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Kurzzusammenfassung

In den Biowissenschaften werden häufig Experimente mit zwei oder mehr Einflussfaktoren

durchgeführt. Im Gegensatz zu einfaktoriellen Versuchen ermöglichen solche Anlagen so-

wohl die Analyse der Haupteffekte der einzelnen Einflussfaktoren, als auch einer etwaigen

Interaktion zwischen den Faktoren. Dabei bezeichnet eine Interaktion im statistischen

Sinne die unterschiedliche Ausprägung des Effektes eines Faktors über die Stufen eines an-

deren Faktors. In der klassischen Datenanalyse werden solche Interaktionen mittels einer

Varianzanalyse und den korrespondierenden F-Tests ausgewertet. Ein Nachteil dieser

Auswertung ist, dass der F-Test nur eine globale Testentscheidung zur Verfügung stellt.

Häufig ist der Wissenschaftler jedoch daran interessiert auf welchen Faktorstufen die In-

teraktion beruht.

In dieser Arbeit wird die Formulierung von geeigneten Hypothesen für eine tiefgründigere

Analyse der Interaktionseffekte dargestellt. Dabei werden die Hypothesen als Kontraste

von Mittelwertsdifferenzen formuliert. Eine weitere Möglichkeit geeignete Hypothesen für

Interaktionen auszudrücken besteht in der Bildung des Quotienten von Mittelwertsunter-

schieden. Diese Methode erlaubt es zusätzlich zwischen quantitativen und qualitativen

Interaktionen zu unterscheiden.

Da bei den genannten Verfahren mehrere Hypothesen simultan untersucht werden, muss

ein entsprechendes multiples Testverfahren angewendet werden, welches die Kontrolle des

versuchsbezogenen Fehlers 1. Art erlaubt. Neben multiplizitäts-adjustierten p-Werten

bieten simultane Konfidenzintervalle für die Interaktionseffekte die Möglichkeit die Größe

und die Richtung der Effekte zu quantifizieren.

Die verwendeten Verfahren sind für die Anwendung auf Daten geeignet, bei denen

angenommen wird, dass die primäre Zielvariable normalverteilt ist. Dabei wird sowohl

der Fall unter der Annahme homogener Varianzen über die Gruppen, als auch unter der

Annahme der Varianzheterogenität betrachtet. Weiterhin wird die Vorgehensweise für

dichotome Endpunkte dargestellt.

Die vorgestellten Methoden zur Interaktionsanalyse werden anhand von Realdaten-

beispielen aus biomedizinischen und gartenbaulichen Versuchen angewendet. Der ents-

prechende R–Code für die Auswertung wird kommentiert zur Verfügung gestellt.

Schlagworte: Multiple Kontrasttests, Simultane Konfidenzintervalle, Qualitative In-

teraktion





Abstract

Two or higher order factorial designs are very common in biomedical, agricultural, and

horticultural research. Those factorial trials are appropriate to investigate beside the main

effect of the factors also the interaction between them. The interaction effect determines

the different response of one factor over the levels of the other factor. The commonly

used evaluation of those trials by using the analysis of variance and the corresponding

F-tests for the interaction effects offers only a global decision concerning the presence of

interactions.

Within this thesis a straightforward method for the construction of appropriate hypo-

theses for an in depth analysis of statistical interactions is presented. The hypotheses are

formulated via contrasts of differences among means. As an alternative approach, the hy-

potheses to test for interactions can be formulated as ratios of differences among means.

In addition, this procedure allows the distinction between quantitative and qualitative

interactions.

Because within such a detailed analysis several hypotheses are tested simultaneously, an

adequate multiple comparison procedure has to be used. Multiplicity adjusted p-values for

the individual hypotheses are provided, such that the significance can be inferred, while

controlling the overall probability of a type I error. Furthermore, compatible simultaneous

confidence intervals can be used to interpret the direction, magnitude and the biological

relevance of the interaction effects.

The proposed methods are applicable on data with a normally distributed endpoint,

whereas the cases of homogeneous and heterogeneous variances over the groups are con-

sidered. Additionally, the methodology is extended for binary response variables. The

proposed methods are applied to two horticultural and three biomedical trials. In addi-

tion, the corresponding R code with comments for the reproducible analysis is provided.

In summary the main improvements of the presented methodology are: (i) providing

inferences on global and local hypotheses (ii) evaluation of reasonable research hypotheses

by user defined contrasts (iii) identification of the source of the interactions (iv) quanti-

fication of the interaction on a percentage scale (v) evaluation of the biological relevance

of a potential interaction effect (vi) extension though the assessment of non-inferiority of

the treatment effects.

Keywords: Multiple Contrast Tests, Simultaneous Confidence Intervals, Qualitative

Interaction
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Chapter 1.

Introduction

Experiments that include two or more factors are frequently conducted in a wide

variety of research areas, such as horticultural, agricultural, biological and bio-

medical sciences. Those factorial trials permit the experimenter to simultaneously

investigate several factors within the same experiment. As opposed to single-

factor experiments, two and higher order factorial experiments are appropriate to

investigate the interaction effects between the factors beside the main effects of

each factor. According to Searle [1997] the interaction effect describes the extent

to which one factor is not acting in the same manner over the levels of another

factor. Depending on the research area the term interaction has also different

meanings, which frequently leads to some confusion. Wang et al. [2010] provide

an overview of several alternative meanings for the term interaction, especially

differentiating the statistical and biological aspects. Within this thesis the term

interaction refers to statistical interaction in factorial designs: How does the effect

of one factor changes, if a second factor is varied. Furthermore, the focus lies on

the analysis of first-order interactions, i.e. the interaction between two factors.

Nevertheless, the presented methods can be extended to designs with more than

two factors whereas the interpretation of higher-order interactions becomes more

difficult.

A further problem on the analysis of statistical interactions is the distinction

between quantitative and qualitative interactions, see Peto [1982] (cited by Gail

and Simon [1985]). A quantitative interaction occurs if the effect of one factor

varies in its magnitude but not in its sign over the levels of another factor. In

contrast, a qualitative interaction denotes a difference in the effect of one factor

1



Chapter 1. Introduction

in its magnitude and in its sign over the levels of another factor. Figure 1.1

displays the different types of interactions for a two-by-two factorial design. It

should be pointed out that a qualitative interaction due to the first factor does

not automatically imply a qualitative interaction due to the second factor (see

Figure 1.1 d and e). Since a difference of the effect of one factor over the levels of

the other is expected in some research fields, a potential heterogeneity caused by a

qualitative interaction is of particular interest [Gail and Simon, 1985]. Depending

on the context under consideration several synonymous terms are used to denote

qualitative and quantitative interactions, e.g., removable interaction or ordinal

interaction, and non-removable or disordinal interactions [Gonzalez and Cox, 2007].

In agricultural experiments the term crossover interaction is used synonymously to

qualitative interactions [Baker, 1988]. When analysing genotype-by-environmental

interactions researcher are particularly interested in crossover interactions, which

denote rank changes between environments within genotypes [Truberg and Hühn,

2000].

Besides the analysis of genotype-by-environmental interaction, the analysis of

interaction between two treatment factors is of interest in horticultural and agri-

cultural research. Some examples of treatment factors are: (i) particular varieties

or cultivars of species [Compton, 2000], (ii) different kinds of fertilizers [Sahin

et al., 2012], (iii) different irrigation intensities [Slauenwhite and Qaderi, 2013] or

(iv) different seed spacing in a row [Petersen, 1985].

In most two-factorial biomedical experiments the factors can be classified in

a primary treatment factor and a secondary factor [Cox, 1984]. According to

the type of the secondary factor the following sources of interactions between

two factors are relevant in biomedical research: (i) treatment-by-centre interac-

tion in multi-centre trials, in which the secondary factor refers to medical centres

or clinics [Potthoff et al., 2001], (ii) inconsistency in multi-regional trials, where

the subjects are incorporated from many countries or regions [Chen et al., 2010],

(iii) subgroup heterogeneity in trials with pre-defined subgroups, where the sub-

sets of patients are defined by prognostic factors, e.g., age or disease severity [Gail

and Simon, 1985], (iv) genome-wide association studies with focus on gene-gene

and gene-environment interactions, in which the subsets are defined by a potential

environmental factor such as smoking status [Han et al., 2012], (v) biomarker-by-

2
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Figure 1.1.: Schematic display of different types of interactions for a two-by-two
factorial design with the two factors A (with its levels A1 and A2)
and B (with its levels B1 and B2). (a) no interaction: the differ-
ence between the levels of factor A is equal over the levels of factor
B and vice versa, (b) quantitative interaction: the difference between
the levels of factor A differs in its magnitude but not in its sign over
the levels of factor B and vice versa (c) qualitative interaction: the
difference between the levels of factor A differs in its magnitude and
in its sign over the levels of factor B and vice versa (d) qualitative
interaction according to factor A and quantitative interaction accord-
ing to factor B, (e) qualitative interaction according to factor B and
quantitative interaction according to factor A.
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Chapter 1. Introduction

treatment interactions [Michiels et al., 2011], and (vi) heterogeneity between the

different stages of adaptive trials [Parker, 2010].

Several regulatory guidelines address the analysis of interactions in multi-centre

and multi-regional trials. Among others, the Guideline on Statistical Principles for

Clinical Trials proposed by the ICH E9 [1998] refers to procedures when treatment-

by-centre interactions are to be analysed: “Marked heterogeneity may be identified

by graphical display of the results of individual centres or by analytical methods,

such as a significance test of the treatment-by-centre interaction”. In the answer of

question 11 of the Question and Answers document ICH E5 [2009] the objectives

of a multi-regional study for the purpose of bridging are defined: “(1) to show

that the drug is effective in the region and (2) to compare the results of the study

between the regions with the intent of establishing that the drug is not sensitive to

ethnic factors.”, whereas “not sensitive” means a consistent treatment effect over

regions. However no recommendations are given on the test to use and how to

assess a true heterogeneity of the treatment effects over centres or regions.

It is common practice to analyse the main and interaction effects in a two-

factorial design by applying the two-way analysis of variance (ANOVA). Unfor-

tunately, the corresponding F-tests offer only an overall decision concerning the

presence of these effects [Hothorn et al., 2008]. Within this thesis a general method-

ology to formulate the research hypothesis for an in-depth analysis of interactions

is presented. Therefore, the approach presented by Gabriel et al. [1973] is adop-

ted. They constructed product-type interaction contrasts as a direct Kronecker

product of two one-way contrasts. These interaction contrasts can be conceived

as the difference of differences among means. This idea is further extended in

this thesis by formulating the interaction hypotheses as ratio of differences among

means. The latter approach has the advantage that the interaction effect is in-

terpretable as relative change of the differences among means. Furthermore, this

extension of product-type interaction contrasts allows the differentiation between

quantitative and qualitative interactions [Kitsche and Hothorn, 2013]. Hauschke

and Kieser [2001] illustrated the usage of multiple ratios of treatment means to

test for non-inferiority in medical research. This approach is expanded by using

multiple ratios of differences among means to assess non-inferiority of these differ-

ences among means. This extension applicable for the assessment of consistency

4



of the treatment effect in multi-regional trials.

Because in such a detailed analysis several hypotheses are tested simultaneously,

an adequate multiple comparison procedure has to be used that controls the family-

wise type I error rate for the family of hypotheses under consideration. Multiplicity

adjusted p-values for the individual hypotheses are provided, such that the signi-

ficance of the detailed interpretations can be inferred, while controlling the overall

probability of a type I error. Compatible simultaneous confidence intervals can

be used to interpret the direction, magnitude and the biological relevance of the

interaction effects.

In the first instance the proposed methodologies are presented for factorial ex-

periments where the response variable is assumed to be normally distributed with

homogeneous error terms. Furthermore, the situation in which the assumption of

homogeneous variances is not fulfilled is considered. In pharmaceutical and bio-

medical research the outcome of interest is often an “event” with the data taking

a binary form commonly denoted as success or failure. Therefore, the developed

approach is expanded to the binary case and the hypotheses are formulated as

differences of risk differences and ratios of risk differences, respectively.

This thesis is organized as follows. In Chapter 2 five motivating example data

sets are presented. The statistical model for normally distributed outcome vari-

ables is given in Chapter 3. This chapter also considers the formulation of the

interaction effects as the difference of treatment differences and the ratio of treat-

ment differences, respectively. Methods to construct multiple contrast tests and

simultaneous confidence intervals to evaluate the different kinds of interactions are

illustrated in Chapter 4. Chapter 5 demonstrates the usage of the ratios of treat-

ment differences for the assessment of qualitative interactions. In addition to the

proposed method, three commonly used tests to detect qualitative interactions are

presented in Chapter 5. In Chapter 6 the research hypothesis of detecting statist-

ical interaction is reversed in order to assess consistency of treatment effects over

the levels of a secondary factor. Afterwards, the presented principles are extended

for the analysis of interactions in cases of binary response variables in Chapter 7.

Chapter 8 presents the properties of the proposed method though a simulation

study. In Chapter 9 the motivating examples are analysed. Finally, Chapter 10

provides a concluding discussion.
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Chapter 2.

Data Examples

In this chapter five data examples are described where the interest is at least

partially on the detection of a statistical interaction. The analysis of the presented

example data sets by using the methodologies described within this thesis are given

in Chapter 9.

2.1. Bush beans data set

The first example was published by Petersen [1985, p. 155]. The goal of the exper-

iment was to investigate the effect of row spacing on the yield of different varieties

of bush beans. Due to the different growth habits of the considered varieties it

was assumed that the spacing effect differs between the varieties. The selected four

varieties differ such that "New Era" and "Big Green" form low, bushy plants and

the two varieties "Little Gem" and "Red Lake" form erect plants with few branches.

The chosen row spacing were of 20, 40 and 60 cm between rows. A randomized

complete block design with four blocks and 12 plots per block was used. The yield

of dried beans in kilograms per plot was determined after harvest time. Figure 2.1

displays the mean yield for each variety-by-spacing combination. It is obvious that

the mean yield increases for the varieties "New Era" and "Big Green", which form

little, bushy plants, with increasing row spacing. On the other hand, the mean

yield decreases for the two varieties "Little Gem" and "Red Lake", which build

erect plants, as the spacing increases. The results of the corresponding ANOVA

reveal that this interaction between variety and spacing is highly significant (Table

2.1). The significant overall interaction may now be further analysed: What is the

7



Chapter 2. Data Examples

Table 2.1.: ANOVA table and corresponding F-statistics of the bush beans data
set from the two-factorial randomized complete block design.

Df Sum Sq Mean Sq F value Pr(>F)
Block 3 341.90 113.97 8.78 < 0.001
Variety 3 1332.56 444.19 34.22 < 0.001
Spacing 2 72.67 36.33 2.80 0.075
Variety:Spacing 6 871.00 145.17 11.18 < 0.001
Residuals 33 428.35 12.98

difference in yield increase for different spacing between the bushy and tall groups

averages? To what extent do the varieties with similar growth type differ in their

reaction to spacing?

2.2. Lettuce data set

The second example originates from an experiment that was conducted to analyse

the effects of soil type and phosphate fertilizers on lettuce crops. The primary

response variable was dry matter in grams per plot. Three different soil types

(S1, S2 and S3) and four different levels of phosphate fertilization (including

an untreated control) were investigated in a balanced, completely cross-classified

treatment structure, laid out as completely randomized design with four replic-

ations per treatment combination. The original data for this example were not

available and therefore data that reproduce the same treatment means as reported

by Bradu and Gabriel [1974] were generated.

Figure 2.2 illustrates the mean dry matters for each fertilizer-by-soil combina-

tion. From Figure 2.2 it is obvious that all fertilizers have an increasing effect on

dry matter in comparison to the control group for soil type S1 and S3, whereas the

dry matter is almost not affected by the phosphate fertilizers for soil type S2. The

corresponding ANOVA (Table 2.2) reveals a highly significant interaction between

the factors phosphate fertilizer and soil type. The objective is now to compare the

three fertilizer effects, defined as the difference of each active fertilization group to

the untreated control group, between the different soil types.

8



2.2. Lettuce data set
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Figure 2.1.: Interaction plot of cell means which illustrates the relationship
between row spacing and yield of four bush bean varieties that form
either little, bushy plants (New Era and Big Green) or erect plants
with few branches (Little Gem and Red Lake).
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Figure 2.2.: Interaction plot of cell means which illustrates the relationship
between phosphate fertilizer and dry matter on lettuce crops for three
soil types.
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2.3. Multi-centre clinical trial

Table 2.2.: ANOVA table and corresponding F-statistics of the lettuce data set
from a two-factorial completely randomized design.

Df Sum Sq Mean Sq F value Pr(>F)
Fertilizer 3 26.41 8.80 54.99 < 0.001
Soil 2 14.08 7.04 43.98 < 0.001
Fertilizer:Soil 6 14.65 2.44 15.25 < 0.001
Residuals 36 5.76 0.16

2.3. Multi-centre clinical trial

In this section, an example published in Dmitrienko et al. [2005] is presented. In

the multi-centre depression trial, two groups of patients, one treatment and one

placebo group, were compared. The primary endpoint was the change from the

baseline to the end of the nine week acute treatment phase in the 17-item Hamilton

depression rating scale total score (HAMD17 score). The change of scores range

from -2 to 28, and therefore, it is assume that this endpoint is approximately

normally distributed. The experiment was conducted at five centres. The data

are displayed as boxplots in Figure 2.3. From Figure 2.3, it is obvious that there

is an increasing treatment effect at centres 100, 102, 103 and 104. However, the

treatment effect at centre 101 differs from the remainder of the centres in its sign.

The goal is now to decide whether centre 101 represents a qualitative interaction

or whether this variation occurs by chance. In Table 2.3 the ANOVA F-statistics

is listed. From Table 2.3, it becomes apparent that the global treatment-by-centre

interaction ANOVA F-test is significant at α = 0.05. The aim is now to determine

the source and the type of the significant interaction.

2.4. MERIT-HF study

The fourth example describes a multi-regional clinical trial, namely the Metoprolol

Controlled-Release Randomized Intervention Trial in Heart Failure (MERIT-HF)

[MERIT-HF Study Group, 1999]. The large scale randomized, double blind,

placebo controlled trial was conducted to investigate the treatment effect of adding

11
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Table 2.3.: ANOVA table and corresponding F-statistics for the multi-centre clin-
ical trial.

Source Df Sum of Squares Mean Square F value Pr > F
Group 1 888.04 888.04 40.07 <.0001
Centre 4 87.14 21.78 0.98 0.4209
Group:Centre 4 507.45 126.86 5.72 0.0004
Residuals 90 1994.38 22.16
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Figure 2.3.: Boxplots of the multi-centre depression trial for each group-by-centre
combination. Boxes filled with dark grey represent the experimental
drug group, and boxes filled with light grey represent the placebo
group. The number of patients for each group-by-centre combination
is written below each box. Filled dots denote the data points.
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2.5. Trastuzumab data set

once-daily doses of metoprolol controlled-release/extended-release (Meto CR/XL)

to the optimum standard therapy in terms of lowering mortality in patients with

symptomatic heart failure. A total number of 3991 patients were randomized into

the placebo or the Meto CR/XL group in 14 countries (see Table 2.4). According

to Quan et al. [2012], the data from Finland were combined with the data from

Denmark, and the data from the Netherlands were combined with the data from

Switzerland because no event was observed in the Meto CR/XL group in Finland

and Switzerland. From Table 2.4, a decreasing overall treatment effect is observ-

able, whereas in two regions, Iceland and USA, the treatment effect increases.

The goal is now to decide if the regions Iceland and USA represent a significant

interaction, or if this heterogeneity of the treatment effect occurs by chance only.

According to Wedel et al. [2001], significant qualitative interactions were of partic-

ular interest, especially significant departures from the overall effect among any of

the participating countries. Therefore, in Section 9.4 the focus is on the detection

of qualitative interactions.

2.5. Trastuzumab data set

This example presents the data from an interim analysis from a multi-regional

clinical trial considering treatment of trastuzumab (Herceptin®, Roche) after ad-

juvant chemotherapy in HER2-positive breast cancer [Romond et al., 2005]. The

international, randomized clinical trial compared two treatment groups, one or

two years of trastuzumab being given every three weeks, with observation in pa-

tients with HER2-positive breast cancer. The primary endpoint was disease-free

survival, defined as time from randomization to the first occurrence of an event,

where an event is given as recurrence of breast cancer, contralateral breast cancer,

second non-breast malignant disease, or death. The endpoint under consideration

is the occurrence of an event because the disease-free survival times were not avail-

able. Five regions were pre-specified, namely Central and South America, Eastern

Europe, Asia Pacific including Japan and Others (Others include Western and

Northern Europe, Canada, South Africa, Australia, New Zealand). In the report

of the interim analysis, only the results of the treatment group with trastuzumab

treatment for one year and the observation group were presented. The results of

13



Chapter 2. Data Examples

Table 2.4.: Summary table with the number of successes and failures, the total
number of observations, and the proportions of successes for each region
in the MERIT-HF trial.

Region (j) Treatment Outcome Total Proportion
Success Failure (nij) Success

Belgium Meto CR/XL 3 65 68 0.04
Placebo 13 53 66 0.20

Czech Republic Meto CR/XL 9 114 123 0.07
Placebo 17 107 124 0.14

Denmark/Finland Meto CR/XL 11 150 161 0.07
Placebo 13 151 164 0.08

Germany Meto CR/XL 19 233 252 0.08
Placebo 31 216 247 0.13

Hungary Meto CR/XL 16 195 211 0.08
Placebo 29 183 212 0.14

Iceland Meto CR/XL 2 17 19 0.11
Placebo 2 20 22 0.09

Norway Meto CR/XL 6 91 97 0.06
Placebo 11 94 105 0.10

Poland Meto CR/XL 8 94 102 0.08
Placebo 8 94 102 0.08

Sweden Meto CR/XL 2 37 39 0.05
Placebo 9 37 46 0.20

The Netherland/Switzerlnd Meto CR/XL 14 285 299 0.05
Placebo 26 265 291 0.09

UK Meto CR/XL 4 83 87 0.05
Placebo 9 74 83 0.11

USA Meto CR/XL 51 481 532 0.10
Placebo 49 490 539 0.09

Total Meto CR/XL 145 1845 1990 0.07
Placebo 217 1784 2001 0.12

14



2.5. Trastuzumab data set

Table 2.5.: Summary table with the number of successes and failures, the total
number of observations, and the proportions of successes for each region
in the Trastuzumab data set.

Region (j) Treatment Outcome Total Proportion
Success Failure (nij) Success

Japan only Trastuzumab 3 38 41 0.073
Observation 6 40 46 0.130

Asia Pacific, Japan Trastuzumab 12 190 202 0.059
Observation 27 175 202 0.134

Eastern Europe Trastuzumab 10 179 189 0.053
Observation 26 149 175 0.149

Central and South America Trastuzumab 7 87 94 0.074
Observation 8 86 94 0.085

Others Trastuzumab 98 1110 1208 0.088
Observation 158 1064 1222 0.129

All regions Trastuzumab 127 1474 1693 0.075
Observation 219 1566 1693 0.129

this interim analysis were already discussed in the context of consistency assess-

ment with special focus on the Japanese subgroup by Ando and Hamasaki [2010].

Table 2.5 lists the number of events for each treatment-by-region combination. In

addition to the pre-specified regions the data for the Japanese subgroup are given

in Table 2.5. The goal is to assess the consistency of the treatment effect, defined

as the difference between the trastuzumab treatment group and the observation

group, over the participating regions.
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Chapter 3.

Hypotheses for statistical

interactions

This chapter presents the statistical model under consideration. In addition, a

general procedure to formulate appropriate hypotheses to test for statistical inter-

actions via contrasts among means is proposed. Finally, the hypotheses to test for

interactions are reformulated as ratio of linear combinations among means.

3.1. The model

For the sake of convenience and without loss of generality, a completely random-

ized design with two factors, afterwards denoted as A and B is assumed. Never-

theless, the presented approach can be extended to designs with more than two

factors. The endpoint of interest is a continuous and normally distributed out-

come measure. Furthermore, let I be the number of levels of factor A (with index

i = 1, . . . , I), and J be the number of levels of factor B (with index j = 1, . . . , J).

The number of experimental units is permitted to vary between the factor com-

binations and is denoted by nij. The total number of experimental units is given

by N =
∑I

i=1

∑J
j=1 nij. The corresponding two-way ANOVA model with an inter-

action term is given by:

Yijk = µ+ αi + βj + (αβ)ij + ǫijk, (3.1)
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Chapter 3. Hypotheses for statistical interactions

where the parameter µ denotes the grand mean, αi is the treatment effect for the

ith level of factor A, βj is the treatment effect for the jth level of factor B and

(αβ)ij denotes the joint effect of the ith level of factor A and the jth level of factor

B. Furthermore, it is assumed that the error associated with the kth observation,

with k = 1, . . . , nij, is normally distributed with common variance, ǫijk ∼ N(0, σ2).

For the purpose of the presented method the ANOVA model is reformulated

into the cell means model as follows:

Yijk = µij + ǫijk, (3.2)

where the parameter µij denotes the cell mean of the ith level of factor A and the

jth level of factor B. Please note, that the parameters of the two models (3.1) and

(3.2) can easily be transformed into each other in the following way:

• the main effect αi = µi. − µ..

• the main effect βj = µ.j − µ..

• the interaction effect (αβ)ij = µij − (µi. − µ..) − (µ.j − µ..) − µ.. = µij − µi. −
µ.j + µ..,

where the dot notation denotes the mean over the corresponding factor levels.

It is well known, that the interaction effect is equal to zero if each cell mean is

represented by the additivity of the main effects [Scheffe, 1999]. The vector of cell

means is given by the column vector µT = (µ11, . . . , µI1, . . . , µ1J , . . . , µIJ), where

the elements of µ are primarily ordered according to factor B, and within factor

B according to factor A (the superscripted T on a vector or matrix denotes the

transpose). For the sake of clarity the vector µ is given the new index l, resulting

in µT = (µ1, . . . , µL), where L = I ·J , the number of factor combinations. For later

use, the L×LmatrixM defines the diagonal matrix that contains the reciprocals of

the sample sizes M = diag
(

n−1
1 , . . . , n−1

L

)

. Furthermore, the maximum likelihood

estimator of µ is denoted by µ̂, with µ̂l = Ȳl =
∑nl

k=1 Ylk/nl. The pooled sample

variance is given by s2 =
∑L

l=1

∑nl

k=1

(

Ylk − Ȳl

)2
/ (N − L). The square root of

the pooled variance estimator is denoted by s, i.e, the pooled sample standard

deviation.
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3.2. Contrasts among means

Table 3.1.: Table of cell means for a two-factorial designs, where factor A has
i = 1, 2, 3, . . . , I levels and factor B has j = 1, 2, 3, . . . , J levels. Grey
marked cells of the I × J table correspond to the required parameters
to calculate the interaction residuals resulting from the direct products
of deviations from the grand mean.

B1 B2 B3 Bj BJ Means
A1 µ11 µ12 µ13 · · · µ1J µ1.

A2 µ21 µ22 µ23 · · · µ2J µ2.

A3 µ31 µ32 µ33 · · · µ3J µ3.

Ai
...

...
...

. . .
...

...
AI µI1 µI2 µI3 · · · µIJ µI.

Means µ.1 µ.2 µ.3 · · · µ.J µ..

The cell means from a two-way layout can be illustrated in a I × J table, see

e.g., Table 3.1. Each cell in Figure 3.1 corresponds to a cell mean parameter from

model (3.2). The lower and right margins in Table 3.1 represent the marginal

means averaged over the levels of the other factor.

3.2. Contrasts among means

It is assumed that the research question can be translated into the m = 1, . . . ,M

general linear hypotheses according to Searle [1997]:

H0 : ψ := Cµ = θ, (3.3)

where ψ corresponds to the vector of parameters of interest, C defines an M × L

contrast matrix and θ denotes a vector of dimension L of specified constants.

Each row vector cm in C defines one contrast and corresponds to a single research

hypothesis:

H
(m)
0 : ψm := cmµ = θ.

According to Kirk [1995], a contrast is defined as a linear combination of means

with known weights or constants, denoted by cml. Each element of cm corresponds

to a contrast coefficient cml associated with the lth parameter in µ from the mth

hypothesis of interest. For the choice of the contrast coefficients the following
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Chapter 3. Hypotheses for statistical interactions

restrictions are given: (i) at least one contrast coefficient is not equal to zero

(cml 6= 0 for some l), (ii) and the sum of the coefficients in a given contrast is

equal to zero (
∑L

l=1 cml = 0) [Kirk, 1995]. An additional restriction is given, if the

researcher wants to compare the magnitude of different contrasts. In this case the

values of positive contrast coefficients have to sum to 1 and also the absolute values

of negative contrast coefficients have to sum to 1 (
∑

l:cml≤0 |cml| =
∑

l:cml≥0 cml = 1).

To investigate contrasts that correspond to the analysis of interactions, the dif-

ferent types of contrasts which seem to be of special interest for the main effect

according to Gabriel et al. [1973] are recalled. The four different types are demon-

strated using factor A:

1. deviations from the grand mean: µi. − µ..

2. pairwise differences: µi. − µi′., where (i 6= i′)

3. dichotomy contrasts: - µR. − µR̄., where R is any non-empty subset of the

set of indices 1, . . . , I, and R̄ is the complementary subset of size I −R.

4. pooled-mean differences: µR′. − µR′′., where R′ and R′′ are two non-empty

disjoint subsets of 1, . . . , I.

Several popular contrasts correspond to the classification of Gabriel et al. [1973].

The all-pair comparison of Tukey [Braun, 1994] and the many-to-one comparison

of Dunnett [1955] are well known examples for pairwise differences. The trend test

of Williams [1971] and its expression as contrast test according to Bretz [2006] are

examples for the pooled-mean differences.

3.3. Product-type interaction contrasts

In this section the approach of Gabriel et al. [1973] is adopted, who formulate

product-type interaction contrasts to detect interactions in a two-way layout. Ac-

cording to Gabriel et al. [1973], the listed contrasts for the main effects in Section

3.2 are appropriate to define meaningful interaction contrasts. They developed a

product-type interaction contrast as a direct Kronecker product, denoted by ⊗, of

the two “one-way contrasts”. Recall that the Kronecker product of two matrices
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3.3. Product-type interaction contrasts

multiplies each element of the first matrix with the second matrix. Each of the

following product-type interaction contrasts is a direct product of the one-way

contrasts belonging to the set above. This procedure yields to the following four

sets of interaction contrasts:

1. interaction residuals: µij − µi. − µ.j + µ.. - are direct products of deviations

from the grand mean. These interaction effects are obtained by removing

row, column and grand mean effects from the cell means. This kind of

product-type interaction contrast is also known as “corrected cell means”

[Boik, 1993] or “interaction score” [Abelson and Prentice, 1997]. For illus-

trative purposes, Table 3.1 marks the required cells in the I × J table of cell

means to calculate an interaction residual. The interaction residuals cor-

respond to the interaction effects (αβ)ij from the two-way ANOVA model

in Equation 3.1. This set is of particular interest in situations where it is

suspected that the additive model may hold for all but one (or all but a very

few) of the cell means µij.

2. tetrad contrasts: µij − µi′j − µij′ + µi′j′ , where (i 6= i′, j 6= j′), are direct

products of pairwise differences. By way of illustration, Table 3.2 considers

the first and third level of factor A and the first and third level of factor B.

The corresponding local hypothesis to test the interaction effect compares

the difference between B1 and B3 at A1 to the difference between B1 and B3

at A3:(µ11 − µ13) − (µ31 − µ33) = µ11 − µ13 − µ31 + µ33. This set is also of

interest in situations where the additive model is suspected to hold except

for a minority of cell means.

3. double-dichotomy contrasts: µR×S −µR×S̄ −µR̄×S +µR̄×S̄, where R and R̄ are

complementary subsets of 1, . . . , I, and S and S̄ are complementary subsets

of 1, . . . , J ; µR×S is the mean of all numbers µij with i ∈ R and j ∈ S; µR̄×S̄

is the mean of all numbers µij with i ∈ R̄ and j ∈ S̄, etc. Double-dichotomy

contrasts are direct products of dichotomy contrasts. This set is of interest

in situations where it is suspect that additivity may hold within some sub-

matrices of the I × J matrix of cell means, but not between the sub-matrix

means.
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4. pooled-tetrad contrasts: µR′×S′ − µR′×S′′ − µR′′×S′ + µR′′×S′′ - are direct

products of pooled mean differences (defined analogously to the double-

dichotomy contrasts, except that the disjoint subsets R′ and R′′, S ′ and

S ′′, respectively, do not need to be complementary).

To illustrate the construction of appropriate contrasts, the next subsections demon-

strate the choice of contrast coefficients to formulate the hypotheses of interest for

the examples presented in Section 2.1, 2.2 and 2.3.

Table 3.2.: Schematic display of tetrad contrasts: grey marked cells of the I × J
table correspond to the required parameters to calculate the tetrad
contrast of cell means: µ11 − µ13 − µ31 + µ33.

B1 B2 B3 Bj BJ Means
A1 µ11 µ12 µ13 · · · µ1J µ1.

A2 µ21 µ22 µ23 · · · µ2J µ2.

A3 µ31 µ32 µ33 · · · µ2J µ2.

Ai
...

...
...

. . .
...

...
AI µI1 µI2 µI3 · · · µIJ µI.

Means µ.1 µ.2 µ.3 · · · µ.J µ..
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3.3. Product-type interaction contrasts

Table 3.3.: Schematic display of double-dichotomy contrasts: grey marked cells
of the I × J table correspond to the required parameters to calculate
the double-dichotomy contrasts resulting from direct products of di-
chotomy contrasts. The different grey scale defines the complementary
subsets S and S̄, and R and R̄.

B1 B2 B3 Bj BJ Means
A1 µ11 µ12 µ13 · · · µ1J µ1.

A2 µ21 µ22 µ23 · · · µ2J µ2.

A3 µ31 µ32 µ33 · · · µ2J µ2.

Ai
...

...
...

. . .
...

...
AI µI1 µI2 µI3 · · · µIJ µI.

Means µ.1 µ.2 µ.3 · · · µ.J µ..

Table 3.4.: Schematic display of pooled-tetrad contrasts: grey marked cells of the
I × J table correspond to the required parameters to calculate the
pooled-tetrad contrasts resulting from direct products of pooled mean
differences.

B1 B2 B3 Bj BJ Means
A1 µ11 µ12 µ13 · · · µ1J µ1.

A2 µ21 µ22 µ23 · · · µ2J µ2.

A3 µ31 µ32 µ33 · · · µ2J µ2.

Ai
...

...
...

. . .
...

...
AI µI1 µI2 µI3 · · · µIJ µI.

Means µ.1 µ.2 µ.3 · · · µ.J µ..
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Chapter 3. Hypotheses for statistical interactions

3.3.1. Contrasts for the bush beans example

At first, the contrast matrices for the main effects for the factors spacing CSpacing

and variety CVariety are specified to construct the product-type interaction contrast

matrix CInteraction. For the factor spacing the Tukey-type contrasts of all pairwise

comparisons between the levels are used (see Equation 3.4). For the factor variety

the goal is to first compare the average of the two tall varieties with those of the

two bushy varieties (see first row in CVariety in Equation 3.4). Furthermore, the

varieties within each of the two growth types are compared, see row 2 and 3 from

CVariety.

CVariety =











0.5 0.5 −0.5 −0.5

1 −1 0 0

0 0 1 −1











CSpacing =











1 −1 0

1 0 −1

0 1 −1











(3.4)

The direct Kronecker product of these matrices which results in the matrix

CVariety⊗CSpacing = CInteraction is built to get the following product-type interaction

contrasts:

CInteraction =





































0.5 −0.5 0 0.5 −0.5 0 −0.5 0.5 0 −0.5 0.5 0

0.5 0 −0.5 0.5 0 −0.5 −0.5 0 0.5 −0.5 0 0.5

0 0.5 −0.5 0 0.5 −0.5 0 −0.5 0.5 0 −0.5 0.5

1 −1 0 −1 1 0 0 0 0 0 0 0

1 0 −1 −1 0 1 0 0 0 0 0 0

0 1 −1 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 −1 0 −1 1 0

0 0 0 0 0 0 1 0 −1 −1 0 1

0 0 0 0 0 0 0 1 −1 0 −1 1





































.

(3.5)

The first row in CInteraction compares the difference of the tall and bushy varieties

between the first and the second row spacing level. Using the classification of

Gabriel et al. [1973] the first three rows in CInteraction are examples of pooled-

tetrad contrasts. Row number 4-6 are examples of tetrad contrasts where only the
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3.3. Product-type interaction contrasts

sub-matrix of the tall varieties is analysed. The same holds for the rows 7-9 where

the sub-matrix of the bushy varieties is analysed in more detail.

3.3.2. Contrasts for the lettuce data set

The factor phosphate fertilizer consists of an untreated control group and three

different phosphorus fertilizers. Objective for this factor is to estimate the increase

in yield that results applying each of the fertilizers compared to the untreated

control. The corresponding Dunnett-type contrast matrix is given by CPhosphate in

Equation 3.6. The second factor, soil type, contains no further sub-structure, and

interest is in comparing all three soil types among each other. The contrast matrix

CSoil in Equation 3.6 specifies the Tukey-type contrasts of all pairwise comparisons

of the soil types.

CPhosphate =











−1 1 0 0

−1 0 1 0

−1 0 0 1











CSoil =











1 −1 0

1 0 −1

0 1 −1











.

(3.6)

The resulting interaction contrast matrix CInteraction in Equation 3.7 is given by

the direct Kronecker product CPhosphate ⊗CSoil. The contrasts in CInteraction allow

to interpret to what extend the difference in yield between the three phosphate

fertilizers compared to the control varies between the three soil types. According

to the classification system of Gabriel et al. [1973], the contrasts in CInteraction are

denoted as tetrad contrasts.

CInteraction =





































−1 1 0 1 −1 0 0 0 0 0 0 0

−1 0 1 1 0 −1 0 0 0 0 0 0

0 −1 1 0 1 −1 0 0 0 0 0 0

−1 1 0 0 0 0 1 −1 0 0 0 0

−1 0 1 0 0 0 1 0 −1 0 0 0

0 −1 1 0 0 0 0 1 −1 0 0 0

−1 1 0 0 0 0 0 0 0 1 −1 0

−1 0 1 0 0 0 0 0 0 1 0 −1

0 −1 1 0 0 0 0 0 0 0 1 −1





































. (3.7)
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3.3.3. Contrasts for the multi-centre clinical trial

The contrast matrix CGroup in Equation 3.8 defines the difference between the

active treatment group and the placebo group, which is commonly denoted as

treatment effect.

When analysing the interaction in a multi-centre clinical trial, the aim is to de-

tect a centre at which the treatment effect differs in accordance with the general

treatment effect. Each row in the contrast matrix CCentre in Equation 3.8 repres-

ents a grand mean contrast, which compares one centre (the first centre in the first

row, the second centre in the second row, etc.) to the general mean. The contrast

matrix CGrandMean in Equation 3.9 represents the general form of the grand mean

contrast matrix.

CGroup =
(

1 − 1
)

, CCentre =























0.76 −0.14 −0.30 −0.19 −0.13

−0.24 0.86 −0.30 −0.19 −0.13

−0.24 −0.14 0.70 −0.19 −0.13

−0.24 −0.14 −0.30 0.81 −0.13

−0.24 −0.14 −0.30 −0.19 0.87























.

(3.8)

CGrandMean =

















1 − n1

N
−n2

N
· · · −nJ

N

−n1

N
1 − n2

N
· · · −nJ

N
...

... 1 − nj

N

...

−n1

N
−n2

N
· · · 1 − nJ

N

















(3.9)

The corresponding product-type interaction contrast matrix CInteraction is given

by CCentre ⊗CGroup:

CInteraction =

















0.76 −0.76 −0.14 0.14 −0.30 0.30 −0.19 0.19 −0.13 0.13

−0.24 0.24 0.86 −0.86 −0.30 0.30 −0.19 0.19 −0.13 0.13

−0.24 0.24 −0.14 0.14 0.70 −0.70 −0.19 0.19 −0.13 0.13

−0.24 0.24 −0.14 0.14 −0.30 0.30 0.81 −0.81 −0.13 0.13

−0.24 0.24 −0.14 0.14 −0.30 0.30 −0.19 0.19 0.87 −0.87

















.

(3.10)

An alternative choice for CCentre would be a contrast matrix in which all of
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3.4. Ratios among contrasts of means

the pairwise comparisons are made (Tukey-type contrasts). The disadvantage of

this choice is that the number of contrasts M rapidly increases with an increasing

number of centres (M = J ·(J−1)/2). This increase results in a confusing decision

on the location of the interaction. Therefore, the choice of CCentre as CGrandMean

is recommended, especially if the number of levels of the secondary factor is high

with respect to that of the primary factor, e.g., centres or regions. If the secondary

factor has only a few levels, e.g., subgroups, gender or biomarker, then the usage

of all pairwise contrasts is recommended.

3.4. Ratios among contrasts of means

In this section the research hypotheses for the analysis of interactions are formu-

lated in terms of ratios of linear combinations of means. This formulation allows

the interpretation of the interaction effects as relative changes, e.g. as percentage

changes, between differences of means. Djira [2005] presented the formulation of

the research hypothesis using several ratios of linear combinations of the treatment

means for the one-way ANOVA model with homogeneous variances. Within here,

this approach is expanded through the two-way layout using the cell means model

from Equation 3.2. In the following, the ratios of linear combinations of means are

denoted as γ and the global null hypothesis is given by:

H0 : γ :=
Hµ

Dµ
= ω, (3.11)

whereH andD represent theM×L numerator and denominator contrast matrices,

respectively, and ω denotes a vector of dimension L of specified relative thresholds.

Each research hypothesis can now be formulated by the mth row vector of the nu-

merator and denominator contrast matrix, namely hm and dm:

H
(m)
0 : γm :=

hmµ

dmµ
= ω.

Again, the numerator and denominator interaction contrast matrices are build

by using two “one-way” contrast matrices. Suppose the contrast matrices for factor

A and factor B are given by CA and CB. Furthermore, it is assumed that interest
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Chapter 3. Hypotheses for statistical interactions

is in the assessment of an A-by-B interaction, i.e. the varying difference between

the levels of factor A between the levels of factor B. To achieve an appropriate

numerator and denominator interaction contrast matrix, the researcher has to

built a numerator and denominator contrast matrix for the secondary factor B,

i.e. CNumerator
B and CDenominator

B . Building the direct Kronecker product of these

matrices with the contrast matrix of the primary treatment factor CA results in

the M ×L numerator and denominator interaction contrast matrices CNumerator
Interaction =

CNumerator
B ⊗ CA and CDenominator

Interaction = CDenominator
B ⊗ CA. The application of this

procedure for the multi-centre clinical trial example is given in the next subsection.

3.4.1. Numerator and denominator contrast matrices for

the multi-centre clinical trial

In this subsection the hypotheses to detect a statistical interaction in the multi-

centre clinical trial example presented in Section 2.3 are reformulated as the ratio

of treatment differences. Therefore, the contrast matrix of the primary treatment

factor CGroup from Equation 3.8 is used. In addition, the numerator and denom-

inator contrast matrices for the secondary factor centre are defined by Equation

3.12.

CNumerator
Centre =























1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1























CDenominator
Centre =























0.24 0.14 0.30 0.19 0.13

0.24 0.14 0.30 0.19 0.13

0.24 0.14 0.30 0.19 0.13

0.24 0.14 0.30 0.19 0.13

0.24 0.14 0.30 0.19 0.13























(3.12)

The ratio of the numerator and denominator contrast matrices for the secondary

factor build the relative effect of each centre to the overall centre effect. The

resulting numerator and denominator interaction contrast matrices are given in

Equation 3.13 and 3.14.
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3.4. Ratios among contrasts of means

H = CNumerator
Centre ⊗CGroup =

CNumerator

Interaction
=

















1 −1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1

















(3.13)

D = CDenominator
Centre ⊗CGroup =

CDenominator

Interaction
=

















0.24 −0.24 0.14 −0.14 0.30 −0.30 0.19 −0.19 0.13 −0.13

0.24 −0.24 0.14 −0.14 0.30 −0.30 0.19 −0.19 0.13 −0.13

0.24 −0.24 0.14 −0.14 0.30 −0.30 0.19 −0.19 0.13 −0.13

0.24 −0.24 0.14 −0.14 0.30 −0.30 0.19 −0.19 0.13 −0.13

0.24 −0.24 0.14 −0.14 0.30 −0.30 0.19 −0.19 0.13 −0.13

















(3.14)

The first row vectors of CNumerator
Interaction and CDenominator

Interaction build the ratio of the treat-

ment effect of the first centre through the overall treatment effect. Therefore the

parameter γ1 can be interpreted as the relative change of the treatment effect of

the first centre to the overall treatment effect.
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Chapter 4.

Inference to test statistical

interactions

Within this chapter inferential procedures to test for statistical interactions are

presented. At first, the global ANOVA F-test is shortly reviewed. Afterwards,

appropriate methods to simultaneously test the M hypotheses defined in Chapter

3 are presented in more detail.

4.1. Global test for statistical interaction

Given a two-factorial design as presented in Section 3.1 it is common practice

to evaluate the interaction effect via ANOVA techniques, whereas the ANOVA

partitions the total sum of squares into component sum of squares. When applying

the classical ANOVA to test for interaction, the null and alternative hypotheses

are defined as [Kirk, 1995]:

H0 : (αβ)ij = 0 (for all i and j) or µij − µi′j − µij′ + µi′j′ = 0 (for all i and j)

HA : (αβ)ij 6= 0 (for all i and j) or µij − µi′j − µij′ + µi′j′ 6= 0 (for all i and j).

(4.1)

The test statistic is given by

F (αβ) =
MS(αβ)

MS(Error)
(4.2)
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Chapter 4. Inference to test statistical interactions

, where MS(αβ) denotes the mean square of the interaction effect and MS(Error)

the mean square of the error. For a balanced design MS(αβ) and MS(Error) are

given by:

MS(αβ) =
N

∑I
i=1

∑J
j=1 (Yij. − Yi.. − Y.j. + Y...)

2

(I − 1) (J − 1)
,

MS(Error) =

∑I
i=1

∑J
j=1

∑nij

k=1 (Yijk − Yij.)
2

IJ (N − 1)
.

The test statistic F (αβ) follows a F-distribution with (I − 1)(J − 1) numerator

degrees of freedom and IJ(N − 1) denominator degrees of freedom [Scheffe, 1999].

It is well known, that the ANOVA F-test only provides global inference on the

presence of any effect [Hothorn et al., 2008]. Furthermore, due to the quadratic

form of the ANOVA F-statistic is is not possible to make one-sided test decisions

[Konietschke et al., 2013]. Since the objective of this thesis is an in depth analysis

of statistical interaction the focus is now on the simultaneous assessment of the

pre-defined interaction hypotheses presented in Chapter 3.

4.2. Multiple contrast tests for product-type

interaction contrasts

The objective is now to simultaneously test the M hypotheses represented by the

M rows of a given matrix of interaction contrasts CAB. Recall that the global null

hypothesis in Equation 3.3 is the intersection of the local null hypotheses H
(m)
0 :

H0 : (ψ1 = θ ∩ ψ2 = θ ∩ . . . ∩ ψm = θ) (4.3)

and

HA : (ψ1 6= θ ∪ ψ2 6= θ ∪ . . . ∪ ψm 6= θ). (4.4)

To test the global null hypothesis in Equation (4.3), a Union-Intersection test is

required, where the global null hypothesis is rejected if any local null hypothesis

Hm
0 : ψm = θ is rejected.
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4.2. Multiple contrast tests for product-type interaction contrasts

It is well known that if the M multiple hypotheses are tested simultaneously,

the type I error rate increases beyond the a priori defined significance level α.

Therefore a multiple comparison procedure is needed that controls a multiple type

I error rate to make valid conclusions over the M hypotheses under consideration.

One version of the type I error rate in simultaneous testing several hypotheses is

the definition of the family-wise error rate (FWER). According to Dmitrienko and

D’Agostino [2013] the FWER is controlled in the strong sense at significance level

α if “the probability of erroneously rejecting at least one true null hypothesis is not

greater than α, for all possible configurations of true and false null hypotheses”.

Within this thesis the concept of multiple contrast tests (MCTs) is used as mul-

tiple comparison procedure [Mukerjee et al., 1987, Bretz, 1999]. This allows the

simultaneous testing of the M hypotheses defined by Cµ = θ and to control the

FWER in the strong sense.

The test statistic for the mth contrast of cell means is given by the standardized

estimator [Bretz, 1999]:

Tm =

∑L
l=1 clµ̂l − θm

s
√

∑L
l=1 c

2
l /nl

=
cmµ̂− θm

s
√

cmMcT
m

. (4.5)

To simultaneous test the M hypotheses the M -dimensional vector of test stat-

istics T = (T1, . . . , TM)T is considered. Under the null hypothesis the vector of

test statistics T follows a central M -variate t-distribution Mtdf=ν,R with ν de-

grees of freedom and a correlation matrix R, see e.g., Genz and Bretz [1999] and

Hothorn et al. [2008]. Computational methods for the multivariate t-distribution

were presented by Genz and Bretz [2009] and are available in the add-on package

mvtnorm [Genz et al., 2013] of the statistical software R [R Core Team, 2013]. The

degrees of freedom are given by ν =
∑L

l=1(nl − 1). Each element of the correlation

matrix R = [ρmm′ ] can be described by

ρmm′ =

∑L
l=1 cmlcm′l/nl

√

(

∑L
l=1 c

2
ml/nl

) (

∑L
l=1 c

2
m′l/nl

)

(4.6)

(for a detailed proof see [Bretz, 1999, page 25]). The null hypothesis for a

particular interaction contrast m is rejected if the corresponding absolute value
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Chapter 4. Inference to test statistical interactions

of the test statistic is greater or equal than a critical point: |Tm| ≥ q1−α/2,ν,R,

where q1−α/2,ν,R is the 1-α/2 equi-coordinate percentage point from a multivariate

t-distribution Mtdf=ν,R. The associated p-values can be calculated as pm = P (t ≥
|Tm|), where the variable t follows a multivariate t-distribution Mtdf=ν,R.

4.3. Simultaneous confidence intervals for

product-type interaction contrasts

In this section simultaneous confidence intervals (SCIs) that are compatible to the

MCTs presented before are considered. Within here, SCI are considered because

they provide some information on the direction, the magnitude, and the biological

relevance of the interaction effects additionally to the test decisions. Furthermore,

some regulatory guidelines recommend the usage of SCI instead of multiplicity

adjusted p-vales, e.g., the ICH E9 guideline states: “Estimates of treatment effects

should be accompanied by confidence intervals, whenever possible, . . . ” [ICH E9,

1998].

Compatible 1-α SCIs for the parameters of interest ψ are given by:

L
∑

l=1

cmlµ̂l ± q1−α/2,M,R · s
√

√

√

√

L
∑

l=1

c2
ml

nl

. (4.7)

To get compatible test decision one rejects the local null hypothesis Hm
0 if the

confidence limits do not include θm. In addition, the distance of the confidence

limit from θm is interpretable as a shift on the scale of the response variable.

4.3.1. Heterogeneous variances

In Section 3.1 it was assumed, that the response variable is normally distributed

with a common error term over the groups, ǫijk ∼ N(0, σ2). Nevertheless, the

problem of heteroscedasticity is not uncommon. Therefore, the notation is exten-

ded and it is now assumed that the observations are independently normal with

mean µl and variance σ2
l , Ylk ∼ N(µl, σ

2
l ). The sample variances are given by

s2
l =

∑nl

k=1

(

Ylk − Ȳl

)2
/ (nl − 1).
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Hasler [2009] presented an approach to construct SCIs and to perform MCTs in

the presence of heteroscedasticity in the one-way layout. Within here this method

is adopted to test for product-type interactions in the two-way layout. The test

statistic for the mth interaction contrast is now given by

T ∗
m =

∑L
l=1 clµ̂l − θm

√

∑L
l=1 c

2
l s

2
l /nl

=
cmµ̂− θm

√

cmV̂ McT
m

, (4.8)

where V̂ is a L × L diagonal matrix that contains the estimated variances V̂ =

diag (s2
1, . . . , s

2
L). Under the null hypothesis each test statistic T ∗

m follows a t-

distribution with ν̂m degrees of freedom, whereas ν̂m is given by

ν̂m =

(

∑L
l=1

c2
ml

s2
l

nl

)2

∑L
l=1

c4
ml

s4
l

n2
l
(nl−1)

,

(for a detailed proof see [Hasler, 2009, page 37]). The corresponding vector of test

statistics T ∗ = (T ∗
1 , . . . , T

∗
M)T does not follow a joint m-variate t-distribution in the

presence of heteroscedasticity. To overcome this problem, Hasler [2009] proposed

a method that uses m distinct m-variate t-distributions. Each test statistic T ∗
m is

related to a m-variate t-distribution with ν̂m degrees of freedom and a correlation

matrix R∗ = [ρ∗
mm′ ], whose elements are given by

ρ∗
mm′ =

∑L
l=1 cmlcm′ls

2
l /nl

√

(

∑L
l=1 c

2
mls

2
l /nl

) (

∑L
l=1 c

2
m′ls

2
l /nl,

)

.

Each Hm
0 is now rejected if |T ∗

m| ≥ q1−α/2,ν̂m,R∗ , where q1−α/2,ν̂m,R∗ is the 1 − α/2

level equi-coordinate percentage point of a m-variate t-distribution with estimated

correlation matrix R∗ and ν̂m degrees of freedom.
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4.4. Multiple contrast tests for ratios of

treatment differences

In this section the focus is on simultaneous inference procedures on the ratios

among contrasts of means presented in Section 3.4. Within this thesis the methodo-

logy proposed by Djira and Hothorn [2009] is used. The central idea from Djira and

Hothorn [2009] is based on the reformulation of the ratio problem hmµ/dmµ = ω

as a linear form Lm = (hm − ωdm)µ, which was first proposed by Fieller [1954].

The estimate of the variance of Lm is given by

s2
Lm

= s
√

(hm − ωdm)M (hm − ωdm)T

According to Djira [2005] the test statistic is given by:

Tm =
(hm − ωdm)µ̂

s
√

(hm − ωdm)M (hm − ωdm)T
. (4.9)

Under H0, each local test statistic Tm follows a t-distribution with ν degrees of

freedom, whereas the random vector of test statistics T = (T1, . . . , TM)T jointly

follows a central m-variate t-distribution with ν degrees of freedom and a correla-

tion matrix R = [ρmm′ ]. Each element of R can be described by

ρmm′ =
(hm − ωdm)M (hm′ − ωdm′)T

√

(hm − ωdm)M (hm − ωdm)T
√

(hm′ − ωdm′)M (hm′ − ωdm′)T
, (4.10)

where m 6= m′ [Djira, 2005]. The global null hypothesis in Equation (3.11) is

rejected if |Tm| ≥ q1−α/2,ν,R for at least one m (m = 1, . . . ,M). The critical

point q1−α/2,ν,R is the 1−α/2 level equi-coordinate percentage point of a m-variate

t-distribution with the correlation matrix R and ν degrees of freedom. The associ-

ated adjusted p-values can be calculated as pm = P (t ≥ |Tm|), where the variable

t follows a multivariate t-distribution Mtdf=ν,R with ν degrees of freedom and the

correlation matrix R.
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4.5. Simultaneous confidence intervals for ratios

of treatment differences

As an alternative to adjusted p-values to test the global null hypothesis in Equation

(3.11), the goal is to construct SCIs for the ratios of linear combinations of cell

means γm. Dilba et al. [2006a] presented an approach to determine approximate

SCIs for the ratios of linear combinations of the means in the one-way layout based

on the multivariate t-distribution. Here, their method is adopted for the problem of

determining ratios of linear combinations of treatment means in a two-way layout

to detect interactions. The statistic is defined by

Tm(γm) =
(hm − γmdm)µ

s
√

(hm − γmdm)M (hm − γmdm)T
. (4.11)

Jointly, the vector of test statistics T (γ) = (T1(γ1), . . . , Tm(γm))T follows a m-

variate t-distribution with ν degrees of freedom and a correlation matrixR(γ1, . . . , γm).

The correlation coefficients of R(γ1, . . . , γm) are similar to Equation (4.10), but

ω is replaced by γm and γm′ . It is obvious that the correlation between two con-

trasts depends now on the known constants h and d, the sample sizes nl and the

unknown ratios γ. Dilba et al. [2004] proposed a plug-in approach, where the un-

known ratios in R(γ1, . . . , γm) are replaced by its maximum likelihood estimators

γ̂m = hmµ̂/dmµ̂. The two-sided Fieller confidence interval for the mth ratio γm

is the smallest solution of the quadratic equation in γm from T 2
m(γm) = t2α/2(ν).

Only if the denominator dmµ̂ is significantly different from 0, the solution of the

quadratic equation will lead to a finite value for the confidence limit (for details,

see Dilba et al. [2006a] and Subsection 4.5.2).

4.5.1. Heterogeneous variances

In this section the assumption of homogeneous variances is again relaxed and

it is assumed that the outcome measures are independently normal with mean

µl and variance σ2
l , Ylk ∼ N(µl, σ

2
l ). Hasler [2009] presented an approach to

construct SCIs and to perform MCTs for the ratios of means; this method adjusts

for heteroscedastic data. The test statistic for the mth ratio of means is now given
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by

T ∗
m =

(hm − ωdm)µ

(hm − ωdm)V̂ M(hm − ωdm)T
. (4.12)

According to Hasler [2009] under Hm
0 , the test statistic T ∗

m approximately follows

a t-distribution with ν̂m degrees of freedom, where

ν̂m =

(

∑L
l=1

(hml−ωdml)
2s2

l

nl

)2

∑L
l=1

(hml−ωdml)4s4
l

n2
l
(nl−1)

. (4.13)

The corresponding vector of test statistics T ∗ = (T ∗
1 , . . . , T

∗
M)T does not follow a

joint m-variate t-distribution. To overcome this problem, Hasler [2009] proposed

a method that uses m distinct m-variate t-distributions. Each test statistic T ∗
m is

related to a m-variate t-distribution with ν̂m degrees of freedom and a correlation

matrix R∗ = [ρ∗
mm′ ], whose elements are given by

ρ∗
mm′ =

(hm − ωdm)V̂ M(hm′ − ωdm′)T

√

(hm − ωdm)V̂ M(hm − ωdm)T
√

(hm′ − ωdm′)V̂ M(hm′ − ωdm′)T
.

(4.14)

Each Hm
0 is then rejected if |T ∗

m| ≥ q1−α/2,ν̂m,R∗ , where q1−α/2,ν̂m,R∗ is the 1 − α/2

level percentage point of a m-variate t-distribution with the estimated correlation

matrix R∗ and ν̂m degrees of freedom. Appropriate simultaneous confidence inter-

vals for the heteroscedastic case can be derived as in Section 4.5 using the estimator

γ̂m = hmµ̂/dmµ̂ instead of ω in Equation (4.12), (4.13) and (4.14) [Hasler, 2009].

For the calculation of the simultaneous confidence limits and the multiplicity ad-

justed p-values, the add-on package mratios Dilba et al. [2007] from the statistical

software R [R Core Team, 2013] can be used.

4.5.2. Fieller type confidence intervals: a geometric

representation

In this subsection the geometric representation of the Fieller type confidence inter-

vals [Fieller, 1954] for the ratio parameter γ as defined in Section 3.4 is given. This

geometric representation is used to illustrate the scenarios in which the boundaries
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4.5. Simultaneous confidence intervals for ratios of treatment differences

of the intervals are not defined. Hirschberg and Lye [2010a] proposed two geomet-

ric representations of the Fieller confidence intervals for the ratio of regression

parameter estimates. In the following their approach is used for the geometric

representation of the intervals of the ratios γ of linear combinations of the para-

meters from the cell means model as defined in Section 3.4 by:

γ =
Hµ

Dµ
.

For the purpose of illustration the focus is on one ratio of linear combinations of

cell means, γm = hmµ

dmµ
. Figure 4.1 presents the parameter space for the estimates

of the numerator hmµ̂ and denominator dmµ̂ (this corresponds to the parameter

space displayed in Figure 5.1 for two treatment effects δ1 and δ2).

According to Hirschberg and Lye [2010b] the ratio and its Fieller type confidence

intervals are defined as follows: The ratio γm can be displayed as the slope of the

line (red line in Figure 4.1) which passes though the origin (0, 0) and the point

(hmµ̂,dmµ̂) (red point in Figure 4.1). The value for γ = δ2

δ1
is depicted as the slope

of this line: the intersection of the line with the vertical line x = 1. Next a wedge

(grey scaled area in Figure 4.1) is constructed that contains the 100 · (1 − α)%

confidence ellipse for a combination of the parameters in γ. The intersection of

this wedge with the line x = 1 corresponds to the lower and upper confidence limit

(for details see Hirschberg and Lye [2010a]).

Figure 4.1 illustrates three (A, B and C) scenarios for the construction of Fieller

type confidence intervals. Situation A considers the case where the ellipse lies

completely on one side of the y-axis. The corresponding wedge does not contain the

y-axis resulting in finite confidence limits. As stated in Subsection 4.5 meaningful

confidence limits are not defined if the denominator is not significantly different

from zero. This corresponds to the null hypothesis H0 : dmµ = 0. In those

situations the ellipse cuts the y-axis. Plot B in Figure 4.1 considers the case in

which the ellipse cuts the y-axis but does not contain the origin. The confidence

region is again constructed as the intersection of the wedge with the line x = 1.

The confidence region is bounded but has a small hole in the middle. Obviously,

this case occurs if the denominator is close to zero (H0 : dmµ = 0 is not rejected),

but the numerator is far from zero. Intuitively, the magnitude of the ratio can get
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Figure 4.1.: The geometric representation of the Fieller confidence intervals for
γ = δ2/δ1. The confidence bounds are defined by the rays from the
origin that are tangent to the ellipse that defines the 100 (1−α) ellipse
for a combination of the parameters in γ. A: Case where the lower
and upper confidence limits are defined; the confidence ellipse does not
intersect the y-axis. B: Case where no meaningful limits are defined;
the confidence ellipse intersects the y-axis but does not contain the
origin. C: Case where no Fieller confidence bounds are defined; the
confidence ellipse contains the origin.
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arbitrary large. Otherwise, there is little confidence about the sign of the ratio

because there is little certainty about the sign of the denominator (close to zero).

Thus it makes sense that the confidence region is of the form ] − ∞, clower] and

[cupper,∞[. The small hole in the middle reflects the certainty that a very small

numerator or a very large denominator are very unlikely. Situation C in Figure

4.1 corresponds to the case where the origin is contained in the ellipse. In this

case it is impossible to construct Fieller type confidence intervals since there are no

tangents from the origin through the ellipse that can build the wedge. This case

occurs if both the numerator and the denominator are not significantly different

from zero.
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Chapter 5.

Detecting qualitative interactions

As described in Section 1 the detection of qualitative interactions is of particular

interest in many research areas [Gail and Simon, 1985]. Within this chapter a

method proposed by Kitsche and Hothorn [2013] that uses the ratio of treatment

differences is presented to detect a qualitative interaction. Moreover, three global

tests to detect a qualitative interaction are illustrated.

5.1. Global tests for qualitative interaction

In this section some frequently applied global tests for qualitative interactions,

which were proposed by Azzalini and Cox [1984], Gail and Simon [1985] and Pi-

antadosi and Gail [1993] are presented. Apart from these test several others were

published later by Ciminera et al. [1993], Pan and Wolfe [1997] and Li and Chan

[2006]. Truberg and Hühn [2000] give a comparative study of different paramet-

ric and non-parametric tests to detect qualitative interactions in the context of

genotype-by-environment interactions.

5.1.1. Azzalini and Cox test

Azzalini and Cox [1984] presented an approach to test the null hypothesis of no

qualitative interaction. The Azzalini and Cox test calculates all pairwise differences

of one factor over the levels of the other factor, i.e. all possible tetradic contrasts.

The critical value of the test can be obtained from Equation 9 in their paper

[Azzalini and Cox, 1984] as
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tα = −Φ−1





{

− 2 log(1 − α)

I(I − 1)J(J − 1)

}
1
2



 ,

where Φ is the standard normal distribution and α is a pre-specified significance

level. Using this critical value a indicator value can be calculated from Equation

5.1.

Iii′jj′



















= 1 if µij − µij′ > tα sij

√
2 and µi′j − µi′j′ < −tα sij

√
2,

= 1 if µij − µij′ < −tα sij

√
2 and µi′j − µi′j′ > tα sij

√
2,

= 0 otherwise,

(5.1)

where sij is a consistent estimate of the standard error for the mean of each factor

combination µij. The corresponding decision rule is: reject H0 of no qualitative

interaction if the indicator Iii′jj′ = 1 for one or more comparisons.

5.1.2. Gail and Simon test

Gail and Simon [1985] proposed a likelihood ratio test for the null hypothesis

of no qualitative interaction. They formulated their hypothesis of no qualitative

interaction on the basis of the vector of treatment effects δ = {δ1, . . . , δJ} with

δj = µ1j −µ2j. Therefore, their approach is limited to situations where the primary

treatment factor has two levels. These authors demonstrated that this hypothesis

implies that the vector of treatment effects δ lies either in the orthant in which all

of the components are non-negative (O+ = {δ : δj ≥ 0 for all j}) or in the orthant

in which all of the components are non-positive (O− = {δ : δj ≤ 0 for all j}) (see

also Figure 5.1):

H0 : δ ∈ O+ ∪O−. (5.2)

The likelihood ratio test proposed by Gail and Simon [1985] to test Equation

(5.2) is based on the statistic:

maxδ∈O+∪O−exp
∑J

j=1

(

−(δ̂j − δj)
2/(2s(δ)2

j)
)

maxδexp
∑J

j=1

(

−(δ̂j − δj)2/(2s(δ)2
j)

) ,
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5.1. Global tests for qualitative interaction

where δ̂j denotes the estimate of the treatment effect and s(δ)2
j is a consistent estim-

ator of the variance of δj. Since the maximum of the denominator is unrestricted

it equals 1 at δ̂j = δj. Therefore, the Gail and Simon test statistic reduces through

the numerator. The Gail and Simon test rejects H0 from Equation (5.2) if the min-

imum of Q− =
∑J

j=1

(

δ̂j

2
/s(δ)2

j

)

I(δj < 0) and Q+ =
∑J

j=1

(

δ̂j

2
/s(δ)2

j

)

I(δj > 0)

is greater than an appropriate critical value. Where I(δj > 0) = 1 if δj > 0 and

0 otherwise, and I(δj < 0) = 1 if δj < 0 and 0 otherwise. They showed that the

Q statistic follows a weighted sum of χ2 distributions. The p-value for the test

statistic Q is computed as

pQ =
J−1
∑

j=1

(1 − χj(Q)) bin(j;n = J − 1, p = 0.5),

whereχj() is the cumulative chi-square distribution function with j degrees of

freedom and bin(j;n, p) is the binomial probability function with parameters n

and p. Using the Gail and Simon test it is also possible to test the one sided null

hypothesis that all treatment effects δj are positive (Q+), or the one sided null

hypothesis that all treatment effects are negative (Q−) [Dmitrienko et al., 2005].

The corresponding p-values for the test statistics are

pQ+ =
J

∑

j=1

(

1 − χj(Q
+)

)

bin(j;n = J, p = 0.5),

and

pQ− =
J

∑

j=1

(

1 − χj(Q
−)

)

bin(j;n = J, p = 0.5).

Please note, that the Gail and Simon test statistic uses a standardized sum of

squares of the treatment effects. Therefore, it cannot provide any information

about the source of a potential reversal treatment effect.

5.1.3. Piantadosi and Gail test

Piantadosi and Gail [1993] proposed a standardized range test to test the null

hypothesis of no qualitative interaction by considering the minimum and the max-

imum of the observed treatment effects over the levels of the second factor. The
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null hypothesis is rejected at level α if both

max
{

δ̂j/s(δ)j

}

> rα and min
{

δ̂j/s(δ)j

}

< −rα. (5.3)

The critical value rα is determined by

rα = Φ−1





1 − (2(1 − α)
1

J−1 − 1)

2



 ,

where Φ corresponds to the standard normal distribution.

Unfortunately, none of the global tests to detect qualitative interactions is ap-

propriate to investigate the source and the amount of a potential qualitative inter-

action. In the following, the approach developed by Kitsche and Hothorn [2013]

is introduced that allows those in depth analysis of qualitative interactions.

5.2. Detecting qualitative interactions using

ratios of treatment differences

Kitsche and Hothorn [2013] proposed to use the ratios of treatment differences

to detect qualitative interactions. The appropriate formulation of those ratios

of treatment differences was presented in Section 3.4 and the related inferential

procedures are given in Section 4.4. To illustrate the main concept of Kitsche and

Hothorn [2013] Figure 5.1 displays the parameter space of two treatment effects. A

treatment effect denotes the difference between two levels of the primary treatment

factor, e.g., δj = µDrug,j − µPlacebo,j from the multi-centre clinical trial in Section

2.3.

From Figure 5.1, it is clear that the use of product-type interaction contrasts,

as described by Gabriel et al. [1973], is inappropriate for differentiating between

quantitative and qualitative interactions because this approach uses the differences

between the treatment effects. A straightforward solution to this problem is the

usage of the ratios of the treatment effects: if a qualitative interaction is present,

then the ratio of the treatment effects receives a negative sign. In contrast, if there

is no qualitative interaction present, then the sign of the ratio of the treatment
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line of no interaction

no treatment effect

region of qualitative 
 interaction

region of qualitative 
 interaction

treatment effect  δ1
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Figure 5.1.: Parameter space of the treatment effects δ = {δ1, δ2} for two levels of
the secondary factor. The shaded regions define the space of qualitat-
ive interactions where the signs of δ1 and δ2 differ. The diagonal line
refers to the set of parameter combinations in which no interaction
effect is present, and the origin represents the parameter combination
in which no treatment effect exists.

47



Chapter 5. Detecting qualitative interactions

tr
ea

tm
en

t e
ffe

ct

−4

−3

−2

−1

0

1

2

3

4

δ1−δ2 = −2 δ1−δ2 = −2 δ1−δ2 = −2

δ1/δ2 = 3 δ1/δ2 = −1 δ1/δ2 = 1/3

level 1level 1 level 2level 2 level 1level 1 level 2level 2 level 1level 1 level 2level 2

quantitative
 interaction
quantitative
 interaction

qualitative
 interaction
qualitative
 interaction

quantitative
 interaction
quantitative
 interaction

Figure 5.2.: Three scenarios for the treatment effects δ = {δ1, δ2}. The first scen-
ario describes the case of a quantitative interaction in which both
treatment effects are negative. The second scenario considers the case
in which the treatment effects differ in sign (a qualitative interaction),
and the third case represents the situation of a quantitative interaction
in which both treatment effects are positive. In all of the scenarios,
the difference in the treatment effects is equal.
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5.2. Detecting qualitative interactions using ratios of treatment differences

effects becomes positive. As a consequence, the one-sided version of the global hy-

pothesis in Equation 3.11 is appropriate to detect a qualitative interaction, whereas

all elements of the relative margin ω are set to zero:

H0 : γ :=
Hµ

Dµ
≥ 0, (5.4)

whereH andD represent the M×L numerator and denominator contrast matrix,

respectively. Each research hypothesis can now be formulated by the mth row

vector of the numerator and denominator contrast matrix, namely hm and dm:

H
(m)
0 : γm :=

hmµ

dmµ
≥ 0.

By means of illustration, consider the three situations in Figure 5.2, where the

treatment effects δ = {δ1, δ2} are displayed for three scenarios. In the first and

third scenario, a quantitative interaction is present, whereas in the second situ-

ation, a qualitative interaction exists. Nevertheless, in all of the cases, the differ-

ence in the treatment effect is equal: hence, no distinction between qualitative and

quantitative interactions is possible in these cases by using the difference in the

treatment effects. In contrast, using the ratio of the treatment effects allows for

a distinction between the quantitative and qualitative interactions. In the second

case, the sign of the ratio of the treatment effects is negative and, therefore, a

qualitative interaction must be concluded. In contrast, the ratio of the treatment

effect in the first and third scenario results in a positive value and, therefore, a

quantitative interaction must be inferred.

5.2.1. Geometric representation of qualitative interactions

In this subsection the geometric approach introduced in Subsection 4.5.2 is applied

to illustrate the distinction between quantitative and qualitative interactions using

the Fieller type confidence intervals for the ratios of treatment effects. Figure 5.3

displays three scenarios (A,B and C) for the parameter space for the treatment

effects δ1 and δ2 (this corresponds to the parameter space displayed in Figure

5.1). In plot A and B the point (δ2, δ1) (red point) lies in the region of qualitative

interaction since the treatment effect differ in their sign (see also Figure 5.1). As
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defined in Subsection 4.5.2 the corresponding ratio γ = δ2

δ1
is the slope of the line

defined by the connection of (δ1, δ2) to the origin (0, 0). Obviously, the ratio is

appropriate to detect a qualitative interaction: if the slope (ratio) is negative, the

the sign of the treatment effects differs. Plot C considers the case of no significant

qualitative interaction. In this case the confidence ellipse also lies in the quadrant

of no qualitative interaction and therefore the upper confidence limit for the ratio

γ = δ2/δ1 is greater than zero concluding on no significant qualitative interaction.

5.2.2. Characteristics of the test for qualitative

interactions

In this subsection the characteristics of the test to detect a qualitative interaction

are discussed using the geometric interpretation introduced in Subsection 4.5.2.

Figure 5.4 displays the parameter space for two treatment effects δ1 and δ2 for

ω = 1, ω = 0.5 and ω = 0 defined by the local null hypothesis:

Hm
0 :

hmµ

dmµ
≥ ω.

Note, that the last situation corresponds to the hypothesis of no qualitative

interaction. From the plots in Figure 5.4 it is obvious that with an ω approaching

to zero the influence of the denominator decreases. In the extreme case of ω = 0

the information provided by the denominator drops out, meaning that the slope

(ratio) reduces to γ = δ2 = hmµ and is equal to zero. Using the test statistic

in Equation 4.5 and testing for the presence of qualitative interaction by setting

ω = 0 results in the test statistic

Tm =
hmµ̂

s
√

hmMhT
m

.

Obviously, the information provided by the denominator interaction contrast mat-

rix gets lost.

Since the numerator contrast represents the mth treatment effect δm this test

statistic tests the null hypothesis that the mth treatment effect is smaller than

zero. This hypothesis directly corresponds to the global one-sided hypothesis of
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Figure 5.3.: The geometric representation of the Fieller type confidence intervals
for γ = δ2/δ1 to detect qualitative interactions. The confidence bounds
are defined by the rays from the origin that are tangent to the ellipse
that defines the 100 (1 − α) ellipse for a combination of the para-
meters in γ. A: Case of significant qualitative interaction: the point
(δ1, δ2) lies in the upper left quadrant which corresponds to a qual-
itative interaction. The resulting lower confidence limit for the ratio
δ2/δ1 at x = 1 is smaller than zero. B: Case of significant qualitative
interaction: the point (δ1, δ2) lies in the lower right quadrant which
corresponds to a qualitative interaction. The resulting lower confid-
ence limit for the ratio δ2/δ1 at x = 1 is smaller than zero. C: Case
of no significant qualitative interaction: the point (δ1, δ2) lies in the
lower right quadrant which corresponds to a qualitative interaction.
Nevertheless, the resulting upper confidence limit for the ratio δ2/δ1

at x = 1 is greater than zero.
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Figure 5.4.: The geometric representation of the ratio γ = δ2/δ1. A: Scenario to
test the null hypothesis γ ≥ 1. B: Scenario to test the null hypothesis
γ ≥ 0.5. C: Scenario to test the null hypothesis γ ≥ 0 of no qualitative
interaction.

the Gail and Simon test, that all treatment effects are smaller than zero:

H0 : δ ∈ O+.

Therefore, the proposed test to detect a qualitative interaction is only applicable

if the direction of the considered treatment effect is a priori known.
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Consistency assessment

The global tests and the proposed method presented in Section 5 are all constructed

to detect a qualitative interaction. Nevertheless, as stated by Wellek [1997]: “the

primary aim of considering qualitative interactions is to establish the homogeneity

of the sub-populations with respect to the direction of the treatment effects”, because

a positive result of a test on detecting a qualitative interaction is an undesirable

outcome. More generally speaking, the detection of no qualitative interaction

corresponds to the assessment of consistency of the treatment effect over the pre-

defined subgroups. In the case of no qualitative interaction the consistency is

declared if the treatment effects are equal in their sign.

In recent years the assessment of consistency of the treatment effects gained

enlarged attention in the field of multi-regional clinical trials. Several regulat-

ory health authorities addressed this issue. For example the Ministry of Health,

Labour and Welfare of Japan [2007] proposed that the observed treatment effect

for Japanese patients should be at least half of that observed for all patients to

accept consistency of the treatment effect. According to Chen et al. [2010] the

problem of consistency assessment of the treatment effect in a multi-regional clin-

ical trial conforms to the problem of non-inferiority testing in medical research.

Thereby non-inferiority of the treatment effects is declared if the treatment ef-

fects are non-inferior in comparison to some competitive treatment effect for a

pre-specified irrelevant amount. A meaningful competitive treatment effect is the

overall treatment effect of the trial, see, e.g. the Ministry of Health, Labour and

Welfare of Japan [2007]. The irrelevant deviation is also denoted as consistency

margin. Within this chapter it is demonstrated how to use the ratios of differences
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among means and the related inferential methodology presented in Section 4.2 to

assess consistency of the treatment effect over pre-defined subgroups.

Hauschke and Kieser [2001] presented an approach to establish non-inferiority

of several treatment means compared to a control mean by using the ratio. Dilba

et al. [2006b] addressed the problem of power and sample size calculation in non-

inferiority trials based on the ratios of treatment means to a control. Their ap-

proach is adopted to assess non-inferiority of treatment effects by building the

ratios of linear combinations of treatment means. The corresponding parameters

of interest γm are again formulated as in Section 3.4. Considering a primary treat-

ment factor with two levels the differences of treatment means are again denoted

as treatment effects δj = µ1j − µ2j.

Assessment global consistency The paper from Hauschke and Kieser [2001]

addresses the situations to demonstrate global and partial non-inferiority. In the

situation of global non-inferiority it must be shown that the treatment effect is

consistent for all pre-defined subgroups. Hence, the global null and alternative

hypotheses can be formulated as

H0 :
M
⋃

m=1

Hm
0 versus HA :

M
⋂

m=1

Hm
A (6.1)

where the local hypotheses are given by

Hm
0 :

hmµ

dmµ
≤ ω versus Hm

A :
hmµ

dmµ
> ω.

If the local null hypothesis Hm
0 is rejected, a consistency of the treatment effect

given the consistency margin ω is inferred. Figure 6.1 displays the parameter space

to assess global non-inferiority for two ratios of treatment effects. The parameters

of interest are defined as the ratio of one treatment effect to the overall treatment

effect, γj = δj/δ̄. The inconsistency margin ω is the amount of the acceptable

relative change of the treatment effect from the jth subgroup in comparison to

the overall treatment effect. Please note, that a consistency margin of ω = 0

corresponds to a distinction between quantitative and qualitative interaction.

The analysis of the problem in Equation 6.1 is performed by applying the
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γ1 ≤ ω∪ γ2 ≤ ω
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 or non−inferiority

γ1 > ω∩ γ2 > ω

γ1 = δ1 δ

γ 2
=

δ 2
δ

0

0

ω

ω

Figure 6.1.: Parameter space for the parameters of interest γm for m=2 research
hypotheses defined as the ratio of the treatment effect δj to the overall
treatment effect δ̄. The shaded region defines the region under the
null hypothesis for the intersection-union principle to assess global
consistency. The null hypothesis in Eq. 6.1 is rejected if and only if
γ1 and γ2 are greater than the pre-defined consistency margin ω.

intersection-union principle. This means, that the global null hypothesis H0 is

rejected if and only if each of its local null hypothesis Hm
0 is rejected.

Within the intersection-union testing principle no multiplicity adjustment is

needed [Dmitrienko and D’Agostino, 2013]. Therefore, each local null hypothesis

Hm
0 is tested at the full α level. In this case each local test statistic Tm in Equation

4.9 follows a t-distribution with ν degrees of freedom. The global null hypothesis

H0 is rejected if the minimum of the vector of test statistics T = (T1, . . . , TM)T is

greater than the 1 − α quantile of the t-distribution. The associated unadjusted

p-values can be calculated as pm = P (t ≥ Tm), where the variable t follows a
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t-distribution with ν degrees of freedom. In addition, the corresponding one-

sided marginal confidence intervals can be applied. In this case, the global null

hypothesis H0 is reject if all lower confidence limits are greater than the pre-defined

consistency margin ω. Please note, that a rejection of the global null hypothesis

does not allow any conclusions on the local hypotheses. If non-inferiority cannot be

inferred for all local hypotheses, the question of which sub-groups are non-inferior

cannot be answered [Hasler and Hothorn, 2013].

Assessment local consistency The formulation of the global null hypotheses

as an intersection-union test provides only information for the global hypothesis.

Nevertheless, in most circumstances interest is in inferences on the local hypo-

theses, e.g., if interest is in consistency assessment of the treatment effect for

certain regions or countries in a multi-regional clinical trial. According to Chen

et al. [2010], such a local assessment of consistency is often requested by local reg-

ulatory agencies to support registration in multi-regional clinical trials. Consider

for example the Ministry of Health, Labour and Welfare of Japan [2007].

Therefore the global hypotheses are now defined in the context of an union-

intersection testing problem:

H0 :
M
⋂

m=1

Hm
0 versus HA :

M
⋃

m=1

Hm
A . (6.2)

The global null hypothesis is rejected, if at least one of the m local hypotheses

is rejected. In the union-intersection testing approach a multiplicity adjustment is

needed to protect the overall type I error rate at the nominal level α [Dmitrienko

and D’Agostino, 2013]. To adjust for multiplicity in the context of local consistency

assessment for several sub-groups the multiple comparison procedure presented in

Section 4.4 can be applied.
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Figure 6.2.: Parameter space for the parameters of interest γm for m=2 research
hypotheses defined as the ratio of the treatment effect δj through the
overall treatment effect δ̄. The shaded region defines the region under
the null hypothesis for the union-intersection principle to assess local
consistency. The null hypothesis is rejected if at least one γm is greater
than the pre-defined consistency margin ω.
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Chapter 7.

Binomial data

Up to this point, is was assumed that the primary response is a normally dis-

tributed outcome variable. Nevertheless, in biological and biomedical research

the outcome of interest is often an “event” with the data taking a binary form

commonly denoted as success or failure. Therefore, the goal of this chapter is to

present a methodology that is suitable for the analysis of statistical interactions

in the presence of a binary outcome measure. Furthermore, the focus here is to

detect qualitative interaction, because those interactions are of greater importance

than quantitative interactions [Peto, 1982, Baker, 1988]

7.1. The model

Again, a completely randomized design including one treatment factor and one

pre-specified stratification factor is supposed. Let I be the number of groups of

the first factor (with index i = 1, . . . , I), e.g., representing the treatment groups.

Furthermore, let J be the number of groups of the second factor (with index

j = 1, . . . , J), e.g., representing levels of regions, centres, environments, etc. The

number of observations for each factor combination is permitted to vary and is

denoted as nij. The total number of observations in the study is given by N =
∑I

i=1

∑J
j=1 nij. The primary endpoint is a binary outcome Y represented by 1 and

0, with the generic labels success and failure. The total number of successes in

each factor combination is given by yij. Representative contingency tables for this

study design are given in Table 7.1, where the dot notation means the sum over

the corresponding factor.
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Table 7.1.: Contingency tables for the supposed study design including one treat-
ment factor (i = 1, . . . , I) and one pre-specified stratification factor
(j = 1, . . . , J). Here the dot notation denotes the sum over the corres-
ponding factor.

Outcome
Treatment Success Failure Total

1 y11 n11 − y11 n11

2 y21 n21 − y21 n21

...
...

...
...

I yI1 nI1 − yI1 nI1

Total y.1 n.1 − y.1 n.1

. . .

Outcome
Treatment Success Failure Total

1 y1J n1J − y1J n1J

2 y2J n2J − y2J n2J

...
...

...
...

I yIJ nIJ − yIJ nIJ

Total y.J n.J − y.J n.J

Further on, it is assumed that yij follows a binomial distribution with parameters

nij and πij, denoted by bin(nij, πij). The parameter πij corresponds to the success

probability of the ith treatment in the jth subset:

πij = P (Y = 1|I = i, J = j). (7.1)

The maximum likelihood estimator for the sample proportions is given by π̂ij =

yij/nij and its standard error by σ̂(πij) =
√

πij(1 − πij)/nij [Agresti, 2013]. The

vector of success probabilities for each factor combination is defined by π =

(π11, π21, . . . , π1J , π2J)T , where the elements of π are primarily ordered according

to the stratification factor and within the levels of the stratification factor accord-

ing to the treatment factor. For the sake of the presented method, the vector π is

given the new index l yielding to π = (π1, . . . , πL)T , where L = I ·J is the number

of treatment-by-subset combinations. For illustrative purposes and without loss of

generality, a study with one control and one treatment group (I = 2) is assumed.

Furthermore, a treatment effect is defined as the difference of success probabilities

between the two treatment groups, also known as risk difference, βj = π1j − π2j,

with their standard errors σ̂(βj) =
√

π1j(1−π1j)

n1j
+ π2j(1−π2j)

n2j
[Agresti, 2013]. In the

following, it is assumed that the sample size is large enough to suppose asymptotic

normality of the maximum likelihood estimator.
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7.2. Inference for ratios of risk differences

Several global tests for the null hypothesis of the homogeneity of the treatment

effect between strata for binary response variables are available, e.g., the Breslow-

Day test [Breslow and Day, 1994] or a likelihood-ratio test [Agresti and Hartzel,

2000, Agresti, 2013]. Nevertheless, these tests provide only global inference and

do not distinguish between quantitative and qualitative interactions. Dmitrienko

et al. [2005] also used the Gail and Simon test to test for qualitative interaction in

the presence of a binary response variable. In this case the estimates of the risk

differences βj and its standard error σ̂(βj) are used to calculate the test statistic

Q = min(Q−, Q+) (see, Section 5.1.2). Nonetheless, the Gail and Simon test

provides only global inference concerning a qualitative interaction.

Since the objective is to detect the source of a potential qualitative interaction

the methodological concept developed by Kitsche and Hothorn [2013] to detect

qualitative interactions for normally distributed outcome measures is used here.

Therefore, the research hypotheses are formulated as the ratios of linear combin-

ations of binomial proportions:

γm =

∑L
l=1 hlm · πi

∑L
l=1 dlm · πi

=
hmπ

dmπ
, m = 1, . . . ,M, (7.2)

where hm and dm represent, respectively, the mth numerator and denominator

contrasts, which define linear combinations of proportions. Again, the vectors

of the linear combinations are stored in the M × L numerator and denominator

interaction contrast matrices H = (h1, . . . ,hM)T and D = (d1, . . . ,dM)T . The

numerator and denominator interaction contrast matrices are constructed accord-

ing to the scheme in Section 3.4. The parameters of interest are interpretable

as the ratios of user defined risk differences. The global null hypothesis of no

qualitative interaction and the corresponding alternative can be formulated as:

H0 : (γ1 ≥ ω ∩ γ2 ≥ ω ∩ . . . ∩ γM ≥ ω) (7.3)

and

HA : (γ1 < ω ∪ γ2 < ω ∪ . . . ∪ γM < ω). (7.4)

61



Chapter 7. Binomial data

To test for the presence of qualitative interaction, ω equals 0.

Test for ratios of risk differences Djira et al. [2010] discussed methods for

simultaneous inference of multiple ratios of binomial proportions. In their paper

Djira et al. [2010] considered the case of comparing individual binomial proportions

to the pooled population proportion, assuming that their unbiased estimators are

asymptotically normally distributed. The ratios of linear combinations of binomial

proportions in Equation 7.2 can be reformulated as the linear form Lm = (hm −
ωdm)π̂. Under H0 this linear form is approximately normally distributed with

mean zero and variance [Djira et al., 2010]:

s2
Lm

= (hm − ωdm)V̂ M(hm − ωdm)T .

Using this linear form and dividing it by the corresponding standard error leads

to the test statistic:

Zm =
(hm − ωdm)π̂

√

(hm − ωdm)V̂ M(hm − ωdm)T
, (7.5)

where M is the diagonal matrix containing the reciprocals of the sample sizes nij

and V̂ is a diagonal matrix containing the estimated group variances. According

to Djira et al. [2010] the vector of test statistics Z = (Z1, . . . , Zm)T approxim-

ately follows a m-variate normal-distribution with a zero vector of means and a

correlation matrix R̂ = [ρ̂mm′ ], where each element of R̂ can be described by

ρ̂mm′ = Corr(Zm, Zm′)

=
(hm − ωdm)V̂ M(hm′ − ωdm′)T

√

(hm − ωdm)V̂ M(hm − ωdm)T
√

(hm′ − ωdm′)V̂ M(hm′ − ωdm′)T
,

(7.6)

where m 6= m′. The global null hypothesis in Equation 7.3 is rejected if Zm <

cα,R̂ for at least one m. The critical point cα,R̂ is the α-level equi-coordinate

percentage point of an m-variate normal-distribution with the correlation matrix
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R̂. The associated, one-tailed, adjusted p-values can be calculated as pm = P (z ≤
Zm), where the variable z follows the multivariate normal-distribution with the

correlation matrix R̂.

Simultaneous confidence intervals for ratios of risk differences In con-

trast to adjusted p-values, simultaneous confidence intervals for the parameters

γm would provide information on the amount of qualitative interactions and could

therefore be used to assess their clinical relevance. The approach published by

Djira et al. [2010] to construct simultaneous confidence intervals for multiple ra-

tios of binomial proportions is adopted here. The corresponding test statistics are

now defined as

Zm(γm) =
(hm − γmdm)π̂

√

(hm − γmdm)V̂ M(hm − γmdm)T
. (7.7)

According to Djira et al. [2010] the simultaneous confidence intervals for γm are

available by solving the equation Zm(γm) = q for some specified quantile q. Djira

et al. [2010] proposed to use q as an equi-coordinate percentage point of the joint

distribution of the vector of test statistics Z(γ) = (Z1(γ1), . . . , ZM(γM))T . The

correlations between the test statistics Z(γ) are similar to those defined in Equa-

tion 7.6, except that ω is replaced by γm and γm′ . The correlations between two

contrasts depend on the user-defined contrasts hm and dm, the sample sizes nij,

the estimated group variances and the unknown ratios γ. This paper considers

a plug-in approach proposed by Djira et al. [2010], where the unknown ratios

in R̂(γ1, . . . , γM) are replaced by its maximum likelihood estimators. The null

hypothesis of no qualitative interaction in Equation 7.3 is rejected if the upper

confidence limit is smaller than the margin ω = 0.

The function tools for the calculations of simultaneous confidence intervals for the

ratios of user-defined linear combinations of proportions are available in the add-

on package mratios Dilba et al. [2012] (function gsci.ratio()) for the statistical

software package R [R Core Team, 2013].
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Chapter 8.

Monte Carlo Simulations

In this chapter the behaviour of the methodology to detect qualitative interactions

by using the ratios of treatment differences is analysed via Monte Carlo simulations.

The performance of the proposed method is determined in terms of the empirical

power to detect a qualitative interaction. Furthermore, Monte Carlo simulations

for different parameter settings were conducted to investigate the adequacy of the

asymptotic approximation of the proposed confidence intervals for binary response

variables.

8.1. Power and coverage probability calculations

In the first instance, the empirical power for different parameter settings for the

proposed method was calculated. The empirical power was computed as the rate of

rejected null hypotheses out of the simulated data sets. For the proposed method,

the global null hypothesis was rejected if any of the multiplicity adjusted p-values

pm, corresponding to the mth hypothesis, was smaller than the pre-specified sig-

nificance level α = 0.05:

P (pm ≤ 0.05; ∃m = 1, . . . ,M), (8.1)

where pm denotes the multiplicity adjusted p-value corresponding to the mth hy-

pothesis. Please note, that this power definition is commonly known as any-pair

power.

Second, the simultaneous coverage probabilities of the one-sided confidence in-
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Chapter 8. Monte Carlo Simulations

tervals for the binary response variables were investigated to analyse their asymp-

totic approximation. Within here, the coverage probability was defined as the

probability that each true value γm, for m = 1, . . . ,M ratios of treatment effects

of interest, is less than or equal to the corresponding upper bound of the simultan-

eous confidence intervals (Um). In mathematical notation, the coverage probability

is defined as

P (γm ∈ [−∞, Um] ,∀m = 1, . . . ,M). (8.2)

8.2. Simulations for normally distributed

outcome variables

8.2.1. Setup

The simulation studies are based on the design from the multi-centre clinical trial

example of Section 2.3 with a continuous response variable x that follows a normal

distribution with mean µl and a common standard deviation σ, x ∼ N(µl, σ
2). For

the simulation study, the number of levels of the primary treatment factor was set

to 2, e.g., representing an active treatment and a placebo group. Furthermore, a

total number of 10 levels of the secondary factor were considered, that represent,

e.g., centres, subgroups or regions. For each simulated data set, the vector of true

cell means was set to µT = (10, 10 + ϕ, 10, 10 + ϕ, . . . , 10, 10 + ϕ) and the sample

size for each group to 30. The variance was set to σ2 = 5 for each sample. For

several choices of µ, the power was estimated empirically using Equation 8.1. For

each parameter setting, 10,000 data sets were simulated. The shift parameter ϕ

was set from 0 to 2 with increments 0.1 to simulate an increasing treatment effect.

To examine the empirical power, the sign of the shift parameter ϕ was reversed

for one or several levels of the secondary factor. For example, to simulate one

reverse treatment effect compared to the remaining treatment effects, the vector

of cell means was set to µT = (10, 10 −ϕ, 10, 10 +ϕ, . . . , 10, 10 +ϕ). Furthermore,

the situations in which the treatment effect of 2, 3, 4 and 5 of 10 levels of the

secondary factor differs in its sign compared to the remaining treatment effects was

simulated. To compare the presented method to detect qualitative interactions
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8.2. Simulations for normally distributed outcome variables

for normally distributed outcome variables, the tests of Gail and Simon [1985],

Piantadosi and Gail [1993] and Azzalini and Cox [1984] were used as reference

methods (see Section 5.1). All of these methods test the global null hypothesis of

no qualitative interaction. The null hypothesis of the Gail and Simon, Piantadsi

and Gail and Azzalini and Cox test are based on the treatment differences δj, as

in Equation 5.1, 5.2 and 5.3. In comparison, the global null hypothesis of the

proposed method is based on the simultaneous assessment of user defined ratios of

the treatment differences, as in Equation 7.3. To detect the levels of the secondary

factor with reverse treatment effect the ratio of each treatment effect to the overall

treatment effect γl = δl/δ̄ was used as the parameter of interest in Equation 7.3.

The corresponding numerator and denominator contrast matrices are given in

Equation 8.3 and 8.4.

CNumerator

Interaction
=









































−1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1









































(8.3)

CDenominator
Interaction =





















−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1

−0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1 −0.1 0.1





















(8.4)
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8.2.2. Results

The empirical power for the mentioned parameter settings was calculated as the

rate of rejected null hypotheses out of 10,000 simulated data sets. For the proposed

method, the global null hypothesis was rejected if any of the local null hypotheses

was rejected. The results of the Monte Carlo simulations are displayed in Fig-

ure 8.1, where the different plots correspond to the different numbers of reverse

treatment effects. With an increasing shift parameter ϕ, the empirical power of

all of the four considered methods increases. Furthermore, it is obvious that the

empirical power of all methods increases with an increasing number of levels of

the secondary factor where the treatment effect differs in its sign. In the cases

of one or two reverse treatment effects, the proposed method and the Piantadosi

and Gail test show a similar empirical power. In contrast, the performance of the

Gail and Simon test is inferior to these methods if the treatment effect of one level

of the secondary factor is reverse compared to the remaining treatment effects.

These differences between the Gail and Simon test and the Piantadosi and Gail

test were also observed by the comparative study of Piantadosi and Gail [1993].

Nevertheless, with an increasing number of reverse treatment effects, the Gail and

Simon test is more powerful than the proposed method, especially in cases of high

treatment effects. For all that, it must be noted that the latter scenarios, which

represent situations of high proportions of reverse treatment effects, are rare in

practice. In all of the considered cases, the Azzalini and Cox test is less powerful

for detecting a qualitative interaction compared with the remaining methods.

Please note, that the major advantage of the proposed method is its ability to

detect the source and the amount of a qualitative interaction, rather than its gain

in power in special situations.

8.3. Simulations for binary response variables

8.3.1. Setup

For this simulation study again 10 levels of the secondary factor and two levels

of the treatment factor were considered. For each simulation setting, the vector
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Figure 8.1.: Probability of detecting at least one qualitative interaction in a trial
with 10 levels of the secondary factor for an increasing effect size
ϕ. The different plots represent changing numbers of levels of the
secondary factor with reverse treatment effect. Dashed lines represent
the empirical power for the Gail and Simon test, solid lines represent
the proposed method, dotted lines represent the Piantadosi and Gail
test and dash-dotted lines represent the Azzalini and Cox test.
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of true binomial proportions π and the corresponding vector of sample sizes n

were defined. For the analysis of the simultaneous coverage probabilities of the

one-sided confidence intervals for the parameters γm, the proportions in the first

subset were set as π11 = 0.2 + δ and π12 = 0.1, whereas the proportions in the

remaining subsets were set as πi=1,j 6=1 = 0.1 and πi=2,j 6=1 = 0.2 + δ. This design

corresponds to a qualitative interaction due to subset one. The shift δ was set

to vary between 0 and 0.5 by increments of size 0.01 to increase the treatment

effect in the subsets. Furthermore, the sample size for each treatment-by-subset

combination was varied: i) nij = 40 for all i and j, ii) nij = 30 for all i and j, iii)

nij = 20 for all i and j.

For the power comparisons, the number of reversal subsets were alternated,

whereas the number of observations per factor combination was set to nij = 40.

The success probabilities for the treatment groups were set to π1j = 0.3 and

π2j = 0.5, resulting in a treatment effect of βj = 0.2. To simulate a qualitative

interaction, the treatment effect for a specified number of subsets was inverted by

an increasing amount δ (π1j = 0.5 − δ and π2j = 0.5, with δ = 0, . . . , 0.45). The

number of reversal subsets was set to 1,2 and 3. For each parameter setting, 10,000

data sets were simulated. Again, the numerator and denominator interaction con-

trast matrices from Equation 8.3 and 8.4 were used to define the parameters of

interest γm.

8.3.2. Results

Figure 8.2 shows the coverage probability, as defined in Equation 8.2, versus the

shift parameter δ for the proposed simultaneous confidence intervals for the para-

meters γm. The confidence level was set to 95% and the number of observations for

each treatment-by-subset combination was specified by nij = 20, 30 and 40. The

under-coverage of the proposed intervals decreases as the parameter δ increases.

Furthermore, the coverage probability converges to the nominal level of 95% with

an increasing number of observations per treatment-by-subset combination. These

results were expected, since the proposed confidence intervals are based on large

sample approximations. Therefore, the SCIs perform well in situations of moderate

to high sample sizes.
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Figure 8.2.: The coverage probability for the simultaneous confidence intervals for
the ratios of risk differences γm. The horizontal black line marks the
nominal level of 95%. An increasing shift parameter δ corresponds to
the increasing qualitative interaction. The number of observations for
each treatment-by-subset combination was set to nij = 20, 30 and 40
(pointed, dashed and solid line, respectively).
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Figure 8.3 presents the empirical power of the proposed method and of the Gail

and Simon test to detect a qualitative interaction against the shift parameter δ.

The plots show several scenarios: different numbers of subsets with a reversal

treatment effect. As expected, for both methods the empirical power increases

with an increasing amount of qualitative interaction (increasing δ). Furthermore,

the empirical power of both methods to detect a qualitative interaction increases as

the number of subsets with a reversal treatment effect increases. In the case of one

reversal treatment effect, the proposed method is more powerful than the Gail and

Simon test (up to 25%). With an increasing amount of reversal treatment effects

the two methods under consideration perform similar. This behaviour was also

observed in the simulation study of the normally distributed outcome variables.

On balance, it is recommended to use the proposed method since it is at least as

powerful as the Gail and Simon test and provides additional information on the

source and the amount of the qualitative interaction.
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Figure 8.3.: The probability of detecting at least one qualitative interaction among
10 subsets of patients. Solid lines represent the proposed approach
(Ratio) dashed lines represent the Gail and Simon test (Gail Simon).
Different columns reflect increasing numbers of subsets with reversal
treatment effects (1, 2 and 3).
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Chapter 9.

Examples re-analysed

Within this chapter the four data examples presented in Chapter 2 are analysed

using the methods proposed in the previous chapters for the assessment of potential

statistical interactions.

9.1. Bush beans data set

From the two-factorial ANOVA in Table 2.1 a significant spacing-by-variety in-

teraction was detected. In the first instance, the goal is to infer if the spacing

effect on mean yield is different between the two growth types. In addition, the

evaluation is focused on the detection of a potential variation of the spacing effect

in mean yield between the varieties within each growth type. The corresponding

product-type interaction contrast matrix to analyse this research hypotheses via

MCTs and SCIs is given in Equation 3.5.

Figure 9.1 displays the two-sided simultaneous confidence intervals for the user

defined interaction contrasts and the corresponding multiplicity adjusted p-values.

For a single interaction contrast the null hypothesis that the user defined contrast

is zero is rejected if the confidence interval does not include the value zero. From

the top three confidence intervals in Figure 9.1 one can infer that the spacing

effect is significantly different between the two growth types on a global level

α = 0.05. Exemplarily considering the second confidence interval in Figure 9.1

it is concluded that the spacing effect from 20 to 60 cm on the mean yield is at

least about 12 kg/plot higher for the bushy varieties than for the tall varieties.

Furthermore, it could be concluded that the difference between the two growth
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−25 −15 −5 0 5

(LittleGem − RedLake)40 − (LittleGem − RedLake)60

(LittleGem − RedLake)20 − (LittleGem − RedLake)60

(LittleGem − RedLake)20 − (LittleGem − RedLake)40

(BigGreen − NewEra)40 − (BigGreen − NewEra)60

(BigGreen − NewEra)20 − (BigGreen − NewEra)60

(BigGreen − NewEra)20 − (BigGreen − NewEra)40

(Bushy − Tall)40 − (Bushy − Tall)60

(Bushy − Tall)20 − (Bushy − Tall)60

(Bushy − Tall)20 − (Bushy − Tall)40 (

(

(

(

(

(

(

(

(

)

)

)

)

)

)

)

)

)

Yield (kg/plot)

adj. p−value: 0.905

adj. p−value: 0.400

adj. p−value: 0.965

adj. p−value: 0.905

adj. p−value: 0.146

adj. p−value: 0.721

adj. p−value: 0.001

adj. p−value: < 0.001

adj. p−value: 0.028

Figure 9.1.: Simultaneous 95% confidence intervals for user defined interaction con-
trasts as specified in Equation 3.5. Dots denote the estimates for the
comparison of interest and vertical bars the lower and upper limit of
the two-sided confidence intervals. Adjusted p-values are listed on the
right-hand side of each confidence interval.

habits increases with increasing row spacings. In contrast to the comparison of

the different spacing effects between the two growth habits, the spacing effect is

not different between the varieties of the same growth habit. In summary it can be

said, that the signification spacing-by-variety interaction detected by the ANOVA

F-test is based on the interaction between the two growth habits and spacing.

Please note, that there are two alternative strategies for the analysis of this

data set: (i) an alternative ANOVA, where the hierarchical structure between the

growth type and the varieties within the growth type is taken into account (ii) a

linear regression on the spacing factor and a subsequent comparison among the

regression slopes between varieties.

9.2. Lettuce data set

From the ANOVA in Table 2.2 a significant phosphate-by-soil interaction was

detected. The goal is now to investigate the differences of the fertilizer effects

between the soil types, where the fertilizer effects of interest are restricted to the

differences of each fertilizer to the control group. The appropriate product-type
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adj. p−value:0.021

adj. p−value: <0.001

adj. p−value: <0.001

adj. p−value:0.449

adj. p−value: <0.001

adj. p−value:0.006

adj. p−value:0.001

adj. p−value: <0.001

adj. p−value: 0.014

Figure 9.2.: Simultaneous 95% confidence intervals for user defined interaction con-
trasts as specified in Table 3.7. Dots denote the estimates for the
comparison of interest and vertical bars the lower and upper limit of
the two-sided confidence intervals. Adjusted p-values are listed on the
right-hand side of each confidence interval.

interaction contrasts are given in Equation 3.7. Applying the method presented in

Section 4.3 one gets the simultaneous confidence intervals for the nine interaction

contrasts of interest in Figure 9.2. From the first three confidence intervals it is

concluded that the effect of monocalcium phosphate in comparison to the control

significantly varies between the three soil types. Furthermore, it is infered that the

monocalcium phosphate effect is largest at soil type S1: the effect is at least 0.2

g/plot dry matter higher (lower bound of the first confidence interval) compared to

soil type S2 and at least 1.9 g/plot dry matter higher (lower bound of the second

confidence interval) compared to soil type S3. Based on these confidence intervals

the applied scientist is now free to decide if these statistical significant interaction

terms are also of biological relevance.

9.3. Multi-centre clinical trial

The significant treatment-by-centre interaction in Table 2.3 indicates that the

treatment effect δi is significantly different between the five centres. The goal

is now to specify if this heterogeneity of the treatment effect depends on a qualit-
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ative treatment-by-centre interaction and on which centre this possible qualitative

interaction is based on. Therefore the Gail and Simon test and the method pro-

posed by Kitsche and Hothorn [2013] are applied to these data set.

Applying the Gail and Simon test to test H0 : δ ∈ O+ ∪O− results in the test

statistic Q = min(57.75, 7.65) = 7.65. The corresponding p-value is 0.023, and

therefore, the null hypothesis that the sign of the treatment effect is equal across

all of the centres can be rejected. Nevertheless, the Gail and Simon test does

not admit any statement regarding the source and the amount of the significant

qualitative interaction.

For a serious comparison of the proposed method with the Gail and Simon test,

we conduct the analysis according to Section 4.5.1, which assumes heterogeneous

variances. Nonetheless, it is recommended to make a decision regarding the as-

sumption of variance homogeneity before the experiment is conducted.

The first row vector of CNumerator
Interaction from Equation 3.13 and CDenominator

Interaction from

Equation 3.14 build the ratio of the treatment effect of the first centre through

the overall treatment effect. Therefore the parameter γ1 can be interpreted as the

relative change of the treatment effect of the first centre to the overall treatment

effect.

Figure 9.3 displays the one-sided simultaneous confidence intervals and mul-

tiplicity adjusted p-values under the assumption of heteroscedasticity to assess

the null hypothesis of no qualitative interaction from Equation 5.4. According

to Figure 9.3, a significant qualitative interaction in centre 101 is detected. The

interpretation of the point estimators is straightforward: γ̂2 = −0.58 means that

the treatment effect at centre 101 is in the opposite direction from the overall

treatment effect and its amount encompasses 58% of the overall treatment effect.

The treatment effect in centre 100 (γ̂1 = 1.77) is 1.77 times greater than the over-

all treatment effect but is not different in its direction with respect to the overall

treatment effect, meaning that there is not a qualitative interaction present. Ob-

viously, we get the same conclusion on the presence of a qualitative interaction

from the Gail and Simon test and the method proposed by Kitsche and Hothorn

[2013]. In addition, using the SCIs for the ratios of treatment differences allows

the identification and quantification of this qualitative interaction.
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Centre 100 treatment effect

Overall treatment effect

Centre 101 treatment effect

Overall treatment effect

Centre 102 treatment effect

Overall treatment effect

Centre 103 treatment effect

Overall treatment effect

Centre 104 treatment effect

Overall treatment effect

−2 0 2 4

Ratio of treatment effects

Simultaneous confidence intervals

adj. p−value: 1

adj. p−value: 0.043

adj. p−value: 1

adj. p−value: 1

adj. p−value: 1

Figure 9.3.: One-sided simultaneous 95% confidence intervals for the ratios of
treatment effects to assess the null hypothesis of no qualitative in-
teraction from Equation 5.4. Points denote the point estimators γ̂m

for m = 1, . . . , 5. The dashed line represents the margin defined under
H0. The upper confidence limit is displayed by a vertical line for each
centre. Adjusted p-values are listed on the right-hand side of each
confidence interval.
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9.4. MERIT-HF study

As stated in Section 2.5, for the multi-regional MERIT-HF trial interest is in

analysing the heterogeneity of the regional treatment effects in comparison to the

overall treatment effect in terms of detecting a potential qualitative interaction.

Therefore the Gail and Simon test and the methodology presented in Section 7 to

detect a qualitative interaction for binomial data is applied to the multi-regional

MERIT-HF trial.

The test statistic for the Gail and Simon test can be calculated as Q+ = 7.745+

2.715 + 0.143 + 3.483 + 4.180 + 1.234 + 0.000 + 4.464 + 4.216 + 2.337 = 30.517 and

Q− = 0.024+0.078 = 0.102. The minimum of both statistics, min(Q+, Q−)=0.102,

is smaller than the critical value 12.60 (α = 0.05, J = 12) and therefore the null

hypothesis of no qualitative interaction cannot be rejected. The corresponding

p-value is 0.996.

Applying the method proposed in Section 7 to detect the source of a potential

qualitative interaction the interest is now on the ratios of treatment effects:

γm =
hmπ

dmπ
, m = 1, . . . , 12.

To determine the deviation of each region from the overall effect, the parameters

γm are defined as the ratios of risk difference of each region to the overall risk dif-

ference. Therefore, the numerator and denominator contrast matrices are defined

by using the contrast matrices defined in Equation 3.8 and 3.9. The correspond-

ing estimated parameters γm, the test statistics, the multiplicity-adjusted p-values

and the simultaneous upper confidence limits are presented in Table 9.1. Although

the parameters γ̂Iceland = −0.405 and γ̂USA = −0.140 would suggest a qualitative

interaction, we cannot reject the null hypothesis of no qualitative interaction from

either the adjusted p-values or the simultaneous confidence intervals.

The observed reversal treatment effect in the US population of the MERIT-HF

trial was already part of a serious discussion in the scientific literature, see, e.g.,

Wedel et al. [2001], Moyé [2003] and Wittes [2013]. As noted by Wedel et al.

[2001], the Food and Drug Administration (FDA) decided to perform a treatment-

by-country interaction. The FDA interpreted the result as in this quote from

Moyé [2003]:“ The finding of adverse United States mortality could of course be
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Table 9.1.: Estimated parameters of interest γ̂m, resulting test statistic,
multiplicity-adjusted p-values to test for qualitative interaction and
simultaneous upper confidence limits for the parameters γm in the
multi-regional MERIT-HF trial.

Country γ̂m Test statistic adj. p-value Upper
Belgium 4.315 2.783 1.000 13.443

Czech Republic 1.805 1.648 1.000 6.199
Denmark/Finland 0.309 0.378 1.000 2.758

Germany 1.415 1.866 1.000 4.206
Hungary 1.721 2.045 1.000 5.082

Iceland -0.405 -0.154 0.999 7.862
Norway 1.211 1.111 1.000 5.253
Poland 0.000 0.000 1.000 3.121
Sweden 4.076 2.113 1.000 14.064

The Netherland/Switzerland 1.200 2.053 1.000 3.577
UK 1.763 1.529 1.000 6.674

USA -0.140 -0.279 0.997 0.984

attributable to chance, but it could alternatively be a genuine finding, the result of

US-differences in demographics or concomitant therapy”. The FDA handled the

discordant finding by approving the drug and therefore gets the same conclusions

as from the results in Table 9.1.

9.5. Trastuzumab data set

Within this subsection the dataset from the interim analysis of the trastuzumab

multi-regional clinical trial presented in Section 2.5 is analysed. The goal is to

assess consistency of the treatment effect, defined as the risk differences, for each

region. To provide a local statement on consistency the union-intersection prin-

ciple introduced in Section 6 is applied. To define appropriate hypotheses for the

assessment of consistency a consistency margin ω has to be defined. The Ministry

of Health, Labour and Welfare of Japan [2007] proposed that the observed treat-

ment effect for Japanese patients should be at least half of that observed for all

patients to accept consistency of the treatment. This statement can be translated

into the ratio of treatment effects by defining a relative margin of ω = 0.5. Then,
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the local null hypothesis for the Japanese region is HJapan
0 : γJapan ≤ 0.5. Neverthe-

less, as noted by Chen et al. [2010], a value of ω = 0.5 may be too conservative and

even not practical if more than two regions are included in the analysis. There-

fore, they recommend a smaller value of ω = 1/J , where J denotes the number of

pre-defined regions. Within, here we adopt their approach for the definition of an

appropriate consistency margin. The parameter of interest γm are defined as the

ratio of each regional treatment effect to the overall treatment effect. Therefore

the following numerator and denominator interaction contrast matrices are used.

CNumerator

Interaction
=

















1 −1 0 0 0 0 0 0 0 0

0 0 1 −1 0 0 0 0 0 0

0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1

















CDenominator

Interaction
=

















0.05 −0.05 0.12 −0.12 0.10 −0.10 0.03 −0.03 0.70 −0.70

0.05 −0.05 0.12 −0.12 0.10 −0.10 0.03 −0.03 0.70 −0.70

0.05 −0.05 0.12 −0.12 0.10 −0.10 0.03 −0.03 0.70 −0.70

0.05 −0.05 0.12 −0.12 0.10 −0.10 0.03 −0.03 0.70 −0.70

0.05 −0.05 0.12 −0.12 0.10 −0.10 0.03 −0.03 0.70 −0.70

















The multiplicity adjusted p-values and lower confidence limits of the one-sided

simultaneous confidence intervals are displayed in Figure 9.4. From the results in

Figure 9.4 it can be concluded that the treatment effect in the regions Eastern

Europe and Others is consistent to the overall treatment effect using a consistency

margin of ω = 0.2. For the Japanese region no consistency of the treatment effect

can be inferred in the interim analysis. This result was also observed by Ando and

Hamasaki [2010]. Nevertheless, they recommend that the evaluation should not

be based on the results from the interim analysis, because the data from the two

year treatment of trastuzumab were not available in the interim analysis report.
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−3 −2 −1 0 1 2 3

Ratio of treatment effects

Simultaneous confidence intervals

American treatment effect
overall treatment effect

Asian treatment effect
overall treatment effect

Eastern Europe treatment effect
overall treatment effect

Japan treatment effect
overall treatment effect
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overall treatment effect

adj. p−value: 0.979

adj. p−value: 0.065

adj. p−value: 0.015

adj. p−value: 0.759

adj. p−value: 0.001

Figure 9.4.: One-sided simultaneous 95% confidence intervals for the ratios of
treatment effects. Points denote the point estimators γ̂m for m =
1, . . . , 5. The dashed line represents the consistency margin ω = 0.2.
The lower confidence limit is displayed by a vertical line for each re-
gion. Adjusted p-values are listed on the right-hand side of each con-
fidence interval.
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Discussion

In this research, the evaluation of statistical interactions in two-factorial designs

is considered with a special focus on the detection of qualitative interactions. In

the first part appropriate hypotheses for an in depth analysis of interactions via

product-type interaction contrasts is developed. The proposed approach allows the

formulation of user specified comparisons of means that are of main interest in the

experiment under consideration. The application of user-defined interaction con-

trasts of cell means reduces the number of tests and increases the interpretability

of the results. The elaboration of the user defined interaction contrast matrices is

demonstrated on five real data sets from biomedical and horticultural science. To

make inferences on the developed hypotheses, multiple contrast tests that result in

multiplicity adjusted p-values are considered. In addition to multiplicity adjusted

p-values, the author recommend the calculation of simultaneous confidence inter-

vals for the interaction effects. By using those confidence intervals it is possible to

evaluate the direction and the magnitude of the interaction effects. This provides

besides a statement on the statistical significance also a statement on the biological

relevance of the interaction effects.

Furthermore, the interaction parameters are defined as the ratios of treatment

effects. Depending on the formulation of the null hypothesis the ratio of treat-

ment differences is applicable to (i) detect qualitative interactions (ii) asses the

consistency of the treatment effect in a non-inferiority framework, or (iii) test for

no qualitative interaction. In addition, using the ratio of treatment effects can

be biologically interpreted as a percentage change of the treatment effects. It

should not be unmentioned, that this method has its limitations in cases where
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the denominator of the ratio of treatment effects is not significantly different from

zero because the simultaneous confidence intervals are not calculable is this case.

When comparing to the grand mean this case occurs when there is no main effect

of the primary factor. Apart from that, using the grand mean contrast as the

denominator is very powerful to detect a qualitative interaction when the sign of

the treatment effect differs only in a few subsets of the secondary factor and if

the overall treatment effect is small. However, the performance of the proposed

method gets worse in cases where the number of subgroups can approximately be

split into two groups of differing signs of the treatment effect. Nevertheless, this

extreme case should be exceptional in practical trials. Alternatively, all pairwise

comparisons of treatment effects can be conducted. The usage of adjusted p-values

is limited for the assessment of qualitative interactions, since the test statistic re-

duces to a test for the numerator. Therefore, the test is only applicable with an

a priori assumption on the direction of the treatment effects. This hypothesis

corresponds to the one-sided Gail and Simon test.

Within this thesis, it is assumed that the primary response variable is normally

distributed. The approach is further extended to the case of binary response

variables. Binary response variables are very common, especially in biomedical

applications, see, e.g. the illustrative examples presented within this thesis. The

methods presented here assume that the binomial proportions are asymptotically

normally distributed, i.e. cases of moderate to high sample sizes. Unfortunately,

the situation in which the construction of simultaneous confidence intervals fails

more frequently appears for the ratios of risk difference since the denominator is

not significantly different from zero for small risk differences.

Further on, the presence of response variables that do not fulfil these distribu-

tional assumptions are common in applied biosciences, e.g., score data, ordinal

data or continuous skewed data. In those cases, non-parametric statistical proced-

ures can be used, that make no assumption on the underlying distribution of the

data. Konietschke [2009] presented a non-parametric procedure that formulates

the hypotheses of interest via linear combinations of relative effects in a one-way

layout. The extension of this approach to test for statistical interaction with focus

on qualitative interaction might be of interest in future research.

Finally, some remarks are given on the potential biological interpretation of a
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significant qualitative interaction. In recent times, this issue is under discussion

especially in the context of multi-regional trials. Pocock et al. [2013] gave some ex-

planation for geographic inconsistencies in treatment effect in multi-regional trials,

like “type of patients recruited, their therapeutic management, and the evaluation

of their outcomes”. They considered for example the Platelet Inhibition and Pa-

tient Outcomes (PLATO) trial, where the regional interaction was caused by the

maintenance of aspirin [Mahaffey et al., 2011].
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Appendix A.

R Code for reproducible research

A.1. Bush beans data set

#generating the data set and assign it to the object "Beans"

Beans <- data.frame(

Variety = c("NewEra", "NewEra", "NewEra", "BigGreen", "BigGreen", "BigGreen",

"LittleGem", "LittleGem", "LittleGem", "RedLake", "RedLake", "RedLake",

"NewEra", "NewEra", "NewEra", "BigGreen", "BigGreen", "BigGreen",

"LittleGem", "LittleGem", "LittleGem", "RedLake", "RedLake", "RedLake",

"NewEra", "NewEra", "NewEra", "BigGreen", "BigGreen", "BigGreen",

"LittleGem", "LittleGem", "LittleGem", "RedLake", "RedLake", "RedLake",

"NewEra", "NewEra", "NewEra", "BigGreen", "BigGreen", "BigGreen",

"LittleGem", "LittleGem", "LittleGem", "RedLake", "RedLake", "RedLake"),

Spacing = c("20", "40", "60", "20", "40", "60", "20", "40", "60", "20", "40", "60",

"20", "40", "60", "20", "40", "60", "20", "40", "60", "20", "40", "60",

"20", "40", "60", "20", "40", "60", "20", "40", "60", "20", "40", "60",

"20", "40", "60", "20", "40", "60", "20", "40", "60", "20", "40", "60"),

Block = c("I", "I", "I", "I", "I", "I", "I", "I", "I", "I", "I", "I",

"II", "II", "II", "II", "II", "II", "II", "II", "II", "II", "II", "II",

"III", "III", "III", "III", "III", "III", "III", "III", "III", "III", "III", "III",

"IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV", "IV"),

Yield = c(32, 36, 42, 37, 39, 50, 35, 34, 33, 40, 35, 28, 21, 26, 33, 38,

45, 54, 32, 33, 29, 36, 33, 28, 19, 21, 26, 27, 44, 54, 29, 28,

25, 35, 31, 23, 22, 24, 26, 30, 37, 42, 30, 28, 26, 38, 35, 30))

str(Beans)#display the structure of the data set

Beans$Variety <-factor(Beans$Variety, levels=c("BigGreen", "NewEra", "LittleGem", "RedLake"))

#reorder the levels of the factor Variety

#generate a new factor variable that combines the variable Variety and Space

#to get a pseudo-one-way layout

Beans$VarSpace <- factor(Beans$Variety : Beans$Spacing)

#fitting a linear model and calculate an ANOVA

fm <- lm(Yield ~ Variety * Spacing + Block, data = Beans)

anova(fm)
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Appendix A. R Code for reproducible research

#fitting a cell means model

CellMeansModel <- lm(Yield ~ VarSpace + Block -1, data = Beans)

#define appropriate user defined contrast matrices

VarMat <- matrix(c(0.5, 0.5, -0.5, -0.5,

1, -1, 0, 0,

0, 0, 1, -1), nrow=3, byrow=TRUE)

SpaceMat <- matrix(c(1, -1, 0,

1, 0, -1,

0, 1, -1), nrow=3, byrow=TRUE)

#define the interaction contrast matrix by building the Kronecker product

#of the previously defined contrast matrices

InteractionMat <- kronecker(VarMat, SpaceMat)

library(multcomp)#add on package multcomp is required for multiple comparisons

MultTest <- glht(model=CellMeansModel, linfct = mcp(VarSpace=InteractionMat))

summary(MultTest)#calculating adjusted p-values

confint(MultTest)#calculating simultaneous confidence intervals

A.2. Lettuce data set

#generating the data set and assign it to the object "Lettuce"

Lettuce <- data.frame(

Soil = c("S1", "S1", "S1", "S1", "S2", "S2", "S2", "S2", "S3", "S3", "S3", "S3",

"S1", "S1", "S1", "S1", "S2", "S2", "S2", "S2", "S3", "S3", "S3", "S3",

"S1", "S1", "S1", "S1", "S2", "S2", "S2", "S2", "S3", "S3", "S3", "S3",

"S1", "S1", "S1", "S1", "S2", "S2", "S2", "S2", "S3", "S3", "S3", "S3"),

Fertilizer = c( "control" ,"control" ,"control" ,"control" ,"control"

,"control" ,"control" ,"control" ,"control" ,"control"

,"control" ,"control" ,"cal.phos" ,"cal.phos" ,"cal.phos"

,"cal.phos" ,"cal.phos" ,"cal.phos" ,"cal.phos" ,"cal.phos"

,"cal.phos" ,"cal.phos" ,"cal.phos" ,"cal.phos" ,"pot.metaphos"

,"pot.metaphos" ,"pot.metaphos" ,"pot.metaphos" ,"pot.metaphos" ,"pot.metaphos"

,"pot.metaphos" ,"pot.metaphos" ,"pot.metaphos" ,"pot.metaphos" ,"pot.metaphos"

,"pot.metaphos" ,"magn.phos" ,"magn.phos" ,"magn.phos" ,"magn.phos"

,"magn.phos" ,"magn.phos" ,"magn.phos" ,"magn.phos" ,"magn.phos"

,"magn.phos" ,"magn.phos" ,"magn.phos"),

Weight = c(0.49, 0.31, 0.21, 1.10, 0.54, 0.20, 0.13, 1.01, 2.71, 2.00, 1.95, 2.62, 3.89,

3.78, 3.03, 3.81, 2.47, 2.30, 1.64, 2.50, 2.22, 2.40, 1.93, 2.88, 3.52, 3.80,

2.96, 3.81, 2.18, 1.90, 1.49, 2.42, 3.01, 3.14, 2.78, 3.72, 3.67, 4.41, 3.76,

4.40, 1.66, 1.82, 1.64, 2.49, 2.19, 2.69, 2.08, 2.92))

str(Lettuce)#display the structure of the data set

Lettuce$Fertilizer <-factor(Lettuce$Fertilizer,

levels=c("control", "cal.phos", "pot.metaphos", "magn.phos"))

#reorder the levels of the factor Fertilizer

#generate a new factor variable that combines the variable Fertilizer and Soil

#to get a pseudo-one-way layout

Lettuce$FertSoil <- factor(Lettuce$Fertilizer:Lettuce$Soil)
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A.3. Multi-centre clinical trial

#fitting a linear model and calculate an ANOVA

fm <- lm(Weight ~ Fertilizer * Soil, data = Lettuce)

anova(fm)

#fitting a cell means model

CellMeansModel <- lm(Weight ~ FertSoil -1, data = Lettuce)

#define appropriate user defined contrast matrices

SoilMatrix <- matrix(c(1, -1, 0,

1, 0,-1,

0, 1,-1), nrow=3, byrow=TRUE)

FertMatrix <- matrix(c(1, -1, 0, 0,

1, 0,-1, 0,

1, 0, 0,-1),nrow=3, byrow=TRUE)

#define the interaction contrast matrix by building the Kronecker produkt of the

#previously defined contrast matrices

InteractionMat <- kronecker(FertMatrix,SoilMatrix)

rownames(InteractionMat) <- c("(Cont. - Mono.)S1 - (Cont. - Mono.)S2",

"(Cont. - Mono.)S1 - (Cont. - Mono.)S3",

"(Cont. - Mono.)S2 - (Cont. - Mono.)S3",

"(Cont. - Magn.)S1 - (Cont. - Magn.)S2",

"(Cont. - Magn.)S1 - (Cont. - Magn.)S3",

"(Cont. - Magn.)S3 - (Cont. - Magn.)S3",

"(Cont. - Pott.)S1 - (Cont. - Pott.)S2",

"(Cont. - Pott.)S1 - (Cont. - Pott.)S3",

"(Cont. - Pott.)S2 - (Cont. - Pott.)S3")

#add on package multcomp is required for multiple comparisons

library(multcomp)

MultTest <- glht(model=CellMeansModel, linfct = mcp(FertSoil=InteractionMat))

summary(MultTest)#calculating adjusted p-values

confint(MultTest)#calculating simultaneous confidence intervals

A.3. Multi-centre clinical trial

#Data set

Depression <- data.frame(

Centre = c(100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,

100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 101, 101,

101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 102,

102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102,

102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102,

102, 102, 102, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103,

103, 103, 103, 103, 103, 103, 103, 103, 103, 104, 104, 104, 104,

104, 104, 104, 104, 104, 104, 104, 104, 104),

Group = c("P", "P", "D", "D", "P", "P", "D", "D", "P", "P", "D", "D", "P",

"P", "D", "D", "P", "P", "D", "P", "P", "P", "D", "D", "P", "P",

"D", "D", "P", "P", "D", "D", "P", "P", "D", "D", "P", "D", "P",

"P", "P", "P", "D", "D", "P", "P", "D", "D", "P", "P", "D", "D",
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"P", "P", "D", "D", "P", "P", "D", "D", "P", "P", "D", "D", "D",

"D", "D", "D", "P", "P", "D", "D", "P", "P", "D", "D", "P", "P",

"D", "D", "P", "P", "D", "D", "P", "P", "D", "D", "P", "P", "D",

"D", "P", "P", "D", "D", "P", "P", "D", "D"),

Score = c(18, 14, 23, 18, 10, 17, 18, 22, 13, 12, 28, 21, 11, 6, 11, 25,

7, 10, 29, 12, 12, 10, 18, 14, 18, 15, 12, 17, 17, 13, 14, 7,

18, 19, 11, 9, 12, 11, 18, 15, 12, 18, 20, 18, 14, 12, 23, 19,

11, 10, 22, 22, 19, 13, 18, 24, 13, 6, 18, 26, 11, 16, 16, 17,

7, 19, 23, 12, 16, 11, 11, 25, 8, 15, 28, 22, 16, 17, 23, 18,

11, -2, 15, 28, 19, 21, 17, 13, 12, 6, 19, 23, 11, 20, 21, 25,

9, 4, 25, 19))

#define variable Centre as factor:

Depression$Centre <- as.factor(Depression$Centre)

#define a new variable for group-by-centre combination:

Depression$GroupCentre <- with(Depression, Centre:Group)

#calculation of the sample size for each centre over the groups:

SampleSizeCentre <- with(Depression,aggregate(Score ~ Centre, FUN=length))[,2]

#define the contrast matrices

library(mratios)

C_Drug <- matrix(c(1,-1), nrow=1)

C_Centre_Numerator <- contrMatRatio(n=SampleSizeCentre, type = "GrandMean")$numC

C_Centre_Denominator <- contrMatRatio(n=SampleSizeCentre, type = "GrandMean")$denC

C_Numerator <- kronecker(C_Centre_Numerator, C_Drug)

C_Denominator <- kronecker(C_Centre_Denominator, C_Drug)

#calculation of the ratios of treatment effects assuming heterogeneous variances

Sim_Conf_Int_Hetero <- sci.ratioVH(Score ~ GroupCentre, data= Depression,

Num.Contrast=C_Numerator,

Den.Contrast=C_Denominator,

alternative="less")

Adj_P_Values_Hetero <- simtest.ratioVH(Score ~ GroupCentre, data= Depression,

Num.Contrast=C_Numerator,

Den.Contrast=C_Denominator,

Margin.vec=0,

alternative="less")

A.4. MERIT-HF study

#Analysis of data from Quan et al. (2012)

Country <- c("Belgium", "Czech Republic", "Denmark/Finland","Germany","Hungary",

"Iceland","Norway","Poland","Sweden","The Netherland/Switzerlnd",

"UK","USA")

Treatment <- c("Meto CR/XL","Placebo")

SampleSize <- c(68,66,123,124,161,164,252,247,211,212,19,22

,97,105,102,102,39,46,299,291,87,83,532,539)

Events <- c(3,13,9,17,11,13,19,31,16,29,2,2,6,11,8,8,2,9,14,26,4,9,51,49)

Data <- data.frame(Country=rep(Country,each=2),
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A.5. Trastuzumab data set

Treatment=rep(Treatment,12),

SampleSize=SampleSize,

Events=Events)

#generating binary response data set

BinaryVec <- as.integer()

BinaryRegion <- factor()

BinaryTreatment <- factor()

for(i in 1:length(Data[,1])){

BinaryVec <- c(BinaryVec, rep(1, Data[i,4]))

BinaryVec <- c(BinaryVec, rep(0, Data[i,3]-Data[i,4]))

BinaryRegion <- c(BinaryRegion, rep(levels(factor(Data[i,1])), Data[i,3]))

BinaryTreatment <- c(BinaryTreatment, rep(levels(factor(Data[i,2])), Data[i,3]))

}

BinaryData <- data.frame(Region = BinaryRegion,

Treatment = BinaryTreatment,

Success = BinaryVec)

BinaryData$RegionTreat <- with(BinaryData, Region:Treatment)

#Fitting with MCPAN package

library(MCPAN)

library(mratios)

MCPAN_Est <- binomest(Success ~ RegionTreat,data=BinaryData, success="1", method="Wald")

cmat <- diag(rep(1,length(levels(BinaryData$RegionTreat))))

#Variance Covariance Matrix for proportions

VarCovMat <- diag(MCPAN_Est$varp)

#Vector of estimated proportions

EstProp <- MCPAN_Est$estp

#Definition of contrast matrices

SampleSizeRegion <- with(BinaryData, aggregate(Success ~ Region, FUN=length))[,2]

C_Treatment <- matrix(c(-1,1), nrow=1)

C_Region_Numerator <- contrMatRatio(n=SampleSizeRegion, type = "GrandMean")$numC

C_Region_Denominator <- contrMatRatio(n=SampleSizeRegion, type = "GrandMean")$denC

C_Numerator <- kronecker(C_Region_Numerator, C_Treatment)

C_Denominator <- kronecker(C_Region_Denominator, C_Treatment)

#Calculating the degrees of freedom

SampleSizes <- with(BinaryData, aggregate(Success ~ Region+Treatment, FUN=length))[,3]

DF <- sum(SampleSizes-1)

ConfIntProp <- gsci.ratio(est=EstProp,

vcmat=VarCovMat,

Num.Contrast=C_Numerator,

Den.Contrast=C_Denominator,

degfree = DF,

conf.level = 0.95,

alternative = "less",

adjusted = TRUE)

ConfIntProp

A.5. Trastuzumab data set
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#Analysis of data from Y. Ando and T. Hamasak (2010)

Country <- c("Japan","Asia","EasternEurope","America","Others")

Treatment <- c("Trastuzmab","Observation")

SampleSize <- c(41,46,202,202,189,175,94,94,1208,1222)

Events <- c(3,6,12,27,10,26,7,8,98,158)

Data <- data.frame(Country=rep(Country,each=2),

Treatment=rep(Treatment,5),

SampleSize=SampleSize,

Events=Events)

Data

#generating binary response data set

BinaryVec <- as.integer()

BinaryRegion <- factor()

BinaryTreatment <- factor()

for(i in 1:length(Data[,1])){

BinaryVec <- c(BinaryVec, rep(1, Data[i,4]))

BinaryVec <- c(BinaryVec, rep(0, Data[i,3]-Data[i,4]))

BinaryRegion <- c(BinaryRegion, rep(levels(factor(Data[i,1])), Data[i,3]))

BinaryTreatment <- c(BinaryTreatment, rep(levels(factor(Data[i,2])), Data[i,3]))

}

BinaryData <- data.frame(Region = BinaryRegion,

Treatment = BinaryTreatment,

Success = BinaryVec)

BinaryData$RegionTreat <- with(BinaryData, Region:Treatment)

aggregate(Success ~ Region+Treatment ,data=BinaryData, FUN=sum)

#Fitting with MCPAN package

library(MCPAN)

library(mratios)

#Assessment of local consistency

MCPAN_Est <- binomest(Success ~ RegionTreat,data=BinaryData, success="1", method="Wald")

cmat <- diag(rep(1,length(levels(BinaryData$RegionTreat))))

Waldci(cmat=cmat,

estp=MCPAN_Est$estp,

varp=MCPAN_Est$varp,

varcor=MCPAN_Est$varp)

#Variance Covariance Matrix for proportions

VarCovMat <- diag(MCPAN_Est$varp)

#Vector of estimated proportions

EstProp <- MCPAN_Est$estp

#Definition of contrast matrices

SampleSizeRegion <- with(BinaryData, aggregate(Success ~ Region, FUN=length))[,2]

C_Treatment <- matrix(c(1,-1), nrow=1)

C_Region_Numerator <- contrMatRatio(n=SampleSizeRegion, type = "GrandMean")$numC

C_Region_Denominator <- contrMatRatio(n=SampleSizeRegion, type = "GrandMean")$denC

C_Numerator <- kronecker(C_Region_Numerator, C_Treatment)

C_Denominator <- kronecker(C_Region_Denominator, C_Treatment)

#Calculating the degrees of freedom

SampleSizes <- with(BinaryData, aggregate(Success ~ Region+Treatment, FUN=length))[,3]

DF <- sum(SampleSizes-1)
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A.5. Trastuzumab data set

ConfIntProp <- gsci.ratio(est=EstProp,

vcmat=VarCovMat,

Num.Contrast=C_Numerator,

Den.Contrast=C_Denominator,

degfree = DF,

conf.level = 0.95,

alternative = "greater",

adjusted = TRUE)

ConfIntProp
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