score test for the group scale proportion θ: 
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Then, the sample size can be approximated using 
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 where ( )0 01 1 sθ π= − − and ( )1 11 1 sθ π= − −  

Since this approximation does not take the binomial distribution of the observed 

random variable Y into account, the resulting relations are monotone, without 

local maxima and minima. As based on the standard normal distribution, this 

approximate sample size calculation does not reflect the asymmetry of the 

Wilson CI coverage for small π and thus results in a biased estimation of 

sample size, depending on π, and whether upper or lower confidence limit is 

used. In fact this equation calculates the required sample size, which would be 

needed for the Score test, if the assumption of standard normal distribution 

would be exact. 

Figure 31 shows the relation between power and number of groups for one-

sided hypotheses and a fixed group size s=20 as calculated from the 

approximate formula and from closed calculation. The first plot shows the 

power to reject H0: π ≥ 0.005 if π=0.003 (power of the upper confidence limit), 

the second plot shows power to reject H0: π ≤ 0.005 if π= 0.007 (power of the 

lower confidence limit). So, for both plots the absolute value of (π-π0) is the 

same, resulting in the same approximate power. Since the upper limit of Wilson 

tends to be conservative for small π and n, while the lower limit is liberal for 

small π and n, the actual power from closed calculation is lower for the upper 

and higher for the lower bound in these cases. For larger n, the opposite 

occurs.  
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Figure 31: Power of Wilson CI to reject H0: π ≥ 0.005 for π=0.003 and H0: π ≤ 0.005  for 
π=0.007  for α=0.05, s=20, n=5,…,500 
 

This leads to the conclusion, that approximate power or sample size calculation 

is not an improvement of closed calculation, because it might lead to truncated 

estimation of required sample size. It can only be recommended for use if the 

sample sizes n are to large for closed calculation.  

4.5.6 Conclusions 

Experimental design 
The minimal sample size required for rejection of a null hypothesis in a proof of 

safety is much lower in binomial group testing than in simple binomial 

evaluation of each single unit. For a given number of individuals the number of 

observations n can be reduced greatly via assigning the individuals to groups of 

increasing size without greatly reducing power. To give a rule of thumb for 

π=0.001,…, 0.005, this might be done as long as the bias(p) should not exceed 
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100*π % and n>10. But for optimal decisions it is always recommended to 

directly calculate power and bias(p) of a design using the given functions. 

 

Which combination n and s results in optimal power, depends on the threshold 

π0 in the hypotheses, not on the actual π in the experiment, while the actual 

coverage of a design n, s of course depends on the actual π. The actual value 

of power of course depends on n, s, α and the difference π0-π. If the design n, s 

is chosen iterative to achieve optimal power, one can expect minimal coverage 

in case that π equals the threshold π0 but not for other values of π. This is 

acceptable for exact methods, while for asymptotic methods the choice of a 

design results which is liberal under H0. The proposed approximate sample size 

calculation does not generally result in a more reasonable choice of sample 

size.  

Generally, for the same underlying number of units, all methods perform better 

for high number of assays and low group size than vice versa. The highest 

number of assays payable is always recommended.  

CI methods 
In average Wilson Score has higher power than Clopper-Pearson, and Agresti-

Coull is mainly between both, but close to Clopper-Pearson for small π and 

close to Wilson for medium values of π. Because of this, among the methods 

compared for the upper limits, Clopper-Pearson is recommended if the nominal 

level shall be guaranteed and if the number of groups is very small (n<30), 

whereas Wilson might be used to improve power if actual coverage shall not be 

strictly guaranteed and sample size n is not too small. Whether a special 

method is superior in a particular situation, depends on the particular choice of 

n, s and π0.  

A main problem in experimental design remains: π is unknown:  

If a certain hypothesis H0: π ≥ π0 shall be tested, it is secure but suboptimal to 

choose the design appropriate for the highest π which shall be shown to differ 

significantly from π0, because for smaller π, bias will decrease. If estimation is 

main aim, it is a secure but conservative choice to optimize the design for the 
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upper bound of the range where π is expected in order to achieve a minimal 

MSE(p), as recommended by Swallow (1985). 

5 Violation of assumptions 

5.1 Unequal group size 
In the consideration of coverage and power above, group size was assumed to 

be equal for all n observations. If group size is not equal, the methods for point 

estimation and even more interval estimation are not necessarily valid 

anymore. 

There are two reasons for unequal group sizes in group testing experiments 

might be: 

1) By accident, f.e. in vector transfer designs, single vectors might escape, 

die or only available with limitation resulting in slightly reduced group 

sizes for some observations. 

2) If there is no reason to expect the true, unknown incidence within a 

certain range, choosing two or three different group sizes can be the 

most appropriate experimental design, as shown by Hepworth (1996). If 

true π is very small, only large group sizes will result in positive 

observations, but if true π is comparatively large, only small groups will 

provide some negative observations and thus an estimator different from 

1.  

Hepworth (1996, 2004) reviews methods for point estimation and proposes two 

methods for interval estimation. 

5.2 Limited assay sensitivity and specificity 
For biochemical assays the specificity and sensitivity might not 1. That is, 

groups might be misclassified erroneously as positive or negative, what is a 

violation of the assumptions 4 and 5 given in section 1.3. Rates of false positive 

or false negative assay decisions might be known from pilot studies (Xie et al. 

2001). Xie et al. 2001, Remund et al. 2001 include this problem in their 

discussion of group testing analysis, Hung and Swallow (1999) discuss the 

special problem of dilution effects with regard to the optimal choice of group 

size. 
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6 A resampling confidence interval: an alternative? 
The distribution of the estimator p is only approximately gaussian distributed for 

large n. For inappropriate sets of s and π the distribution of the group-scale-

estimator t is even not symmetric anymore.  

Therefore, an alternative confidence interval can be derived from the simulated 

distribution of the estimator p under the assumption that the observed p is true.  

To do this, the observed value of Y is first used to calculate the estimator p. 

This estimator is used for random experiments, which simulate the group 

testing experiment under the assumption that the estimated p is the true 

individual probability π. The population of estimators resulting from numerous 

resamplings then is used to calculate confidence limits: the most extreme 

percentiles of this simulated distribution are ‘cut off’ so that the remaining part 

include at least (1-α)*100% of the simulated estimators. The R code for this 

procedure is given in the annex. 

This procedure is used in the group testing context only to show that ordering of 

outcomes on group or individual scale is equivalent. It is inappropriate for 

interval estimation in group testing, because group testing is applied for small 

number of observations, for example n=5,…,50. In Efron and Tibshrani (1993) 

the use of resampling methods for binomial problems is shown for high 

numbers of observations. But for an experiment with only a small number of 

observations n, only n+1 different outcomes can be present in the resampled 

populations: The resulting distribution is as discrete as the exact distribution, 

but the CI is constructed using the resampled populations and will also have 

only n+1 possible interval bounds. Thus it will either be very conservative or 

very liberal, and can never be superior to exact calculations for small n. 
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7 A confidence interval explicitly constructed for one-
sided hypotheses 

7.1 A new confidence interval and a deviating recommendation 
Recently, when this thesis was nearly finished, Cai (2005) published a paper 

concerning on “One-sided confidence intervals in discrete distributions”. In this 

he considers the upper coverage probabilities of known confidence interval 

methods for the binomial, poisson and negative binomial distribution. His 

findings agree with the findings of this thesis: The Wald intervals exhibits too 

low coverage for the upper bound for π close to 0 and the lower bound for π 

close to 1, whereas its lower bound is conservative for π close to 0 and its 

upper bound is conservative for π close to 1. Also the Wilson CI exhibits an 

asymmetric coverage probability, but here the estimated interval is biased to 

lower extend and in the opposite direction: the upper bound is conservative for 

small π and liberal for π close to 1, while the lower bound is liberal for small π  

and conservative for π close to 1. The corresponding Wald and Score intervals 

for the poisson and negative binomial distribution show an even worse 

asymmetric coverage for upper and lower confidence limit. 

For comparison of the methods the natural oscillation of coverage probability 

due to discreteness of the underlying distributions makes it difficult to decide 

clearly for one method (compare Brown et al. 2001 for the two-sided case). Cai 

(2005) examined different CI methods by comparing the non-oscillating terms 

of the coverage probabilities using Edgeworth expansion. Among the known 

methods he recommends the Jeffreys prior interval because its coverage is the 

most symmetric. This is rather easy to compute for the simple binomial case 

using the quantiles B of the beta distribution: 

1 , 1 2, 1 20, Y n YB α− + − +   for the upper and , 1 2, 1 2 ,1Y n YBα + − +   for the lower bound. 

Since the Jeffreys prior interval is not a satisfying solution because of slightly 

liberal performance, Cai used the Edgeworth expansion to derive the so called 

second-order corrected interval. This is based on the normal approximation, but 

uses a shifted midpoint and additional correction terms. 

The upper bound of Cais second-order corrected interval for a binomial 

proportion π is: 
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z αγ −= + , and z is the quantile of the standard 

normal distribution. Both can be easily applied as two-sided intervals by 

replacing α by α/2.  

 
Figure 32: Coverage probability of upper 95%-confidence limits of Clopper-Pearson, 
Wilson, Second-order corrected and Jeffreys prior interval for π=0,…,1, n=20 and 50. 
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Figure 32 compares the coverage probabilities of upper 95% confidence limits 

of Clopper-Pearson, Wilson, Second-order Corrected and Jeffreys prior 

intervals.Obviously, the upper bounds of the two methods recommended by Cai 

(2005) perform more symmetric over the total range of π. Especially, the 

second-order corrected interval (SOC) performs much better for π close to 1. 

SOC and Jeffreys prior are more liberal than the Wilson CI for small π. Cai 

(2005) mainly compares the methods on the 99% level: then Wilson is more 

conservative for small π and Cais recommendation of SOC and Jeffreys prior is 

reasonable. The performance of the four methods thus will also be compared 

for the upper 99% limits and sample sizes of n=20 and 50 in figure 33.  

 
Figure 33: Coverage probability of upper 99%-confidence limits of Clopper-Pearson, 
Wilson, Second order corrected and Jeffreys prior interval for π=0,…,1, n=20 and 50. 
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Due to the shorter very conservative region (accompanied with a more liberal 

performance in close connection to it) of the SOC and Jeffreys prior interval, 

these can expected to require a lower minimal sample size for rejection of a 

certain null hypothesis H0: π ≥ π0. Figure 34 compares SOC, Jeffreys prior and 

Wilson Score intervals with respect to the smallest threshold π0 for which H0: π 

≥ π0 can be rejected for a given sample size n. Compare figure 10, for Wilson, 

Agresti-Coull and Clopper-Pearson. 

 
Figure 34: the smallest threshold π0 for which H0: π ≥ π0 can be rejected using upper 95% 
Wilson, Second-order corrected (SOC) and Jeffreys prior confidence limits, n=2,…,500 
F.e. to reject H0: π ≥ 0.01 with 95% confidence level, SOC will at least need 

n≥203, Jeffreys prior will at least need n≥191, whereas usage of the Wilson CI 

requires n≥268. 

A problem of the second-order corrected interval (SOC) is that the upper 95%-

bound may not include the estimator p=1 for Y=n, especially if n becomes 

larger than shown here. This leads to the downward spikes of the coverage 

near π=1 for the upper bound. This might be easily avoided by setting pU=1 for 
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Y=n and correspondingly pL=0 for Y=0, as is done for the Wilson interval with 

continuity correction. For a confidence level of 99 %, the upper bound can be 

slightly greater than 1 for at least Y=n, n-1, n-2, resulting in problems in 

calculation of SOC for group testing. To avoid leaving the range of definition for 

t in the transformation from group scale to individual scale, the SOC interval in 

the following will used with the correction that any upper limits tU>1 will be set 

tL=1. 

7.2 Application for group testing 
The two intervals recommended by Cai (2005) can straightforward be applied 

for group testing as described in general for CI construction on the group scale 

(section 3.2). 

 
Figure 35:  Bias(p) and Coverage probability of upper 95%-confidence limits of Wilson, 
Second order corrected and Jeffreys prior interval applied in binomial group testing for 
π=0,…,0.1, n=20, s= 50. 
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As shown in section 4, the performance of binomial intervals used for group 

testing is the same as for the simple binomial case, but truncated towards 

smaller values of π as group size s increases. Because of its symmetrical 

coverage, the SOC interval is superior over Wilson in case that group size was 

chosen too high for the actual proportion π: SOC will not become liberal as 

Wilson does in this case. Figure 35 shows this for n=20, a group size of s=50 

and π between 0 and 0.1. 

For values of π>0.04, for which group size s=50 becomes clearly inappropriate 

because E(p) is more than double of π, Wilson and to smaller extend Jeffreys 

prior CI become liberal, while the SOC interval in average is close to the 

nominal level. Therefore, the SOC interval is recommended for one-sided 

estimation of rare traits without testing of a clear threshold. Those problems 

may occur in plant breeding, if lines with low proportion of a special trait shall 

be selected. However, the situation of inappropriate group size stays 

undesirable and should be avoided by a conservative choice of group size if 

possible.  In case that a clear threshold exists (as in GMO-testing) and design 

can be chosen appropriate for a certain range of π<π0, and too large group 

sizes are avoided, also the Wilson CI can be used. 

 

The results for the power and experimental design in section 4.5 as well are 

transferable to the SOC and Jeffreys interval. Because of the slightly more 

liberal performance for small π, they have a higher power to reject null 

hypothesis H0: π ≥ π0 for small threshold proportions and small n and s. 

Correspondingly, for rejection of a certain nul hypothesis, SOC and Jeffreys 

prior CI need lower number of assays for a certain group size or lower group 

size in case that the number of assays is limited than the Wilson CI requires for 

rejection of the same null hypothesis. Figure 36 shows coverage probabilitys 

and power of 99% upper confidence limits of Wilson, Jeffreys prior and SOC 

interval and bias(p) for a fixed number of assays n=20 and increasing group 

size s=1,…,200. The power to reject H0: π ≥ 0.005 is shown for π=0.002, 

whereas coverage is shown for π=0.002. Bias(p) is negligible over the whole 

range of s. The differences between Wilson and SOC, Jeffreys are big for small 
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group sizes s, i.e. for small total number of units n*s, while they become less 

important for increasing group size and increasing total number of units. 

 
Figure 36:  Upper 99%-confidence limits of Wilson, Second order corrected and Jeffreys 
prior interval applied in binomial group testing n=20, s=1,…,200 
First plot: power to reject H0: π ≥ 0.005 for π=0.002  
Second plot: Coverage probability for π=0.005 
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8 Application 

Example 1: Estimation of pathogen incidence in a natural 
vector population 
Tedeschi et al. (2003) examined the role of psyllids (Cacopsylla melaneura, 

Psyllidae) for epidemiology of apple proliferation (AP). The phloem-sucking 

insect previously had been shown to transmit the phytoplasma causing AP. 

One objective was estimation of the proportion of psyllids infected with the 

phytoplasma. A group testing design with a group size s=5 was applied for this 

reason. The phytoplasma was detected in the single groups using an 

appropriate PCR assay. Although the design of their study is complicated, 

including different locations, repeated measurements, in two years and for 

different developmental stages of the vector, the authors finally sum over 

locations and time to estimate the general proportion of AP-infected vectors for 

the developmental stages. 

 

For the over-wintered psyllids sampled in spring 2000, the following data were 

obtained: 

Out of n=96 groups, each of size s=5, Y=16 groups were AP-positive. 

This leads to the estimator ( ) 0358.0961611 5
1
=−−=p  

 

The main objective here is estimation, not testing a special hypothesis, 

therefore we are interested in two-sided confidence intervals. The two-sided, 

95% Clopper-Pearson-CI for the group scale estimator t=16/96 is  

[ 0.0984 ; 0.2565 ] 

which by application of ( )5
1

11 tp −−=  for transformation of the confidence 

bounds results in a CI for the proportion of infected psyllids: 

 [ 0.0205 ; 0.0576 ]. 

 

Thus the true proportion of AP infected psyllids in the over wintered natural 

population can be expected with 95% probability between 2.2 and 5.7 %. 
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For comparison, further two-sided 95% CI are given: 

CI method lower bound upper bound width of CI 

Clopper-Pearson 0.0205 0.0576 0.0371 

Blaker 0.0210 0.0567 0.0357 

Agresti-Coull 0.0218 0.0571 0.0353 

Wilson Score 0.0220 0.0568 0.0348 

Wald 0.0186 0.0531 0.0345 

 

The five methods do not differ to large extend in the position of their bounds or 

in the interval width. This is because they are based on a rather large data set 

containing 96 observations, where methods perform comparatively well. 

Still they differ slightly: width of Clopper-Pearson is greater than that of the 

improved exact Blaker and the Score test derived Wilson and Agresti-Coull 

interval. The Wald interval is only slightly shorter than Wilson, but differs in 

position: the position of Wilson is similar to the exact intervals, while Wald is 

shifted toward 0, corresponding to its conservative lower bound and its very 

liberal upper bound. 

 
Figure 37: Coverage probability of two-sided 95% Wilson and Clopper Pearson CI and 
bias (p) for n=96 groups each of group size s=5 for π=0,…,0.2 
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Figure 37 shows that this design, although reducing the number of observation 

5 times compared to simple binomial testing, is appropriate for estimation of a 

broad range of true infection rates. The true, unknown proportion of infected 

psyllids was varied from 0 to 20%. Over this range, bias was negligible. The 

Wilson CI performs as expected for the two-sided case: mean coverage seems 

close to the nominal level, and only shows some liberal spikes for proportions 

between 0 and 1%. The Clopper-Pearson CI is clearly conservative especially 

for proportions < 1%. If smaller proportions of infected psyllids shall be reliably 

estimated, either group size should be increased or, if this is not possible, more 

assays have to be performed. 

Example 2: Vector transfer design 
Tebbs and Bilder (2004) give an example of a vector transfer experiment 

performed by Ornaghi et al. (1999). 7 individuals of the planthopper 

Delphacodes kuscheli (Macroptera) from natural populations were placed on 

each of 24 healthy test plants, which were isolated from each other. After a 

sufficient time for infection and for establishing of the virus, each single test 

plant was evaluated for showing the disease or not. 3 test plants were found 

infected, 21 still were healthy. 

The estimator of infection rate from this trial is 

1
731 1 0.0189

24
p  = − − = 

    

A two-sided 95% Wilson confidence interval for the transmission rate of a single 

plant hopper is [0.0063; 0.0516]. It can be concluded, that with only 5% 

probability, less than 0.63% or more than 5.16% of the individuals in the 

observed plant hopper population will transmit the virus to the plants.  In other 

words, if the vector transfer design would be extended by including further test 

plants exposed to the planthoppers, 95% of the new estimators of transmission 

rates would range between 0.63 and 5.16 %. 

Example 3: Resistance breeding: Estimation of the proportion 
of susceptible individuals in a breeding population 
A certain pathogen resistance is inherited through a single dominant-recessive 

gene with the alleles R for resistance and s for susceptibility. The genotypes 

RR and Rs are resistant, ss is susceptible to the disease. Here also the 
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resistant Rs genotype inherits the susceptibility allele s to its offspring. A 

molecular marker exists, which allows classification of individuals as RR, Rs 

and ss, so populations or inbred lines for hybrid breeding can be selected for a 

low frequency of either Rs or ss genotypes. Objective of an experiment 

(Weissleder K, Fa KWS, personal communication) was the estimation of the 

low proportion of Rs + ss individuals. Since usually many lines or populations 

have to be evaluated in the breeding process and application of molecular 

markers is expensive, the costs for classification of a single line are limited. If 

group testing is applied for this problem, groups can be classified to contain 

either only R alleles, i.e. to contain only RR individuals, or contain only s alleles, 

i.e. to contain only ss individuals. If an assay detects both R and s, the group 

might contain any genotypes. 

 

The following data show the results of group testing experiments on two 

populations. Groups each containing plant material of 5 individuals were 

classified using the molecular marker. The group size was limited to 5 because 

for larger group sizes the assay might not detect single Rs individuals in a 

group anymore. Larger group sizes might have lead to violation of assumption 

4 and 5 to have sensitivity and specificity =1. 

For the first population, out of 58 assays, 57 assays detected only R alleles, 

whereas in one group R and s alleles were detected and no group contained 

only s alleles. 

For the second population, out of 60 assays, 1 detected only R alleles, 50 

detected both R and s, and in 9 groups only ss genotypes were present. 

Population group size s n R only R and s s only 
1 5 58 57 1 0 
2 5 60 1 50 9 

 

The primary aim is to calculate an estimator and confidence limits for the 

proportion of ‘not-RR’ individuals, that is Rs+ss. Groups somehow containing 

the s allele are counted as positive in the sense given in the notations. Of 

course it is also possible to estimate the proportion of ‘not-ss’ genotypes. But 

this is not of interest for this problem. 
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It has to be mentioned, that from this experiment, a CI for the proportion of RR-

individuals cannot be calculated because of assumption 4. I.e. only traits can 

be defined as ‘positive’ in the sense of the notation given above, if a single 

positive individual in a group results in positive classification of the group. A 

single RR-individual can not be detected in a group containing any s-alleles: 

This group will be classified as containing R and s alleles and it can not be 

decided whether the members of the group are Rs, RR and Rs, RR and ss or 

further combinations.  

 

Population 1:  
Here, Y=1 was found to be ‘not-RR’ among the n=58 groups under observation. 

Estimator for proportion of not-RR individuals is 003472.0
58
111

5
1

=





 −−=p  

Since interest is only in small proportions of ‘not-RR’ individuals, one might 

calculate one-sided 95%-Clopper-Pearson CI with an upper bound, to take the 

uncertainty of estimating p into account. The simple binomial Clopper-Pearson 

CI for the group scale estimator t=1/58 is [0 ; 0.0792], transformation to the 

individual scale results in [ 0 ; 0.0164 ]. The breeder can conclude with 95% 

certainty, that population 1 does not contain more than 1.6% Rs and ss 

genotypes. 

For illustration, further one-sided 95% CI are shown: 

CI method Lower bound Upper bound 

Clopper-Pearson 0 0.0164 

Agresti-Coull 0 0.0164 

Wilson Score 0 0.0152 

Wald 0 0.0092 

 

Population 2: 
The same can be done for population 2: Among 60 groups, 59 groups were 

found to contain ‘not-RR’ individuals. 

Estimator for proportion of ‘not-RR’ individuals is 55907.0
60
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The Clopper-Pearson CI then is [ 0; 0.7566 ], leading to the interpretation, that 

population 2 may contain until 75.7% Rs and ss genotypes with a probability of 

95%. As obvious from the data and the estimator, the design was not 

appropriate for the underlying unknown proportion.  

For comparison of the methods: 

CI method Lower bound Upper bound 

Clopper-Pearson 0 0.7566 

Agresti-Coull 0 1 

Wilson Score 0 0.6732 

Wald 0 0.7029 

 

The upper limit of the Agresti-Coull interval equals 1 because for Y close to or 

equal 1, the binomial Agresti-Coull interval on the group scale can have upper 

limits slightly greater than 1. This has to be corrected to 1 for transformation to 

the individual scale. This does not happen for Wilson or Clopper Pearson CI, 

which have upper bounds slightly lower than 1 for the same Y and n. Anyway, 

the estimation is very uncertain for all CI methods because of the probably not 

small proportion. This shows the limitation of group testing: the methods 

become insensitive if the proportion of the positive individuals becomes large. 

Example 4a: Testing on GMO in an agricultural seed lot  
In this experiment (Weissleder K, Fa KWS, personal communication) PCR was 

applied to test whether GMO were present in a seed lot. Objective is to show 

that the proportion of GMO in the seed lot is lower than 0.005:  

H0: π ≥ 0.005   vs. H1: π < 0.005 

3 groups were tested, each containing s=3000 seeds. No group was tested 

GMO-positive. 

In case that the assumptions come true, the following can be concluded: 

The estimator of GMO in the sample is p = 0.  

The upper Clopper-Pearson confidence limit for the proportion of GMO in the 

sample is [; 0.00033]. Since the upper bound is clearly smaller than the 

threshold 0.005 (the CI does not contain the threshold) it can be concluded that 

the proportion of CI is significantly smaller than 0.005 for an error probability of 

5%.  
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For comparison, the corresponding p-value of an exact test (Hepworth, 1996) 

can be calculated: The probability to observe a Y favoring the alternative H1 

more than or equally as the observed Y=0 is P(Y≤0|n=3, s=3000) < 0.0001. 

From the confidence interval it can be concluded with 95% confidence that not 

more than 0.033% GMO are present in the seed lot. In other words, if further 

assays would be performed on the same seed lot, the new estimators of GMO 

content would lay in 95% of the cases within 0 and 0.033%. 

 

Figure 38 shows the performance of this design for the range of π=0,…,0.005 

which is of interest in GMO-testing. 

 
Figure 38: Power to reject H0: π ≥ 0.005 using upper 95% Wilson, Agresti-Coull and  
Clopper Pearson limits and bias (p) for n=3 groups each of group size s=3000 for 
π=0,…,0.005 
 

This design is only appropriate for estimating very small incidences. To test 

against a hypothesis H0: π ≥ 0.005, it has a sufficient power only for very small 



 84

proportions (π<0.0003) of GMO. For proportions π > 0.0015, nearly every 

experiment will result in the outcome Y=3, and thus in the estimator p=1. This 

results in the large bias of the estimator and the inability to reject the null 

hypothesis.  For this special design and hypothesis, all three methods have the 

same power depending on π.  

Example 4b: A higher number of assays 
In a second experiment the same methods were used to detect the same GMO 

in another seed lot, but a more assays were performed. Among 21 groups, 

each containing 3000 seeds, one group was found GMO-positive 20 groups 

were found GMO-negative. 

The estimator = 1-(1-1/21)1/3000 = 0.000017 and a 95% one-sided Clopper-

Pearson confidence interval is [ 0 ; 0.000077 ]. Here again the question arises, 

whether this experimental design was appropriate to test the hypothesis H0: π ≥ 

0.005. In the following graph shows the power of the design n=21, s=3000 in 

dependence for true GMO contaminations π = 0,…, 0.005. 
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Figure 39: Power to reject H0: π ≥ 0.005 using upper 95% Wilson, Agresti-Coull and 
Clopper-Pearson limits and bias (p) for n=21 groups each of group size s=3000 for 
π=0,…,0.005 

As obvious from figure 39, the design is very sensitive to detect contaminations 

between lower than π= 0.00075. As bias increases for higher values of π, 

power decreases and the design becomes inappropriate for π > 0.0015. 

Obviously, the group size s=3000 is too high if GMO-proportions become too 

high although being still lower than the threshold 0.005.  

If the experimenter f.e. also wants a sufficient power to reject H0: π ≥ 0.005 if 

the true GMO contamination in the seed lot goes until π = 0.003, smaller group 

sizes are optimal: Figure 40 shows the power of Wilson, Clopper-Pearson and 

Agresti-Coull CIs upper 95% limits for increasing group size s=1,…, 3000 if the 

true GMO contamination of the seed lot is π = 0.003. 
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Figure 40: Power to reject H0: π ≥ 0.005 using upper 95% Wilson, Agresti-Coull and  
Clopper Pearson limits and bias (p) for n=21 groups and π = 0.003 for s=1,…,3000 
 

Obviously the maximal power for this sample size n=21 can be achieved with 

group sizes between 400 and 500. Further increasing the group size results in 

high bias of the estimator p and decreasing power. But how does a design of 

n=21 and s=500 perform for other values of π =0,…,0.005 ? Power and bias(p) 

for this design are shown in figure 40. 
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Figure 41: Power to reject H0: π ≥ 0.005 using upper 95% Wilson, Agresti-Coull and 
Clopper-Pearson limits and bias (p) for n=21 groups each of group size s=500 for 
π=0,…,0.005 
 

For very small π, the design has the same high power as if group size s=3000 

would have been used, but using s=500 also GMO contaminations of 0.3 % 

can still be shown with a high probability to be significantly lower than 0.5%. 

This again stresses the importance of careful experimental design including 

calculation of bias and power for the expected range of π. 

 

9 General discussion and prospect 
The usefulness of the group testing approach for estimation of small binomial 

proportions in case of limited assay number is described in the references 

(Thompson 1962, Swallow 1985, Tebbs and Bilder 2004). In this thesis, it was 
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shown that it can also greatly improve the power in a proof of safety, if very 

small proportions are considered as threshold proportions for ‘unsafety’ and the 

number of observations is limited. As mentioned already in early publications 

(Thompson 1962, Swallow 1987) the bias of the estimator beside others is a 

critical parameter to judge the goodness of a group testing design. If the type-I-

error α shall be controlled in a strict and conservative way, exact intervals as 

the Blaker interval are recommended for the two-sided case (Tebbs and Bilder 

2004, Reiczigel, 2003, Blaker, 2000) and the Clopper-Pearson interval has 

been shown to be appropriate for the one-sided case in this thesis. 

If slightly liberal performance is acceptable, Wilson Score interval can be 

recommended for the two-sided (Tebbs and Bilder, 2004) and here was also 

found to be acceptable for the one-sided case. The recently proposed second-

order corrected confidence interval (Cai, 2005) seems to be a clear 

improvement of the known asymptotic methods because of its symmetric 

coverage probability, and only moderate violation of the nominal level over the 

whole range of the binomial proportion. Especially if higher confidence levels 

(f.e. 99%) are required or if the methods are applied in group testing with the 

risk of choosing the group size inappropriately high, this new method is 

recommended instead of the Wilson interval. Because of its more complicated 

calculation it needs to be implemented in a software package. 

 

One important area of application of a proof of safety using group testing is 

testing for GMO contamination. An alternative approach, recently proposed by 

the EU commission (Anonymous 2004), is the quantitative measurement of 

contamination in a sample. Even if quantitative methods are used for 

characterization, group testing might be applied after dichotomization of the 

continuous outcomes using a cut point (Xie et al. 2001). 

Another application for group testing is epidemiology of plant, animal or human 

diseases. Beside the simple estimation of proportions, the comparison of two or 

k proportions is of high interest. Here several open problems still exist: Beside a 

Wald type confidence interval for the difference of two proportions proposed by 

Swallow (1985), no other proposals or even discussions of the performance of 

this method were found in the references, although CI for difference of 

proportions estimated from simple binomial testing are extensively discussed 
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(f.e. Newcombe 1998, Agresti and Caffo 2000, Zhou et al. 2004). This certainly 

is a problem which needs further examination. Although the two-sample 

comparison seems to be not solved for group testing, regression methods or 

methods for ordered binomial proportions for k simple binomial proportion can 

be transferred to the group testing approach (Tebbs and Swallow 2003a,b, Xie 

2001, Hung and Swallow 2000). 
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11 Annex: R code 
NOTATION IN THE R-CODE 
n    number of assays or groups or observations 
s    number of units in the groups 
Y    number of positive observations, i.e. observed number of positive 
  groups (group testing) or positive individuals (simple binomial)  
p.tr   true proportion of positive individual units in the population 
p.hyp   threshold proportion in the hypothesis 
conf.level 1-alpha 
alternative direction of the alternative hypothesis: 
"less" means p.tr < p.hyp  only upper bound with each 1-α 
"greater" means p.tr > p.hyp only lower bound with each 1-α 
"two.sided" means p.tr != p.hyp upper and lower bound with each 1-α/2 
interval bounds greater 1 or smaller 0 are set 1 or 0 !! otherwise: NaN after  
transformation to the group scale for t>1 

11.1 R code for binomial group testing 
The examples for usage of the functions and the plots can be carried out by 
transferring the Rcode given below (marked blue) to the GUI of R, f.e. by ‘copy 
and paste’. No packages additional to the R version 2.0.1 needed.  
1)  simple functions for the calculations of the single interval types are given 
2)  the basic functions for calculation of power, coverage and bias are given, 
which can easily be modified to calculate interval length, etc. ; these need the 
functions under 1) present in the R working space 
3) gives functions to vary the design parameters n, s, p.tr, p.hyp in a 
standardized manner, which can easily be used in plots including one example 
of a plot; these functions need the functions under 1) and 2) to be present in the 
working space 
4) gives short functions for approximate power and sample size calculation for 
the group testing Score test and Wilson CI 
5) gives a function for simulation of coverage in the Wilson, AgrestiCoull, Wald,  
add-4 and Clopper-Pearson CI, only for comparison with closed calculation; 
needs the functions under 1) to be present in the working space 
 
############################################################# 
#        # 
#  1) CONFIDENCE INTERVALS FOR BINOMIAL GROUP TESTING # 
#        # 
############################################################# 
 
########################### 
#### wilson CI for bgt #### 
########################### 
 
bgt.wilson<-function(n,Y,s,conf.level=0.95,alternative="two.sided") 
{  
alpha=1-conf.level  
th=Y/n 
est.int=(Y+(qnorm(1-alpha/2)^2)/2)/(n+(qnorm(1-alpha/2))^2) 
est.int1s=(Y+(qnorm(1-alpha)^2)/2)/(n+(qnorm(1-alpha))^2) 
 
if(alternative =="two.sided"){ 
    w.se=((qnorm(1-alpha/2))*sqrt(n*th*(1-th)+(qnorm(1-alpha/2)^2)/4))/(n+qnorm(1-
alpha/2)^2) 
    KI.int.l=est.int-w.se 
    KI.int.u=est.int+w.se 
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        if (KI.int.u>1){KI.int.u=1} 
        if (KI.int.l<0){KI.int.l=0} 
    KI=c( 1-(1-KI.int.l)^(1/s), 1-(1-KI.int.u)^(1/s) ) 
} 
else{if(alternative=="less"){ 
    w.se=((qnorm(1-alpha))*sqrt(n*th*(1-th)+(qnorm(1-alpha)^2)/4))/(n+qnorm(1-alpha)^2) 
    KI.int.u=est.int1s+w.se 
        if (KI.int.u>1){KI.int.u=1} 
    KI=c( 0, 1-(1-KI.int.u)^(1/s) ) 
} 
else{if(alternative=="greater"){ 
    w.se=((qnorm(1-alpha))*sqrt(n*th*(1-th)+(qnorm(1-alpha)^2)/4))/(n+qnorm(1-alpha)^2) 
    KI.int.l=est.int1s-w.se 
        if (KI.int.l<0){KI.int.l=0} 
    KI=c( 1-(1-KI.int.l)^(1/s), 1 ) 
} 
else{stop("argument alternative misspecified")}}} 
estimate = 1-(1-th)^(1/s)  
list(conf.int = KI,estimate=estimate) } 
 
 
# # # Examples for usage: 
# Compare Tebbs and Bilder(2004),p.86 
bgt.wilson(n=24,Y=3,s=7) 
bgt.wilson(n=24,Y=3,s=7,conf.level=0.95,alternative="two.sided") 
# one.sided 
bgt.wilson(n=24,Y=3,s=7,conf.level=0.975,alternative="less") 
 
################################# 
#### Agresti-Coull-CI for bgt ### 
################################# 
 
bgt.AC<-function(n, Y, s, conf.level=0.95, alternative="two.sided") { 
alpha=1-conf.level 
est.int=(Y+(qnorm(1-alpha/2)^2)/2)/(n+(qnorm(1-alpha/2))^2) 
est.int1s=(Y+(qnorm(1-alpha)^2)/2)/(n+(qnorm(1-alpha))^2) 
 
if(alternative =="two.sided"){ 
 AC.se=(qnorm(1-alpha/2))*sqrt((est.int*(1-est.int))/(n+(qnorm(1-alpha/2))^2)) 
 KI.int.l=est.int-AC.se 
 KI.int.u=est.int+AC.se 
        if (KI.int.u>1){KI.int.u=1} 
        if (KI.int.l<0){KI.int.l=0} 
 KI=c(1-(1-KI.int.l)^(1/s),1-(1-KI.int.u)^(1/s)) 
}  
else{if(alternative=="less"){ 
 AC.se=(qnorm(1-alpha))*sqrt((est.int1s*(1-est.int1s))/(n+(qnorm(1-alpha))^2)) 
 KI.int.u=est.int1s+AC.se 
        if (KI.int.u>1){KI.int.u=1} 
 KI=c(0, 1-(1-KI.int.u)^(1/s)) 
}  
else{if(alternative=="greater"){ 
 AC.se=(qnorm(1-alpha))*sqrt((est.int1s*(1-est.int1s))/(n+(qnorm(1-alpha))^2)) 
 KI.int.l=est.int1s-AC.se 
        if (KI.int.l<0){KI.int.l=0} 
 KI=c(1-(1-KI.int.l)^(1/s),1) 
} 
else{stop("argument alternative misspecified")}}} 
 
estimate=1-(1-Y/n)^(1/s) 
list( conf.int=KI,estimate=estimate ) 
} 
 
# # # Example for usage: 
bgt.AC(n=24,Y=3,s=7) 
 
############################################## 
# Add-4 for binomial group testing  # 
# for alpha=0.05 and two-sided only !  # 
############################################## 
 
bgt.add4<-function(n, Y, s, conf.level=0.95, alternative="two.sided") { 
alpha=1-conf.level 
t=Y/n 
est.int=(Y+2)/(n+4) 
 
if(alternative =="two.sided"){ 
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 add.se=(qnorm(1-alpha/2))*sqrt((est.int*(1-est.int))/(n+4)) 
 KI.int.l=est.int-add.se 
 KI.int.u=est.int+add.se 
        if (KI.int.u>1){KI.int.u=1} 
        if (KI.int.l<0){KI.int.l=0} 
 KI=c(1-(1-KI.int.l)^(1/s),1-(1-KI.int.u)^(1/s)) 
}  
 
else{if(alternative=="less"){ 
 add.se=(qnorm(1-alpha))*sqrt((est.int*(1-est.int))/(n+4)) 
 KI.int.u=est.int+add.se 
        if (KI.int.u>1){KI.int.u=1} 
 KI=c(0, 1-(1-KI.int.u)^(1/s)) 
}  
 
else{if(alternative=="greater"){ 
 add.se=(qnorm(1-alpha))*sqrt((est.int*(1-est.int))/(n+4)) 
 KI.int.l=est.int-add.se 
        if (KI.int.l<0){KI.int.l=0} 
 KI=c(1-(1-KI.int.l)^(1/s),1) 
} 
else{stop("argument alternative misspecified")}}} 
 
estimate = 1-(1-t)^(1/s) 
list( conf.int=KI,estimate=estimate ) 
} 
bgt.add4(n=24,Y=3,s=7) 
 
 
############################## 
### Wald Intervall for bgt ### 
############################## 
 
bgt.wald<- function (n, Y, s, conf.level=0.95, alternative="two.sided") 
 
{ 
if(Y>n) {stop("number of positive tests Y can not be greater than number of tests n")} 
th=Y/n 
esti=1-(1-th)^(1/s) 
var.esti=(1-(1-esti)^s)/(n*(s^2)*(1-esti)^(s-2)) 
alpha=1-conf.level 
 
if(alternative=="two.sided"){ 
    snquant=qnorm(p=1-alpha/2,mean=0,sd=1,lower.tail=TRUE) 
    KI=c(esti-snquant*sqrt(var.esti),esti+snquant*sqrt(var.esti)) 
} 
else{if (alternative=="less"){ 
    snquant=qnorm(p=1-alpha,mean=0,sd=1,lower.tail=TRUE) 
    KI=c(-Inf,esti+snquant*sqrt(var.esti)) 
} 
else {if (alternative=="greater"){ 
    snquant=qnorm(p=1-alpha,mean=0,sd=1,lower.tail=TRUE) 
    KI=c(esti-snquant*sqrt(var.esti),Inf) 
} 
else {stop("argument alternative mis-specified")}}} 
list( conf.int=KI,estimate=esti ) 
} 
 
# # # Example for usage: 
# Compare Tebbs and Bilder(2004),p.86 
bgt.wald(n=24,Y=3,s=7) 
 
##################### 
#  Clopper-Pearson  # 
##################### 
 
bgt.CP<-function(n,s,Y, conf.level=0.95, alternative="two.sided") 
{ 
lower<-0 
upper<-1 
if(alternative=="two.sided") 
{ 
 if(Y!=0) 
   {lower<-qbeta((1-conf.level)/2, Y, n-Y+1)} 
 
 if(Y!=n) 
   {upper<-qbeta(1-(1-conf.level)/2, Y+1, n-Y)} 
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} 
 
if(alternative=="less") 
{ 
 if(Y!=n) 
   {upper<-qbeta(1-(1-conf.level), Y+1, n-Y)} 
} 
 
if(alternative=="greater") 
{ 
 if(Y!=0) 
   {lower<-qbeta((1-conf.level), Y, n-Y+1)} 
} 
 
estimate=1-(1-Y/n)^(1/s) 
KI=c(1-(1-lower)^(1/s),1-(1-upper)^(1/s)) 
 
list(conf.int=KI, estimate=estimate)    
} 
 
# # # example for usage 
# Compare Tebbs and Bilder(2004),p.86 
bgt.CP(n=24,s=7, Y=3) 
 
########################## 
# Second Order Corrected # 
########################## 
 
bgt.SOC<-function(n,Y,s,conf.level=0.95,alternative="two.sided") 
{ 
esti<-Y/n 
kappa<-qnorm(conf.level) 
eta<-(kappa^2)/3 + 1/6 
gamma1<-((13/18)*kappa^2 + 17/18)*(-1) 
gamma2<-(kappa^2)/18 + 7/36 
 
midpo<-(Y+eta)/(n+2*eta) 
 
if(alternative=="less") 
  {upper = midpo + kappa * sqrt(esti*(1-esti) + (gamma1*esti*(1-esti) + 
gamma2)/n)/sqrt(n) 
CI=c( 0 ,upper) 
  if(Y==n||upper>1){CI=c(0,1)} 
  else{ CI=c( 0 ,upper)} 
 } 
 
if(alternative=="greater") 
  {CI=c( midpo - kappa*sqrt(esti*(1-esti) + (gamma1*esti*(1-esti) + gamma2)/n)/sqrt(n) , 
1) 
  if(Y==0){CI=c(0,1)} } 
 
if (alternative=="two.sided") 
{ 
kappa<-qnorm(1-(1-conf.level)/2) 
eta<-(kappa^2)/3 + 1/6 
gamma1<-((13/18)*kappa^2 + 17/18)*(-1) 
gamma2<-(kappa^2)/18 + 7/36 
 
lower= midpo - kappa*sqrt(esti*(1-esti) + (gamma1*esti*(1-esti) + gamma2)/n)/sqrt(n)   
upper= midpo + kappa*sqrt(esti*(1-esti) + (gamma1*esti*(1-esti) + gamma2)/n)/sqrt(n) 
  
if(Y==0){CI=c(0,upper)}  
else{if(Y==n||upper>1){CI=c(lower,1)} 
else{CI=c(lower, upper)}} 
} 
 
estimate=1-(1-Y/n)^(1/s) 
conf.int=c( 1-(1-CI[1])^(1/s) ,  1-(1-CI[2])^(1/s)) 
list(conf.int=conf.int, estimate=estimate) 
} 
 
# usage: 
bgt.SOC(Y=3, n=24, s=7, alternative ="less") 
 
################## 
# Jeffreys Prior # 
################## 
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bgt.Jef<- function(n,Y,s,conf.level=0.95,alternative="two.sided") 
 
{ 
if(alternative=="less") 
 {CI=c( 0 , qbeta(p=conf.level, shape1= Y+0.5, shape2=n-Y+0.5) )} 
 
if(alternative=="greater") 
 {CI=c( qbeta(p=1-conf.level, shape1= Y+0.5, shape2=n-Y+0.5) , 1 )} 
 
if (alternative=="two.sided") 
 {CI=c( qbeta(p=(1-conf.level)/2, shape1=Y+0.5, shape2=n-Y+0.5) , qbeta(p=1-(1-
conf.level)/2, shape1=Y+0.5, shape2=n-Y+0.5) )} 
 
estimate=1-(1-Y/n)^(1/s) 
conf.int=c( 1-(1-CI[1])^(1/s) ,  1-(1-CI[2])^(1/s)) 
list(conf.int=conf.int, estimate=estimate) 
} 
 
# # # usage: 
bgt.Jef(Y=3, n=24, s=7) 
 
############################################################# 
#        # 
# 2) Closed calculation of power and coverage probabilities # 
# for the group testing CI methods given above  # 
#        # 
############################################################# 
 
# Indicator functions: 
 
##################################################################################  
# i)Power-calculation         # 
#           # 
# P.ind calculates, whether a method rejects H0 for a given setting of n,Y,s,alpha # 
#           # 
################################################################################### 
 
P.Ind<-function(n,Y,s,p.hyp,conf.level,method,alternative){ 
 
if(method=="wilson"){ 
 KI.wilson<-bgt.wilson(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.wilson[[1]]>=p.hyp||KI.wilson[[2]]<=p.hyp){dec=1} 
 else{dec=0} 
 dec} 
 
else{if(method=="AC"){ 
 KI.AC<-bgt.AC(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.AC[[1]]>=p.hyp||KI.AC[[2]]<=p.hyp){dec=1} 
 else{dec=0} 
 dec} 
 
else{if(method=="wald"){ 
 KI.wald<-bgt.wald(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.wald[[1]]>=p.hyp||KI.wald[[2]]<=p.hyp){dec=1} 
 else{dec=0} 
 dec} 
 
else{if(method=="CP"){ 
 KI.CP<-bgt.CP(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.CP[[1]]>=p.hyp||KI.CP[[2]]<=p.hyp){dec=1} 
 else{dec=0} 
 dec} 
 
else{if(method=="SOC"){ 
 KI.SOC<-bgt.SOC(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.SOC[[1]]>=p.hyp||KI.SOC[[2]]<=p.hyp){dec=1} 
 else{dec=0} 
 dec} 
 
else{if(method=="Jef"){ 
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 KI.Jef<-bgt.Jef(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.Jef[[1]]>=p.hyp||KI.Jef[[2]]<=p.hyp){dec=1} 
 else{dec=0} 
 dec} 
 
else{stop("argument method mis-specified")}}}}}} 
} 
 
############################################################################ 
#          # 
# ii) Calculation of coverage probability     # 
# indicator function C.Ind calculates whether the CI contains the true # 
# value for a given set of Y,n,s,       # 
#          # 
############################################################################ 
 
C.Ind<-function(n,Y,s,p.tr,conf.level,method,alternative){ 
 
if(method=="wilson"){ 
 KI.wilson<-bgt.wilson(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.wilson[[1]]<=p.tr && KI.wilson[[2]]>=p.tr){cov=1} 
 else{cov=0} 
 cov} 
 
else{if(method=="AC"){ 
 KI.AC<-bgt.AC(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.AC[[1]]<=p.tr && KI.AC[[2]]>=p.tr){cov=1} 
 else{cov=0} 
 cov} 
 
else{if(method=="wald"){ 
 KI.wald<-bgt.wald(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.wald[[1]]<=p.tr && KI.wald[[2]]>=p.tr){cov=1} 
 else{cov=0} 
 cov} 
 
else{if(method=="CP"){ 
 KI.CP<-bgt.CP(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.CP[[1]]<=p.tr && KI.CP[[2]]>=p.tr){cov=1} 
 else{cov=0} 
 cov} 
 
else{if(method=="SOC"){ 
 KI.SOC<-bgt.SOC(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.SOC[[1]]<=p.tr && KI.SOC[[2]]>=p.tr){cov=1} 
 else{cov=0} 
 cov} 
 
else{if(method=="Jef"){ 
 KI.Jef<-bgt.Jef(n=n,Y=Y,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int  
 if(KI.Jef[[1]]<=p.tr && KI.Jef[[2]]>=p.tr){cov=1} 
 else{cov=0} 
 cov} 
 
else{stop("argument method mis-specified")}}}}}} 
} 
 
###################################################### 
#       # 
# iii) Calculation of the probability of realisation # 
# of a certain Y for a given set of n,s,p.tr  # 
#       # 
###################################################### 
 
CI.prob<-function(n,Y,s,p.tr){ 
CI.pr<-(choose(n,Y)) * ((1-(1-p.tr)^s)^Y) * (1-p.tr)^(s*(n-Y)) 
CI.pr 
} 
 
# can be used until n=1029, Y=514 
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# Since numbers greater or equal choose(1030,515) cannot be represented in R anymore 
# (i.e. 1e+309=Inf), and numbers x smaller than x=1e-323 are represented by 0, thus 
# result in log(x)=-Inf, the following function might be used instead of CI.prob(), 
# here lchoose() calculates the natural logarithm of the binomial coefficient 
 
CI.prob2<-function(n,Y,s,p.tr){ 
CI.pr<-exp( lchoose(n,Y) + Y*log(1-(1-p.tr)^s) + s*(n-Y)*log(1-p.tr) ) 
CI.pr 
} 
####################################### 
#     # 
#  iv) SYNTHESIS of i), ii) and iii) # 
#     # 
####################################### 
 
######################################################################### 
#  Basic function 1 : power and bias of a certain design and CI method  #  
#########################################################################  
 
bgt.power<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided"){ 
 
pow.ex=0 
expected=0 
for(Y in 0:n) 
  { 
  temp=CI.prob(n=n,Y=Y,s=s,p.tr=p.tr) 
  pow.ex <- pow.ex+(P.Ind(n=n,Y=Y,s=s,p.hyp=p.hyp,conf.level=conf.level,method=method, 
alternative = alternative) * temp) 
  expected=expected+(1-(1-Y/n)^(1/s))*temp 
  } 
bias=expected-p.tr 
 
list(power=pow.ex, 
bias=bias) 
} 
# usage: 
bgt.power(n=25,s=18, p.tr=0.05, p.hyp=0.08) 
 
# Bias: Compare Swallow, 1985, table 1: N=25, k=18, p=0.05 
 
############################################################################ 
#  Basic function 2 : coverage and bias of a certain design and CI method  # 
############################################################################ 
 
bgt.cover<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided"){ 
 
cov.ex=0 
expected=0 
for(Y in 0:n) 
  { 
  temp=CI.prob(n=n,Y=Y,s=s,p.tr=p.tr) 
  cov.ex <- cov.ex+(C.Ind(n=n,Y=Y,s=s,p.tr=p.tr,conf.level=conf.level,method=method, 
alternative = alternative) * temp) 
  expected=expected+(1-(1-Y/n)^(1/s))*temp 
  } 
bias=expected-p.tr 
 
list(cover=cov.ex, 
bias=bias) 
} 
 
# usage: 
bgt.cover(n=25,s=18, p.tr=0.05, p.hyp=0.08) 
 
#################################################################### 
#         # 
# 3) VECTORIZATIONS of the two Basic functions for variation # 
# of the different parameters and a defined output in   # 
# vectors for plotting of the graphs     # 
#         #  
#################################################################### 
 
############################################################# 
# Vary the group size s, other parameters fixed  # 
# Input of s as a vector     # 
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############################################################# 
 
# Power 
 
bgts.power<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided") 
{ 
pow.s<-numeric(length=length(s)) 
bias.s<-numeric(length=length(s)) 
 
 for(i in 1:length(s)) 
  {   
  temp<-bgt.power(n=n,s=s[i],p.tr=p.tr,p.hyp=p.hyp,method=method,alternative = 
alternative, conf.level=conf.level) 
  pow.s[i]<-temp$power 
  bias.s[i]<-temp$bias 
  } 
list(group.size=s,power=pow.s,bias=bias.s) 
} 
 
# usage: 
test<-bgts.power(n=20, s=1:100, p.tr=0.02,p.hyp=0.03, alternative="less", 
method="wilson") 
# a simple plot 
layout(mat=matrix(1:2, ncol=1)) 
plot(x=test$group.size, y=test$power, type="l") 
plot(x=test$group.size, y=test$bias, type="l") 
 
# Coverage 
 
bgts.cover<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided") 
{ 
cov.s<-numeric(length=length(s)) 
bias.s<-numeric(length=length(s)) 
 
 for(i in 1:length(s)) 
  {   
  temp<-bgt.cover(n=n,s=s[i],p.tr=p.tr,p.hyp=p.hyp,method=method,alternative = 
alternative, conf.level=conf.level) 
  cov.s[i]<-temp$cover 
  bias.s[i]<-temp$bias 
  } 
 
list(group.size=s,cover=cov.s,bias=bias.s) 
} 
#usage: 
test1<-bgts.cover(n=20, s=1:100, p.tr=0.02,p.hyp=0.03,method="wilson", 
alternative="less") 
# a simple plot 
layout(mat=matrix(1:2, ncol=1)) 
plot(x=test1$group.size, y=test1$cover, type="l") 
plot(x=test1$group.size, y=test1$bias, type="l") 
 
############################################################# 
# Vary the number of assays n, other parameters fixed # 
# Input of n as a vector     # 
############################################################# 
 
# Power 
 
bgtn.power<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided") 
{ 
 
pow.n<-numeric(length=length(n)) 
bias.n<-numeric(length=length(n)) 
 
 for(i in 1:length(n)) 
  { 
  temp<-bgt.power(n=n[i],s=s,p.tr=p.tr,p.hyp=p.hyp,method=method,alternative = 
alternative, conf.level=conf.level) 
  pow.n[i]<-temp$power 
  bias.n[i]<-temp$bias 
  } 
list(n=n,power=pow.n,bias=bias.n) 
} 
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#usage: 
bgtn.power(n=20:60,s=10,p.tr=0.001,p.hyp=0.005) 
 
# Coverage 
 
bgtn.cover<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided") 
{ 
cov.n<-numeric(length=length(n)) 
bias.n<-numeric(length=length(n)) 
 
 for(i in 1:length(n)) 
  { 
  temp<-bgt.cover(n=n[i],s=s,p.tr=p.tr,p.hyp=p.hyp,method=method,alternative = 
alternative, conf.level=conf.level) 
  cov.n[i]<-temp$cover 
  bias.n[i]<-temp$bias 
  } 
 
list(n=n,cover=cov.n,bias=bias.n) 
} 
#usage: 
bgtn.cover(n=20:60,s=10,p.tr=0.001,p.hyp=0.005) 
 
#################################################################### 
# Vary the true binomial proportion p.tr, other parameters fixed # 
# Input of p.tr as a vector      # 
#################################################################### 
 
# Power 
 
bgtp.power<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided") 
{ 
pow.p<-numeric(length=length(p.tr)) 
bias.p<-numeric(length=length(p.tr)) 
 
 for(i in 1:length(p.tr)) 
  { 
   
  temp<-bgt.power(n=n,s=s,p.tr=p.tr[i],p.hyp=p.hyp,method=method,alternative = 
alternative, conf.level=conf.level) 
  pow.p[i]<-temp$power 
  bias.p[i]<-temp$bias 
  } 
 
list(p.tr=p.tr,power=pow.p,bias=bias.p) 
} 
 
# usage: 
test<-bgtp.power(n=100, s=10, p.tr=seq(0,0.005,0.0001), p.hyp=0.005, alternative="less", 
method="SOC") 
plot(x=test$p.tr,y=test$power, type="l") 
 
# Coverage 
 
bgtp.cover<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided") 
{ 
cov.p<-numeric(length=length(p.tr)) 
bias.p<-numeric(length=length(p.tr)) 
 
 for(i in 1:length(p.tr)) 
  { 
    temp<-bgt.cover(n=n,s=s,p.tr=p.tr[i],p.hyp=p.hyp,method=method,alternative = 
alternative, conf.level=conf.level) 
  cov.p[i]<-temp$cover 
  bias.p[i]<-temp$bias 
  } 
list(p.tr=p.tr,cover=cov.p,bias=bias.p) 
} 
 
#usage: 
test<-bgtp.cover(n=100, s=10, p.tr=seq(0,0.005,0.0001), p.hyp=0.005, alternative="less", 
method="SOC") 
plot(x=test$p.tr, y=test$cover, type="l") 
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############################################## 
#      # 
# Vary sets of n*s, other parameters fixed # 
#       # 
############################################## 
 
# # # Power 
 
bgtns.power<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided") 
{ 
if(length(n)!=length(s)){stop("vectors n and s must have exactly the same length")} 
 
pow.ns<-numeric(length=length(n)) 
bias.ns<-numeric(length=length(n)) 
ns<-numeric(length=length(n)) 
 
 for(i in 1:length(n)) 
  { 
   
  temp<-bgt.power(n=n[i],s=s[i],p.tr=p.tr,p.hyp=p.hyp,method=method,alternative = 
alternative, conf.level=conf.level) 
  pow.ns[i]<-temp$power 
  bias.ns[i]<-temp$bias 
  ns[i]<-n[i]*s[i] 
  } 
 
list(n=n, s=s, ns=ns, power=pow.ns,bias=bias.ns) 
} 
# usage: 
bgtns.power(n=c(80,40,20,10),s=c(10,20,40,80), p.tr=0.005, p.hyp=0.01) 
 
# # # # Coverage 
 
bgtns.cover<-function(n, s, p.tr, p.hyp, conf.level=0.95, method="wilson", 
alternative="two.sided") 
{ 
if(length(n)!=length(s)){stop("vectors n and s must have exactly the same length")} 
cov.ns<-numeric(length=length(n)) 
bias.ns<-numeric(length=length(n)) 
ns<-numeric(length=length(n)) 
 
 for(i in 1:length(n)) 
  { 
   
  temp<-bgt.cover(n=n[i],s=s[i],p.tr=p.tr,p.hyp=p.hyp,method=method,alternative = 
alternative, conf.level=conf.level) 
  cov.ns[i]<-temp$cover 
  bias.ns[i]<-temp$bias 
  ns[i]<-n[i]*s[i] 
  } 
list(n=n,s=s,ns=ns,cover=cov.ns,bias=bias.ns) 
} 
# usage: 
bgtns.cover(n=c(80,40,20,10),s=c(10,20,40,80), p.tr=0.005, p.hyp=0.01) 
 
############################################################# 
#         # 
# Example of a plot as used in Comparisons of the methods # 
#        # 
############################################################# 
 
# Calculating the exact coverages for each the different CI methods and the bias 
(implicit, in all function values) 
#  input of group size s is a vector 1:200, other parameters fixed 
 
wi.n10<-bgts.cover(n=10,s=c(1:200),p.tr=0.0025, p.hyp=0.05, conf.level=0.95, 
alternative="two.sided", method="wilson") 
 
wa.n10<-bgts.cover(n=10,s=c(1:200),p.tr=0.0025, p.hyp=0.05, conf.level=0.95, 
alternative="two.sided", method="wald") 
 
ac.n10<-bgts.cover(n=10,s=c(1:200),p.tr=0.0025, p.hyp=0.05, conf.level=0.95, 
alternative="two.sided", method="AC") 
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cp.n10<-bgts.cover(n=10,s=c(1:200),p.tr=0.0025, p.hyp=0.05, conf.level=0.95, 
alternative="two.sided", method="CP") 
 
# cutting the graphical device into pieces  
 
layout(mat=matrix(1:2, ncol=1), heights=c(6,3)) 
 
# setting some parameters for the margins of the plotting areas 
par(mar=c(3,4,2,1), oma=c(0,0,0,0)) 
 
#  first main plot (Coverage Wilson dependent on s 
 
plot(y=wi.n10$cover, x=wi.n10$group.size, type="l",ylim=c(0.7,1),main="n=10, true 
binomial parameter=0.0025",ylab="Coverage probability",xlab="group size s", 
lwd=2,col="black", lty=1 ) 
 
# adding a line for the nominal level, and lines for coverages of other CI methods to 
the first plot 
 
lines(y=c(0.95,0.95),x=c(1,200),lty=3,lwd=1) 
 
lines(y=wa.n10$cover, x=wa.n10$group.size, lwd=2, col="red", lty=2) 
lines(y=cp.n10$cover, x=cp.n10$group.size, lwd=2, col="blue", lty=3) 
lines(y=ac.n10$cover, x=ac.n10$group.size, lwd=2, col="green", lty=4) 
 
# adding a legend to the first plot 
 
legend(x=135, y=0.82, legend=c("Wilson","Wald","CP","AC","nominal level"), 
lwd=c(2,2,2,2,1),lty=c(1,2,3,4,3),col=c("black","red","blue","green","black")) 
 
# second plot with the bias of estimator after changing some parameters 
 
par(mar=c(5,4,1,1)) 
plot(y=wi.n10$bias, x=wi.n10$group.size, ylim=c(0,0.005), type="l", lwd=2, 
ylab="bias(p)", xlab="group size s") 
 
 
##################################################################################### 
#  4) approximate sample size and power for the  group testin Wilson CI/ Score test # 
##################################################################################### 
 
############################# 
#  approximate sample size  # 
############################# 
 
nbgtWilson<-function(p.tr, p.hyp, s, conf.level=0.95, power=0.8) 
{ 
t.hyp=1-(1-p.hyp)^s 
t.tr=1-(1-p.tr)^s 
nasy<-( t.hyp*(1-t.hyp) * (qnorm(conf.level) + qnorm(power) )^2 ) / (t.tr-t.hyp)^2 
n<-round(nasy) 
n 
} 
# # # usage: 
nbgtWilson(p.tr=0.03, p.hyp=0.05,s=3) 
 
 
###################### 
#  approximate power # 
###################### 
 
powerbgtWiapprox<-function(p.tr, p.hyp, n, s, conf.level=0.95) 
{ 
t.hyp=1-(1-p.hyp)^s 
t.tr=1-(1-p.tr)^s 
powerquant=sqrt( (n*(t.tr-t.hyp)^2 ) / ( t.hyp*(1-t.hyp)) ) - qnorm(conf.level) 
power=pnorm(powerquant) 
power 
} 
# # # usage: 
powerbgtWiapprox(p.tr=0.03, p.hyp=0.05, n=247, s=3, conf.level=0.95) 
 
 
################################################################################### 
#           # 
# 5) SIMULATION of COVERAGE and POWER for CI methods, all in one function  # 
# could be programmed much shorter, only for comparison with closed calculation # 
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################################################################################### 
 
 
bgt.sim.p<-function(n, s, n.sim, conf.level=0.95, alternative="two.sided", p.tr, p.hyp){ 
 
simu<-function(){ 
 
data<-rbinom(n=n,size=s,prob=p.tr) 
    n.t=0 
    for(i in data){ 
    if (i==0){n.t=n.t+1} 
    else{n.t=n.t+0} 
    } 
# Wald # 
 
int.wa<-bgt.wald(n=n,Y=n-n.t,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int 
 
if (alternative=="two.sided"){ 
 
    if (int.wa[[1]]>p.hyp || int.wa[[2]]<p.hyp){dec.wa=1} 
    else{dec.wa=0} 
    if (int.wa[[1]]>p.tr || int.wa[[2]]<p.tr){cov.wa=0} 
    else{cov.wa=1} 
} 
else{if(alternative=="greater"){ 
 
    if (int.wa[[1]]>p.hyp){dec.wa=1} 
    else{dec.wa=0} 
    if (int.wa[[1]]>p.tr){cov.wa=0} 
    else{cov.wa=1}     
} 
else{if(alternative=="less"){ 
 
    if (int.wa[[2]]<p.hyp){dec.wa=1} 
    else{dec.wa=0} 
    if (int.wa[[2]]<p.tr){cov.wa=0} 
    else{cov.wa=1}     
} else{stop("alternative mis-specified")}}} 
 
 
# Wilson # 
 
int.wi<-bgt.wilson(n=n,Y=n-n.t,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int 
 
if (alternative=="two.sided"){ 
 
    if (int.wi[[1]]>p.hyp || int.wi[[2]]<p.hyp){dec.wi=1} 
    else{dec.wi=0} 
    if (int.wi[[1]]>p.tr || int.wi[[2]]<p.tr){cov.wi=0} 
    else{cov.wi=1}     
} 
else{if(alternative=="greater"){ 
 
    if (int.wi[[1]]>p.hyp){dec.wi=1} 
    else{dec.wi=0} 
    if (int.wi[[1]]>p.tr){cov.wi=0} 
    else{cov.wi=1}     
} 
else{if(alternative=="less"){ 
 
    if (int.wi[[2]]<p.hyp){dec.wi=1} 
    else{dec.wi=0} 
    if (int.wi[[2]]<p.tr){cov.wi=0} 
    else{cov.wi=1}    
} else{stop("alternative mis-specified")}}} 
 
# Agresti-Coull # 
 
int.AC<-bgt.AC(n=n,Y=n-n.t,s=s,conf.level=conf.level, alternative=alternative)$conf.int 
 
if (alternative=="two.sided"){ 
 
    if (int.AC[[1]]>p.hyp || int.AC[[2]]<p.hyp){dec.AC=1} 
    else{dec.AC=0} 
    if (int.AC[[1]]>p.tr || int.AC[[2]]<p.tr){cov.AC=0} 
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    else{cov.AC=1}    
} 
else{if(alternative=="greater"){ 
 
    if (int.AC[[1]]>p.hyp){dec.AC=1} 
    else{dec.AC=0} 
    if (int.AC[[1]]>p.tr){cov.AC=0} 
    else{cov.AC=1}     
} 
else{if(alternative=="less"){ 
 
    if (int.AC[[2]]<p.hyp){dec.AC=1} 
    else{dec.AC=0} 
    if (int.AC[[2]]<p.tr){cov.AC=0} 
    else{cov.AC=1}     
} else{stop("alternative mis-specified")}}} 
 
# Add 4 # 
 
int.a4<-bgt.add4(n=n,Y=n-n.t,s=s,conf.level=conf.level, 
alternative=alternative)$conf.int 
 
if (alternative=="two.sided"){ 
 
    if (int.a4[[1]]>p.hyp || int.a4[[2]]<p.hyp){dec.a4=1} 
    else{dec.a4=0} 
    if (int.a4[[1]]>p.tr || int.a4[[2]]<p.tr){cov.a4=0} 
    else{cov.a4=1}    
} 
else{if(alternative=="greater"){ 
 
    if (int.a4[[1]]>p.hyp){dec.a4=1} 
    else{dec.a4=0} 
    if (int.a4[[1]]>p.tr){cov.a4=0} 
    else{cov.a4=1}     
} 
else{if(alternative=="less"){ 
 
    if (int.a4[[2]]<p.hyp){dec.a4=1} 
    else{dec.a4=0} 
    if (int.a4[[2]]<p.tr){cov.a4=0} 
    else{cov.a4=1}     
} else{stop("alternative mis-specified")}}} 
 
# Clopper-Pearson # 
 
int.CP<-bgt.CP(n=n,Y=n-n.t,s=s,conf.level=conf.level, alternative=alternative)$conf.int 
 
if (alternative=="two.sided"){ 
 
    if (int.CP[[1]]>p.hyp || int.CP[[2]]<p.hyp){dec.CP=1} 
    else{dec.CP=0} 
    if (int.CP[[1]]>p.tr || int.CP[[2]]<p.tr){cov.CP=0} 
    else{cov.CP=1}    
} 
else{if(alternative=="greater"){ 
 
    if (int.CP[[1]]>p.hyp){dec.CP=1} 
    else{dec.CP=0} 
    if (int.CP[[1]]>p.tr){cov.CP=0} 
    else{cov.CP=1}     
} 
else{if(alternative=="less"){ 
 
    if (int.CP[[2]]<p.hyp){dec.CP=1} 
    else{dec.CP=0} 
    if (int.CP[[2]]<p.tr){cov.CP=0} 
    else{cov.CP=1}     
} else{stop("alternative mis-specified")}}} 
 
c( dec.wald=dec.wa,cov.wald=cov.wa, 
 dec.wilson=dec.wi,cov.wilson=cov.wi, 
 dec.AC=dec.AC,cov.AC=cov.AC, 
 dec.a4=dec.a4,cov.a4=cov.a4, 
 dec.CP=dec.CP,cov.CP=cov.CP ) 
} 
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simul<-replicate (n=n.sim,simu()) 
 
pow.wald= sum(simul[1,1:n.sim])/n.sim 
pow.wilson= sum(simul[3,1:n.sim])/n.sim 
pow.AC= sum(simul[5,1:n.sim])/n.sim 
pow.add4=sum(simul[7,1:n.sim])/n.sim 
pow.CP= sum(simul[9,1:n.sim])/n.sim 
 
cov.wald= sum(simul[2,1:n.sim])/n.sim 
cov.wilson= sum(simul[4,1:n.sim])/n.sim 
cov.AC= sum(simul[6,1:n.sim])/n.sim 
cov.add4=sum(simul[8,1:n.sim])/n.sim 
cov.CP= sum(simul[10,1:n.sim])/n.sim 
 
list( 
pow.wald=pow.wald, cov.wald=cov.wald, 
pow.wilson=pow.wilson, cov.wilson=cov.wilson, 
pow.AC=pow.AC, cov.AC=cov.AC, 
pow.add4=pow.add4, cov.add4=cov.add4, 
pow.CP=pow.CP, cov.CP=cov.CP) 
} 
 
# usage 
bgt.sim.p(n.sim=1000, n=20, s=5, p.tr=0.2, p.hyp=0.1, alternative="two.sided") 
 

11.2 Resampling interval for binomial group testing 
 
bgt.res<-function(Y, n, s, n.sim=1000,conf.level=0.95) 
{ 
p.obs=1-(1-Y/n)^(1/s) 
 
## create an experiment using the estimated probability p.obs 
## n.t is the number of positive groups in one group testing experiment 
exp.step<-function(p.obs,n,s) 
{ 
data=rbinom(n=n, size=s, prob=p.obs) 
    n.t=0 
    for(i in data){ 
    if (i==0){n.t=n.t+0} 
    else{n.t=n.t+1} 
    } 
  exp.p.bgt=1-(1-n.t/n)^(1/s)  
 # estimator for probability pi(of positive individuals) in this experiment  
  exp.t=n.t/n  
 # estimator of probability theta of a positive group in this experiment 
c(exp.p.bgt=exp.p.bgt, exp.t=exp.t) 
} 
## perform n.sim experiments: 
sim.step = replicate(n=n.sim, exp.step(p.obs=p.obs, n=n,s=s)) 
## sort the outcomes for building the empirical distribution 
p.i.bgt = sort(sim.step[1,1:n.sim]) # distribution of ind. scale estimators 
t.i = sort(sim.step[2,1:n.sim]) # distribution of group scale estimators 
alpha=1-conf.level 
## the quantiles of a distribution with n.sim elements 
quant.u = as.integer((alpha/2)*n.sim) 
quant.o = as.integer((1-alpha/2)*n.sim)+1 
 
## the alpha/2 and 1-alpha/2 quantiles are chosen from the distributions, resulting in 
## 1-alpha confidence intervals 
 
CI.bgt=c(p.i.bgt[quant.u],p.i.bgt[quant.o])   
 # CI from the distribution of ind. scale estimators 
CI.t=c(t.i[quant.u],t.i[quant.o])  
 # CI from the distribution of group scale estimators 
CI.t.transf=c( 1-(1-CI.t[1])^(1/s), 1-(1-CI.t[2])^(1/s) )  
 # CI for the indiv.estimator, transformed from the group scale CI.t  
 
list(CI.res.bgt=CI.bgt, CI.transformed.from.Y.by.n=CI.t.transf) 
} 
# # # the same, can be tried for other examples 
bgt.res(Y=3,n=24,s=7,n.sim=10000) 
 
############################################################# 
# Monotony:       # 
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# Compare the outcome of ordering on different scales # 
#        # 
############################################################# 
 
## use the function above to compare ordering on different scales: 
 
bgt.res.Y<-function(n, s, n.sim=1000) 
{ 
Y=0:n 
diff.l<-numeric(length=length(Y)) 
diff.u<-numeric(length=length(Y)) 
 
# build the differences between the bounds of the two interval types 
# for each possible value of Y 
 
for(i in 1:length(Y)) 
  { 
   int<-bgt.res(Y=Y[i],n=n,s=s,n.sim=n.sim) 
   diff.l[i] = int$CI.res.bgt[1] - int$CI.transformed.from.Y.by.n[1] 
   diff.u[i] = int$CI.res.bgt[2] - int$CI.transformed.from.Y.by.n[2] 
  } 
list( diff.lower=diff.l,diff.upper=diff.u) 
} 
bgt.res.Y(n=20, s=5, n.sim=1000) 
# difference is always 0 
 

11.3 R code for simple binomial testing 
1) gives the functions for calculation of the used interval methods 
2) gives indicator functions, probability and closed calculation for the binomial 
methods; needs the functions under 1) to be present in the R working space
  
############################################## 
#      # 
# Confidence interval for binomial testing # 
# used in the comparisons and illustrations # 
#      # 
############################################## 
 
# 1) simple functions for CI calculation 
 
######## 
# Wald # 
######## 
 
wald<-function(Y, n, conf.level=0.95, alternative="two.sided") 
{ 
alpha=1-conf.level 
est=Y/n 
z1s=qnorm(conf.level) 
z2s=qnorm(1-alpha/2) 
 
if(alternative=="two.sided"){ 
KI=c(est-z2s*sqrt(est*(1-est)/(n)), 
     est+z2s*sqrt(est*(1-est)/(n)) ) 
} 
else{if (alternative=="less"){ 
KI=c( 0 , est+z1s*sqrt(est*(1-est)/(n)) ) 
} 
else{if(alternative=="greater"){ 
KI=c(est-z1s*sqrt(est*(1-est)/(n)), 1 ) 
} 
else {stop("alternative mis-specified")}}} 
conf.int=KI 
conf.int 
} 
 
#usage: 
wald(Y=0, n=20, alternative="less") 
 
########## 
# Wilson # 
########## 
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wilson<-function(n,Y,conf.level=0.95,alternative="two.sided") { 
alpha=1-conf.level 
t=Y/n 
if(alternative =="two.sided"){ 
 est.int=(Y+(qnorm(1-alpha/2)^2)/2)/(n+(qnorm(1-alpha/2))^2) 
 w.se=((qnorm(1-alpha/2))*sqrt(n*t*(1-t)+(qnorm(1-alpha/2)^2)/4))/(n+qnorm(1-
alpha/2)^2) 
 KI=c( est.int-w.se, est.int+w.se ) 
KI} 
else{if(alternative=="less"){ 
 est.int=(Y+(qnorm(1-alpha)^2)/2)/(n+(qnorm(1-alpha))^2) 
 w.se=((qnorm(1-alpha))*sqrt(n*t*(1-t)+(qnorm(1-alpha)^2)/4))/(n+qnorm(1-
alpha)^2) 
 KI=c( 0, est.int+w.se ) 
}  
else{if(alternative=="greater"){ 
 est.int=(Y+(qnorm(1-alpha)^2)/2)/(n+(qnorm(1-alpha))^2) 
 w.se=((qnorm(1-alpha))*sqrt(n*t*(1-t)+(qnorm(1-alpha)^2)/4))/(n+qnorm(1-
alpha)^2) 
 KI=c( est.int-w.se , 1 ) 
} 
else{stop("argument alternative misspecified")}}} 
 
conf.int = KI 
conf.int 
} 
 
# usage: 
wilson(Y=0, n=20, alternative="less") 
 
################## 
# Agresti-Coull  # 
################## 
 
AC<-function(Y, n, conf.level=0.95, alternative="two.sided") 
{ 
alpha=1-conf.level 
est=Y/n 
z1s=qnorm(conf.level) 
z2s=qnorm(1-alpha/2) 
 
esti1s=(Y+(z1s^2)/2)/(n+z1s^2) 
esti2s=(Y+(z2s^2)/2)/(n+z2s^2) 
 
ni1s=n+z1s^2 
ni2s=n+z2s^2 
 
if(alternative=="two.sided"){ 
 
KI=c(esti2s-z2s*sqrt(esti2s*(1-esti2s)/(ni2s)), 
     esti2s+z2s*sqrt(esti2s*(1-esti2s)/(ni2s)) ) 
} 
else{if (alternative=="less"){ 
KI=c( 0 , esti1s+z1s*sqrt(esti1s*(1-esti1s)/(ni1s)) ) 
} 
 
else{if(alternative=="greater"){ 
KI=c(esti1s-z1s*sqrt(esti1s*(1-esti1s)/(ni1s)), 1 ) 
} 
else {stop("alternative mis-specified")}}} 
 
conf.int=KI 
conf.int 
} 
 
# usage: 
AC(Y=0, n=20, alternative="less") 
 
############################################## 
# Blaker interval     #  
# derived from S code given in Blaker(2000) # 
############################################## 
 
Blaker<-function (n,Y,conf.level=0.95, tolerance=1e-04, alternative="two.sided") 
{ 
acceptbin <- function(Y,n,p) 
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{ 
  p1 = 1-pbinom(Y-1, n, p) 
  p2 = pbinom(Y, n, p) 
  a1 = p1 + pbinom( qbinom(p1,n,p)-1, n, p ) 
  a2 = p2+1-pbinom( qbinom(1-p2,n,p), n, p ) 
  return(min(a1,a2)) 
} 
 
lower<-0 
upper<-1 
 
if(Y!=0) 
  {lower<-qbeta((1-conf.level)/2, Y, n-Y+1) 
    {while(acceptbin(Y,n,lower+tolerance)<(1-conf.level)) 
    lower=lower+tolerance} 
  } 
 
if(Y!=n) 
  {upper<-qbeta(1-(1-conf.level)/2, Y+1, n-Y) 
    {while(acceptbin(Y,n,upper-tolerance)<(1-conf.level)) 
    upper=upper-tolerance} 
  } 
conf.int=c(lower, upper) 
conf.int 
} 
 
# usage: Compare to Clopper-Pearson below 
Blaker(Y=3,n=10, conf.level=0.95) 
 
################### 
# Clopper-Pearson # 
################### 
 
binCP<-function(n, Y, conf.level=0.95, alternative="two.sided") 
{ 
lower<-0 
upper<-1 
if(alternative=="two.sided") 
{ 
 if(Y!=0) 
   {lower<-qbeta((1-conf.level)/2, Y, n-Y+1)} 
 if(Y!=n) 
   {upper<-qbeta(1-(1-conf.level)/2, Y+1, n-Y)} 
} 
if(alternative=="less") 
{ 
 if(Y!=n) 
   {upper<-qbeta(1-(1-conf.level), Y+1, n-Y)} 
} 
if(alternative=="greater") 
{ 
 if(Y!=0) 
   {lower<-qbeta((1-conf.level), Y, n-Y+1)} 
} 
estimate=Y/n 
conf.int=c(lower,upper) 
conf.int 
} 
 
# usage: 
CP(Y=3,n=10, conf.level=0.95) 
 
########################## 
# Second order corrected # 
########################## 
 
SOC<-function(n,Y,conf.level=0.95,alternative="two.sided") 
 
{ 
esti<-Y/n 
kappa<-qnorm(conf.level) 
eta<-(kappa^2)/3 + 1/6 
gamma1<-((13/18)*kappa^2 + 17/18)*(-1) 
gamma2<-(kappa^2)/18 + 7/36 
 
midpo<-(Y+eta)/(n+2*eta) 
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if(alternative=="less") 
  {CI=c( 0 , midpo + kappa * sqrt(esti*(1-esti) + (gamma1*esti*(1-esti) + 
gamma2)/n)/sqrt(n) )} 
 
if(alternative=="greater") 
  {CI=c( midpo - kappa*sqrt(esti*(1-esti) + (gamma1*esti*(1-esti) + gamma2)/n)/sqrt(n) , 
1)} 
 
if (alternative=="two.sided") 
{ 
kappa<-qnorm(1-(1-conf.level)/2) 
eta<-(kappa^2)/3 + 1/6 
gamma1<-((13/18)*kappa^2 + 17/18)*(-1) 
gamma2<-(kappa^2)/18 + 7/36 
 
CI=c( midpo - kappa*sqrt(esti*(1-esti) + (gamma1*esti*(1-esti) + gamma2)/n)/sqrt(n) ,  
 midpo + kappa*sqrt(esti*(1-esti) + (gamma1*esti*(1-esti) + gamma2)/n)/sqrt(n) ) 
} 
CI 
} 
 
# usage: 
SOC(n=20, Y=0, conf.level=0.95, alternative="less") 
 
################## 
# Jeffreys prior # 
################## 
 
Jef<- function(n,Y,conf.level=0.95,alternative="two.sided") 
{ 
if(alternative=="less") 
 {CI=c( 0 , qbeta(p=conf.level, shape1= Y+0.5, shape2=n-Y+0.5) )} 
 
if(alternative=="greater") 
 {CI=c( qbeta(p=1-conf.level, shape1= Y+0.5, shape2=n-Y+0.5) , 1 )} 
 
if (alternative=="two.sided") 
 {CI=c( qbeta(p=(1-conf.level)/2, shape1=Y+0.5, shape2=n-Y+0.5) , qbeta(p=1-(1-
conf.level)/2, shape1=Y+0.5, shape2=n-Y+0.5) )} 
 
conf.int=CI 
conf.int 
} 
 
# usage: 
Jef(n=20, Y=0, conf.level=0.95, alternative="less") 
 
 
############################### 
#    # 
# 2) closed calculations # 
#    # 
############################### 
 
###################################### 
# Probability to observe a certain Y # 
###################################### 
 
Y.prob<-function(Y,n,p) 
{ 
Y.p = choose(n,Y)*(p^Y)*(1-p)^(n-Y) 
Y.p 
} 
Y.prob(Y=0,n=20,p=0.2) 
 
# can be used until n=1029, Y=514 
# Since numbers greater or equal choose(1030,515) cannot be represented in R anymore 
# (i.e. 1e+309=Inf), and numbers x smaller than x=1e-323 are represented by 0, thus 
# result in log(x)=-Inf, the following function might be used instead: 
Y.prob2<-function(Y,n,p) 
{ 
Y.p = exp( lchoose(n,Y) + Y*log(p) + (n-Y)*log(1-p) ) 
Y.p 
} 
Y.prob2(Y=0,n=20,p=0.2) 
 
# This function gives exactly the same results as Y.prob() for n<1029,  
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# gives reasonable results for at least n<50000 and might be applied within the margins 
# of representation of numbers given above for the single terms. 
# Additionally it needs only 20% of the calculation time as Y.prob 
 
 
################################ 
# Indikator function for Power # 
################################ 
 
pInd.bin<-function(Y,n,p.hyp,conf.level,alternative,method) 
{ 
if(method=="wald"){int=wald(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
if(method=="wilson"){int=wilson(Y=Y,n=n, conf.level=conf.level, 
alternative=alternative)} 
if(method=="AC"){int=AC(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
if(method=="CP"){int=CP(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
if(method=="SOC"){int=SOC(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
if(method=="Jef"){int=Jef(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
 
if(int[1]<=p.hyp && int[2]>=p.hyp){pow=0} 
else{pow=1} 
pow 
} 
 
#################################### 
# Indikator funktion for Coverage  # 
#################################### 
 
cInd.bin<-function(Y,n,p.tr,conf.level,alternative,method) 
{ 
if(method=="wald"){int=wald(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
if(method=="wilson"){int=wilson(Y=Y,n=n, conf.level=conf.level, 
alternative=alternative)} 
if(method=="AC"){int=AC(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
if(method=="CP"){int=CP(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
if(method=="SOC"){int=SOC(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
if(method=="Jef"){int=Jef(Y=Y,n=n, conf.level=conf.level, alternative=alternative)} 
 
if(int[1]<=p.tr && int[2]>=p.tr){cov=1} 
else{cov=0} 
cov 
} 
 
########################################## 
# Synthesis: closed calculation of POWER # 
########################################## 
 
pow.bin<-function(n, p.tr, p.hyp, conf.level=0.95, alternative="two.sided", 
method="wilson") 
{ 
power=0 
for(Y in 0:n) 
  {power = power + 
pInd.bin(Y=Y,n=n,p.hyp=p.hyp,conf.level=conf.level,alternative=alternative,method=method
) * Y.prob2(Y=Y,n=n,p=p.tr)} 
power 
} 
 
#usage: 
pow.bin(n=100,p.tr=0.001,p.hyp=0.005, alternative="less") 
# for n=538, upper wilson(Y=0) bound sill includes 0.005 
# for n=539 not anymore 
pow.bin(n=538,p.tr=0.001,p.hyp=0.005, alternative="less", method="wilson") 
pow.bin(n=539,p.tr=0.001,p.hyp=0.005, alternative="less", method="wilson") 
 
################################## 
# closed calculation of COVERAGE # 
################################## 
 
cov.bin<-function(n, p.tr, conf.level=0.95, alternative="two.sided", method="wilson") 
{ 
cover=0 
for(Y in 0:n) 
  {cover = cover + 
cInd.bin(Y=Y,n=n,p.tr=p.tr,conf.level=conf.level,alternative=alternative,method=method) 
* Y.prob2(Y=Y,n=n,p=p.tr)} 
cover 
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} 
# usage: 
cov.bin(n=100,p.tr=0.005, alternative="less") 
cov.bin(n=538,p.tr=0.005, alternative="less", method="wilson") 
cov.bin(n=539,p.tr=0.005, alternative="less", method="wilson") 
 
########################################## 
# Vectorization for the true proportion  # 
########################################## 
# Power 
pow.binp.tr<- function(n, p.tr, p.hyp, conf.level=0.95, alternative="two.sided", 
method="wilson") 
{ 
power=numeric(length=length(p.tr)) 
for(i in 1:length(p.tr)) 
  { 
  power[i]=pow.bin(n=n,p.tr=p.tr[i], 
p.hyp=p.hyp,conf.level=conf.level,alternative=alternative,method=method) 
  } 
list(power=power, p.tr=p.tr) 
} 
 
# Coverage 
cov.binp.tr<- function(n, p.tr, conf.level=0.95, alternative="two.sided", 
method="wilson") 
{ 
cover=numeric(length=length(p.tr)) 
for(i in 1:length(p.tr)) 
  { 
cover[i]=cov.bin(n=n,p.tr=p.tr[i],conf.level=conf.level,alternative=alternative,method=m
ethod) 
  } 
list(cover=cover, p.tr=p.tr) 
} 
 
# Example: Coverage probability of two-sided Wilson Score interval for n=50,  
# Compare Brown et al. 2001, Figure 5 
 
test<-cov.binp.tr(n=50, p.tr=seq(0,1,0.0005), method="wilson", alternative="two.sided") 
plot(x=test$p.tr,y=test$cover, type="l", ylab="Coverage Probability", 
xlab="p",ylim=c(0.86,1), main= "Wilson Interval") 
lines (y=c(0.95, 0.95), x=c(0,1),lty=3) 
 
# Example: Coverage probabilities of upper 99%-limits of Wald, Wilson, Jeffreys prior 
# and Second order corrected CI for n=30, Compare with Cai (2005), Fig.4 
 
wa30<-cov.binp.tr(n=30, p.tr=seq(0,1,0.0005), method="wald",conf.level=0.99, 
alternative="less") 
wi30<-cov.binp.tr(n=30, p.tr=seq(0,1,0.0005), method="wilson", conf.level=0.99,  
alternative="less") 
soc30<-cov.binp.tr(n=30, p.tr=seq(0,1,0.0005), method="SOC", conf.level=0.99,  
alternative="less") 
jef30<-cov.binp.tr(n=30, p.tr=seq(0,1,0.0005), method="Jef", conf.level=0.99,  
alternative="less") 
 
layout(mat=matrix(1:4, ncol=2, byrow=TRUE)) 
par(mar=c(5,4,2,1),oma=c(0,0,0,0)) 
 
plot(x=wa30$p.tr,y=wa30 $cover, type="l", ylab="Coverage Probability", 
xlab="p",ylim=c(0.94,1), main= "Wald Interval") 
lines (y=c(0.99, 0.99), x=c(0,1),lty=3) 
 
plot(x=wi30$p.tr,y=wi30 $cover, type="l", ylab="Coverage Probability", 
xlab="p",ylim=c(0.94,1), main= "Score Interval") 
lines (y=c(0.99, 0.99), x=c(0,1),lty=3) 
 
plot(x=jef30$p.tr,y=jef30 $cover, type="l", ylab="Coverage Probability", 
xlab="p",ylim=c(0.94,1), main= "Jeffreys Interval") 
lines (y=c(0.99, 0.99), x=c(0,1),lty=3) 
 
plot(x=soc30$p.tr,y=soc30 $cover, type="l", ylab="Coverage Probability", 
xlab="p",ylim=c(0.94,1), main= "Second-Order Corrected Interval") 
lines (y=c(0.99, 0.99), x=c(0,1),lty=3) 
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