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Abstract

In the approval of novel agricultural practices, inferential statistics can be used to

decide between the hazardousness or safety of a novel practice. This might be done

based on field trials, which compare a novel treatment to one or several accepted

standard treatments and may involve several environments or repeated measure-

ments. A flexible statistical tool for both, summarizing results and allowing deci-

sions, are marginal and simultaneous confidence intervals. Additionally, it might be

of interest to include prior knowledge on the parameters of interest into the analysis.

While for continous data standard statistical procedures are available, the problem

of comparing two or several treatments with respect to the abundance of non-target

species is rarely considered.

This work investigates the construction of marginal and simultaneous confidence

intervals for ratios and differences of mean abundances in the presence of overdis-

persion based on the Bayesian framework of Markov Chain Monte Carlo, allowing

for the inclusion of prior knowledge. However, main focus is on investigating whether

Bayesian intervals constructed can be interpreted as commonly accepted frequentist

(simultaneous) confidence intervals when no prior knowledge is available. In simu-

lation studies the coverage probability is assessed. It is found that for such intervals

tend to be liberal, but achieve coverage probability close to the nominal level when

sample sizes are at least 20 per group or are constructed based on pooled parameters

in hierarchical models with larger total number of observations. The nominal cover-

age is seriously violated, when the samples size is small and the considered species

are rare. The application of the methods is shown for two examples from ecological

field trials concerning genetically modified crops.

Keywords: inference statistics, negative binomial distribution, multiple compar-

isons
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Zusammenfassung

In der Zulassung von neuer landwirtschaftlicher Verfahren können inferenzstatis-

tische Verfahren genutzt werden über die Bedenklichkeit bzw. Unbedenklichkeit

neuer Verfahren zu entscheiden. Grundlage für die Entscheidung können Feld-

versuche sein, welche eine neue Behandlung mit einer oder mehreren akzeptierten

Standardbehandlungen vergleichen und Beobachtungen aus verschiedenen Umwel-

ten oder wiederholte Messungen enthalten. Marginale und simultane Konfidenz-

intervalle können sowohl zur Zusammenfassung wichtiger statistischer Größen als

zur Entscheidung über relevante Hypothesen verwendet werden. Zusätzlich kann

es von Interesse sein, Vorwissen bezüglich der betrachteten Parameter in die Anal-

yse einzubeziehen. Während für kontinuierliche Variablen statistische Standardver-

fahren verfügbar sind, wurde das Vergleiche der mittleren Abundanz von Nichtzielor-

ganismen selten betrachtet.

Die vorliegende Arbeit untersucht die Konstruktion marginaler und simultaner Kon-

fidenzintervalle für Quotienten und Differenzen von mittleren Abundanzen bei vor-

liegen von Überdispersion auf der Bayesianischen Methode Markov Chain Monte

Carlo, die die Einbeziehung von Vorwissen erlaubt. Der Fokus der Arbeit liegt je-

doch auf der Frage, ob die resultierenden Intervalle im frequentistischen Sinne inter-

pretiert werden können, wenn kein Vorwissen zugrundeliegt. Zu diesem Zweck wurde

die Überdeckungswahrscheinlichkeit in Simulationsstudien untersucht. Darin stellen

sich die untersuchten Methoden als liberal dar, erreichen aber ungefähr die geforderte

Überdeckungswahrscheinlichkeit, wenn der Stichprobenumfang mindestens 20 be-

trägt oder die Intervalle für Parameter aus hierarchischen Modellen mit relativ

großer Gesamtfallzahl geschätzt werden. Die vorgegebene Überdeckungswahrschein-

lichkeit wird grob unterschritten, wenn seltene Spezies auf Basis geringer Stich-

probenumfänge untersucht werden. Die Anwendung der diskutierten Methoden wird

anhand zweier Beispiele aus ökologischen Feldversuchen mit genetisch veränderten

Nutzpflanzen dargestellt.

Schlagworte: Statistik, negative Binomialverteilung, Multiple Vergleiche
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Chapter 1

Introduction

1.1 Objectives of safety assessment for novel agri-

cultural practices

Before approving novel agricultural practices, it is of interest to show that they are

not harmful for humans, for livestock and, finally, for the various non-target species

living in or nearby the crop. The most prominent example for novel agricultural

practices is the cultivation of genetically modified (GM) crops. Recently, most public

attention has been paid to herbicide (Glyphosate) tolerant crops (Sidhu et al., 2000;

Obert et al., 2004; Clark et al., 2006) and to crops which express insecticidal Cry

proteins (Bt-crops) (Berberich et al., 1996; Herman et al., 2004). The following

work is motivated by problems which occur when questions on the hazardousness or

safety of such new agricultural practices are tackled by inferential statistics following

controlled experiments.

The principle of a proof of safety

Assume that inferential statistics shall to be used to come to a decision between the

two informal statements: (1) ’The novel practice is harmful’ and the (2) ’The novel

practice is not harmful’. Then, two statistical hypotheses have to be formulated,

1
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one of which is a falsifiable point-null hypothesis and the other is its complement.

Assume further, that the main interest is to directly control the probability of the

erroneous decision to conclude for (2) when in fact (1) is true. I.e., main aim is to

control the consumers’ (or environmental) risk that a harmful agricultural practice is

approved. Assume that data y can be obtained which provide information concerning

a parameter θ which is a relevant parameter to assess the hazardousness of a novel

treatment. Then, statistical hypotheses have to be formulated such that the state of

hazardousness of the novel treatment is formulated in the falsifiable null hypothesis

H0, while the state that the novel treatment is not hazardous is formulated in its

complement, the alternative hypothesis HA. For this purpose, one needs to define

margins θ and θ, marking those values of θ which indicate an unacceptable decrease

(θ) and an unacceptable increase θ.

H0 : θ ≤ θ ∪ θ ≥ θ (1.1)

HA : θ > θ ∩ θ < θ (1.2)

Based on the intersection-union test principle (Berger, 1982; Casella and Berger,

2002), one can conclude for HA with error probability α if both elementary null

hypotheses θ ≤ θ and θ ≥ θ are rejected by a statistical test with error probability

α (e.g. Schuirmann, 1987; Hauschke, 1999; Wellek, 2003). In such a procedure, the

consumers’ (or environmental) risk has maximally the probability α given that the

assumptions underlying the statistical test are correct. Procedures that likewise

control the consumers’ or environmental risk via the type-I-error probability of a

statistical test will be called ’proof of safety’ in the following. In the literature, it

is also named ’test of equivalence’ (Wellek, 2003). The basic problem in practical

application of this approach is the definition of θ and θ.

In situations, where only an increase or only a decrease leads to concerns about the

novel practice, the hypotheses can be defined one-sided (also referred to as ’test on

non-inferiority’, e.g. Laster and Johnson (2003)). Equations (1.3, 1.4) define a test

for non-relevant decrease of θ.

H0 : θ ≤ θ (1.3)
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HA : θ > θ (1.4)

Practically equivalent, such a test can be performed by using (1.1, 1.2) with θ chosen

very large.

The principle of a proof of hazard

However, it is common practice to decide for non-hazardousness of a novel practice

if a test of the hypotheses

H0 : θ = θ0 (1.5)

HA : θ < θ0 ∪ θ > θ0 (1.6)

can not be rejected with error probability α, where θ0 describes a state of non-

hazardousness. In such tests, the producers risk is directly controlled via the type-

I-error probability α, i.e., the risk of concluding that the novel practice is hazardous

if indeed it is not. The consumers’ or environmental risk is not directly controlled in

such a procedure. However, in advanced applications, statistical methods of power

calculation are sometimes used for a post-hoc assessment of the probability to reject

(1.5) when the true value of θ is larger or smaller than θ0 indeed (Andow, 2003;

Perry et al., 2003). In the case of a post-hoc power analysis, the practitioner ends

up with same the problem as in the proof of safety: to define which changes in θ are

considered as relevant changes.

Choosing the parameter of interest

The difficulty of choosing the relevance margins θ and θ changes with the context:

When much knowledge is available with respect to the distribution of y in the popu-

lation, safety margins might be defined directly on the scale of the mean or variance

of the observable variable. This might be the case in safety assessment of novel

medical treatments or drugs with respect to well known physiological variables y. In

other cases, safety margins are defined by law or guidelines of regulatory agencies;

an example are the upper limits of GMO impurities in seed lots (Schaarschmidt,
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2005). However, the prior knowledge on the distribution of y is usually sparse or

it is known that there are major influences on the distribution of y depending on

latent covariates. Then, safety of the novel treatment is assessed with respect to

a standard treatment, both observed under the same experimental conditions. In

this most common case, the parameter of interest θ is a measure of dissimilarity of

parameters of the sample exposed to the novel treatment and the sample exposed to

one (or several) standard treatment(s). In general settings, both, sample-based com-

parison between novel and standard(s), and the integration of historical knowledge

could be of interest, see, e.g. Berberich et al. (1996); Herman et al. (2004).

When expectations are to be compared between samples, different parameters of

dissimilarity are possible: The difference of means is the canonical parameter of

dissimilarity when statistical models are assumed to be additive on the scale of y.

However, for many biological data this is not a reasonable assumption, since the

scale of y is bounded downwardly and/or upwardly. For example, abundance data

are defined in [0;∞[. Then, the relevance and even possibility of a difference of

µStandard − µNovum = 10 changes dramatically, depending on the particular value of

µStandard = 100, 10, 1. Hence, for strictly non-negative data y, the ratio of means

is a more appropriate parameter of dissimilarity in expectations, especially, if the

objective is to perform a proof of safety, i.e., showing irrelevant change. Likewise,

for data y bounded by a lower and an upper margin, as are binomial data, Wellek

(2005) shows that the odds ratio is most appropriate when assessing non-inferiority

in comparison to a control, while the difference or ratio of proportions leads to

problems in defining proper safety margins independently of the proportion in the

control group.

1.2 Relevant distributional assumptions

In the literature, most attention is paid to assessing equivalence for nutritional com-

ponents, feeding value and other variables concerning humans and livestock, usually

being measured on a continuous scale, e.g. vitamin C content or chicken weight, etc.,
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(Berberich et al., 1996; Sidhu et al., 2000; Herman et al., 2004; Obert et al., 2004).

The usually recommended and applied statistical methods are therefore appropri-

ate for continuous variables (see, e.g. Andow, 2003; Berberich et al., 1996; Sidhu et

al., 2000; Herman et al., 2004; Obert et al., 2004). In this work, focus is on safety

assessment for non-target species, i.e., on ecological variables measuring the species

abundance.

Species abundance is usually measured by counting individuals caught by traps or

sweep nets or in visual assessments, in a observational window in time and space.

An exception is the collection of plant coverage data (e.g. Warton, 2005) which is

not considered here. For counts of particles falling at random into a large number

of small areas, which again are distributed at random, or for the number of events

occurring at random over a certain period of time can be described by the Poisson

distribution (Johnson et al., 1993). A prominent example is the number of particles

or rays emitted by a radioactive source and counted by a Geiger counter (Johnson et

al., 1993). Obviously, counting insects in certain volumes of air or passing a certain

space in a certain period of time can be assumed to result from a similar data

generating process. The Poisson distribution assumes that the mean occurrence of

the event, µ, is constant over the observations. In this case, the mean and variance of

the observed counts have the same value, µ. However, this assumption is frequently

violated in ecological data. Then, the variance is higher than the mean and other

probability models have to be assumed to account for overdispersion (or ’extra-

Poisson variability’).

Overdispersion in abundance measurements may occur because of the clustered spa-

tial or temporal distributions of individuals due to behavior or different location

of seminal settlement followed by local propagation of individuals. In some cases,

overdispersion might be explained by heterogeneity of the observational units with

respect to climatic variables or resources. However, in field studies often these vari-

ables have not been measured or are not measurable. Even when major predictors

for mean abundance are measurable, the population dynamics might lead to rela-

tively large stochastic changes depending on relatively small changes in the variables
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(Ives et al., 2008). Even in controlled experiments where major resources and envi-

ronmental variables are kept constant, overdispersion may be substantial (Beninca

et al., 2008). Hence, also models that account for variability among environments

by random effects, between repeated measurements by correlation structures or by

including covariates to model the effect environmental variables, should still con-

tain a term for overdispersion. For similar reasons, McCullagh and Nelder (1989)

recommend the standard use of overdispersion models for count data.

Different probability models have been proposed to describe overdispersed abun-

dance data. First, the quasi-Poisson model assumes a linear dependency of the

variance on the mean. The negative binomial distribution, arising from a Gamma-

mixture of Poisson variables (Johnson et al., 1993), assumes a quadratic dependency

of variance on mean. The applicability of such models to insect abundance data

has been controversially discussed: When comparing multivariate species data

between different habitats, often zero inflated models are recommended instead

of the negative binomial distribution (Welsh et al., 1996; Fletcher et al., 2005;

Potts and Elith, 2006). They can account for a higher proportion of zero counts

when certain species are completely absent in some habitats and follow a Poisson

or negative binomial distribution if present. However, Warton (2005) compares

the appropriateness of the negative binomial assumption to other approaches

for a number of large abundance data sets, concluding that in most cases the

negative binomial assumption fits data best, and is also capable of explaining a

high proportion of zero counts. Sileshi (2006) performs a similar comparative study

for a number of insect taxa based on the AIC and BIC criterion. He concludes that

for the majority of the taxa relatively simple approaches as the negative binomial

assumption or the quasi-Poisson method are sufficient.



1.3. EXPERIMENTAL DESIGNS 7

1.3 Short review of experimental designs in field tri-

als for safety assessment of GMO

In practice, different experimental designs can be found in trials with the aim of

safety assessment. Berberich et al. (1996) compare three Bt lines with one parental

line. Additionally, they compare the observed contents of nutritional and anti-

nutritional components to ranges of the components reported from historical obser-

vations. Conclusions for equivalence are based on descriptive statistics and one-sided

and two-sided paired t-tests.

Sidhu et al. (2000) assess the equivalence of nutritional components in a multi-

location trial and an additional feeding study. The multi location trial with 11 sites,

treated as random effects, comprised the GM line and a control line as fixed effects.

The feeding study was randomized as a randomized complete block design (RCBD)

and comprised the GM line and six conventional corn lines. It was analyzed using

ANOVA and subsequent t-tests in a mixed model.

Herman et al. (2004) describe a multi location trial to assess equivalence of nutri-

tional components of Bt maize. The trial comprised six locations, each being a

RCBD with three blocks and three treatments: The GM line, a non-transgenic line

and the GM line treated with a herbicide. The conclusion of equivalence is based on

a graphical assessment whether observed contents lay within ranges reported from

historical trials.

Obert et al. (2004) investigate the equivalence of nutritional components of herbi-

cide tolerant wheat to conventional wheat based on a multi location trial (3 and 5

locations in 1999 and 2000, respectively). Each trial site consisted of a RCBD with

four blocks and the GM line and the control line as replicated treatments. Addi-

tionally, in each site, four conventional lines were planted without replications at

the particular site. However, some lines were also planted in other sites, resulting

in a total number of 25 additional conventional lines in the trial. The GM line and

the control line were compared in significance tests following a mixed model. The
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additional conventional lines were used to calculate tolerance intervals for the nu-

tritional components. These are used subsequently to assess whether the observed

values of the GM line fell into these tolerance intervals.

Reynolds et al. (2005) present ranges of nutritional components of maize grain, based

on a trial comprising 11 varieties differing in genetic background, usage and climatic

adaptation. The trial comprised four geographically distant sites. At each site, seven

varieties were planted in an RCBD with three blocks. The data were analysed by a

mixed model with variety included as fixed effect and location, block within location

and variety-location-interaction treated as random effects. However, purpose of the

trial was not comparing GM vs. conventional, but to provide ranges for the contents

of various compositional components.

The UK farm scale evaluations compared conventionally grown crops and herbicide

tolerant crops. The trial was planned as a multi location trial including replications

in five years and considering four different crops. Each location and year comprised

a field with two experimental units and to which one replication of each treatment

was randomly assigned. This half-field design comprised a total of 272 fields (Perry

et al., 2003).

Rauschen et al. (2008) describe a field study on the abundance of planthoppers and

leafhoppers exposed to Bt maize. The trial was a RCBD with 8 blocks. It com-

prised three treatments: a maize variety transformed with Bt to prevent infestation

with the pest Ostrinia nubilalis, the variety near-isogenic to the Bt-variety without

insecticide treatment and the near-isogenic variety with insecticide treatment. The

near-isogenic variety and the near-isogenic variety with insecticide treatment clearly

serve as two different types of control treatments to assess safety of the Bt variety,

similar to a negative and a positive control in toxicology.

This limited number of trials concerning safety assessment of GMO may lead to the

following considerations: In simple cases, the treatment structure may comprise only

two treatments, the GM line and its near isogenic or parental counterpart. However,

designs may comprise more than one novel treatment compared to one standard, one



1.4. MULTIPLE TREATMENT COMPARISONS 9

novel treatment compared to several standards, or several standards compared with

several novel treatments. If several treatments lead to several elementary hypotheses,

the question arises how the elementary hypotheses are connected and whether it is

necessary to control the overall (familywise) error rate of the conclusions.

In the field trials, multi-location settings with complex randomization structures

dominate, leading to the consideration of mixed models for evaluation of the trials.

In more laboratory style experiments, simple randomization structures may also

occur.

Often, observed contents of nutritional components are related to the ranges of these

components found in previous trials. The information may be found in the literature

or databases, e.g., Reynolds et al. (2005). In the considered publications, results are

usually presented with focus on the comparison with historical data and the final

conclusions are based on the inclusion of the observed values in the historical ranges,

rather than significance tests. In some trials (e.g. Obert et al., 2004; Reynolds et

al., 2005), considerable effort is spent on assessing the variability of the response

variable in the population of standard varieties.

Numbers of replication as small as 3, 4 or 8 on the lowest level of randomization are a

common property in the considered experimental designs (Herman et al., 2004; Obert

et al., 2004; Rauschen et al., 2008). Occasionally, sample size is not even reported

in sufficient detail (Berberich et al., 1996; Sidhu et al., 2000). Only exceptionally,

sufficiently large sample sizes are used (Perry et al., 2003).

1.4 Statistical hypotheses for multiple treatment

comparisons

A frequently observed setting in safety assessment is the comparison of the novel

treatment against several standard treatments. Such designs offer a relaxed defini-

tion of safety: Instead of requiring equivalence or non-inferiority to the one and only

standard treatment, one may then declare safety if equivalence or non-inferiority can
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be shown in comparison to at least one of several standards. Aiming to control the

probability of erroneously declaring safety at a low level α, the statistical hypothe-

ses formulating this relaxed safety definition are a union-intersection test (Casella

and Berger, 2002). I.e., the global null hypothesis is formed by an intersection of

all elementary null hypotheses; the global alternative is a union of the elementary

alternatives.

Assume that the dissimilarity between the mean of the novel treatment, µ1, and the

means of the standards, µi, i = 2, ..., I, is expressed in terms of θi, i = 2, ..., I, θ0

indicates the state of equality and decreasing values of θ < θ0 indicate hazardousness

of the novel treatment, the hypotheses may be:

H0 :
I⋂
i=2

θi ≤ θ, (1.7)

H1 :
I⋃
i=2

θi > θ. (1.8)

Dunnett and Tamhane (1997) provide solutions for this type of hypotheses by several

stepwise test procedures and a single-step procedure assuming a Gaussian error

distribution.

Also other combinations of pairwise treatment comparisons may be relevant. As

long as the global alternative hypothesis is formulated as the union of all elementary

alternatives, simultaneous confidence intervals, as discussed later in this work, are

an appropriate statistical tool for deciding on hypothesis controlling the familywise

error rate.

A more complicated situation arises, when the aim is to show equivalence of a novel

treatment to at least one of several standards, in other words, showing that at least

one of several parameters θi is between θ and θ. Then, the global alternative is a

union of intersections of local alternatives. For this situation, alternative methods

have been proposed by Bofinger and Bofinger (1993) and Bofinger and Bofinger

(1995). The methods considered in this work are not adequate for such situations.

The hypotheses discussed so far are relevant, when the aim is clearly to control

the consumers’ risk at a low level α. However, when data analysis is still in an ex-
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ploratory stage, other hypotheses are adequate: Then, often all pairwise comparisons

are performed. When aiming at a proof of hazard involving multiple comparisons,

it might be considered fair to protect the producer such that erroneous decisions for

hazardousness have a low probability α. In order to extend the scope of this work

to such settings, also all pairwise comparisons among multiple treatments, a trend

test setting and interaction contrasts are considered.

1.5 Confidence intervals as a concept of statistical

inference

Assume that the parameter of interest θ ∈ Θ has been defined. Then, conditional

on the sample y and based on a probability model, confidence intervals can be

constructed that include the true parameter with pre-specified confidence probability

(1 − α). Confidence intervals are not constructed for particular values of θ, as are

hypotheses tests. They can be used both as descriptive measures for θ including the

uncertainty with respect to θ, and for deciding on hypotheses concerning various

values of θ.

As mentioned before, the basic problem of safety assessment is to define margins

of relevant change, θ and θ, a priori. Reasons may be that there is either not

enough knowledge for defining such margins, or that there is no consensus about

the choice of the margins. In both cases, presenting confidence intervals is the

statistical method of choice: In the first case they might merely serve as descriptive

measures summarizing effect size, and the associated uncertainty. In the latter case,

they summarize all information necessary to perform a proof of safety based on own

definitions of relevant change.

Formally, one can reject the null hypothesis of equivalence in Equation (1.1) in

favor of the alternative in (1.2) with type-I-error probability α, if and only if a

lower (1 − α) confidence bound for θ excludes θ and an upper (1 − α) confidence

bound for θ excludes θ (e.g. in Schuirmann, 1987; Hauschke, 1999). As long as
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the confidence intervals are constructed as tail intervals, i.e., by inversion of one-

sided tests (Agresti, 2003), the above decision rule is technically identical to the

inclusion of a two-sided (1 − 2α) confidence interval. The simplification of using

(1−2α) confidence intervals for a proof of safety has been criticized (Berger and Hsu,

1996) for particular applications and particular intervals. However, the confidence

intervals which are used in the following are either constructed by the analytical

inversion of (approximate) tests or are checked by simulations to have the property

of (approximate) tail intervals in the sense of Agresti (2003). Hence, their upper

and lower bounds should be (approximately) (1− α) bounds.

In case that one-sided hypotheses as in Equations (1.3) and (1.4) have been defined,

one-sided (1 − α) confidence limits can be used for the decision. I.e., if a lower

(1 − α) limit for θ excludes θ, one can reject the null in favor of the alternative

with type-I-error probability α. The validity of this simpler approach has not been

subject of discussions comparably to that concerning the two-sided proof of safety.

For deciding on the multiple elementary hypotheses in Equations (1.7) and (1.8)

with familywise type-I-error α, simultaneous (1 − α) lower confidence limits for θi,

i = 2, ..., I, can be used. Especially if there is no a priori consensus on the choice

of θ, simultaneous confidence limits summarize all relevant statistical information

to enable readers to decide on this type of hypothesis a posteriori. When a proof of

hazard is the aim, also two-sided simultaneous confidence intervals can be relevant.

1.6 Motivation for Bayesian methods in safety as-

sessment

As outlined above, safety assessment usually takes place in situations ranging be-

tween the extremes: (1) complete knowledge concerning the acceptable range of a

parameter, obtained from historical experiments or thresholds fixed by conventions;

(2) no knowledge concerning the acceptable parameter range of parameters: then,

referencing to control treatments is the usual way to define safety margins. As soon
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as some prior knowledge is available, it might be included in the statistical analysis

via Bayesian methods. In the assessment of equivalence for nutritional components,

remarkable effort is spent on obtaining information on the range of variability of the

parameters (Obert et al., 2004; Reynolds et al., 2005). Also, much weight is put on

comparisons with historical data, when finally drawing the conclusions (Berberich

et al., 1996; Herman et al., 2004).

For most biological problems, it is known that the parameter of interest is very

likely in a certain subset of the parameter space, but not in the whole real line for

continuous, all non-negative integers for counts or all values in the interval [0, 1]

for proportions. Hence, the use of weakly informative priors can nearly always be

motivated (e.g. Gelman, 2006). For example, when insect abundance is assessed by

counting individuals with 10 treatment replications, this implies the experimenters

expectation that the species chosen as response variable does not occur with mean

abundance greater than say 1000 or less than 0.1. When abundance is greater

than 1000 one would probably rather measure biomass instead of individual counts,

for abundances less than 0.1 one would either extend the observational window

or focus on more abundant species. In this sense, at least ’weakly informative’

priors of Bayesian statistics can be motivated. Further, when assessing safety for

a particular non-target species, there should be some prior knowledge available, in

order to ensure that the species is indeed exposed to the potentially detrimental

effects of the novel treatment, as done, e.g. by Rauschen et al. (2008). Hence, some

knowledge concerning the ecological properties, behavior and lifestyle of the species

must be available for a reasonable choice of the experimental object. Whence such

detailed knowledge concerning the species is available, there is usually also some

knowledge on the variations of its mean abundance. This prior information might

be included in the statistical analysis, at least for the standard treatments.
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1.7 Motivation and scope of the following chapters

The above outline of situations and experimental questions in safety assessment for

non-target species leads to the focus of statistical investigations in this work:

The distributional assumption needs to account for the special features of overdis-

persed count data. In the setting of controlled field trials and mesocosm studies,

simple assumptions as the negative binomial distribution are appropriate. Zero-

inflated models are not considered. In the model that precedes statistical inference,

simple one-way layouts as well as hierarchical randomization structures are of in-

terest. Therefore, both, simple fixed effects models as well as hierarchical models

are considered. The structure of the treatments which are of primary interest in

safety assessment, may comprise only two treatments. Then, marginal confidence

limits are sufficient. Frequently, also experiments involving multiple treatment com-

parisons are designed, making the construction of simultaneous confidence intervals

necessary, when the experimental questions are similar to those outlined in Section

1.4. Finally, methods are of interest which, in principle, allow the inclusion of prior

knowledge.

The Chapters 3 and 4 briefly introduce some concepts for constructing marginal

confidence intervals and simultaneous confidence intervals which are more generally

applicable. Chapters 5 and 6 consider the particular problem of marginal and simul-

taneous confidence intervals of ratios and differences of means of negative binomials

in the one-way layout. The focus here is on assessing the frequentist properties of

methods derived from MCMC sampling. To expand the scope of multiple compar-

ison procedures, the simulations are not restricted to the most relevant problem of

comparisons to control, but also all pairwise comparisons and a trend test scenario

is investigated. Chapter 7 provides extensions to simple hierarchical models, again

assessing the frequentist simultaneous coverage probability of methods derived from

MCMC sampling. The application of the methods to two real data examples is pre-

sented in Chapter 8. Finally, Chapters 9 and 10 briefly discuss the main results and

outline possible extensions. The main results of the frequentist simulation studies
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for particular models are summarized in the Chapters 4, 6, 7, following the descrip-

tion of the models, whereas the BUGS code for the models and tables with detailed

results can be found in the end these chapters.
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Chapter 2

Bayesian inference and Markov

Chain Monte Carlo

2.1 Application of the Bayesian Theorem in statis-

tics

Bayes’ Theorem considers the probability of an event B given that the event A has

been observed, P (B|A). It is generally known in the form

P (B|A) =
P (A|B)P (B)

P (A)
, (2.1)

where P (A) denotes the probability of observing event A. For simplicity, consider

a setting where an observable random variable Y is thought to emerge according

to a certain probability model in dependence of a parameter θ. Applying Bayes’

Theorem with the aim of statistical inference, allows a statement concerning the

probability of a parameter θ, given the observed data y (Ellison, 2004):

P (θ|y) =
P (y|θ)P (θ)

P (y)
. (2.2)

Note, that θ is understood as (unobservable) random quantity. P (y) =∫
θ

(P (y|θ)P (θ)) dθ is the marginal density of Y resulting from integrating over all

possible values of θ. In practice, the probability to observe data y given a param-

eter θ, P (y|θ), follows from the distributional assumption and the prior knowledge

17
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concerning θ is summarized in a density P (θ). Then, Equation (2.3) is the complete

probability model connecting the observable y, the unobservable parameter θ, and

the prior knowledge (Gilks et al., 1996).

P (y, θ) = P (y|θ)P (θ) (2.3)

However, main interest is in a generalizable statement concerning θ, given the prior

information and the observed data. This is summarized by the posterior distribution,

as defined in Equation (2.4) for general cases (Gilks et al., 1996):

P (θ|y) =
P (y|θ)P (θ)∫
P (y|θ)P (θ) dθ

(2.4)

In simple cases, e.g. the one parameter binomial probability model, the distribution

P (θ|y) can be described analytically (Gelman et al., 2004). In most cases of practical

interest, Markov Chain Monte Carlo (MCMC) methods have to be used to draw

sufficiently large samples from P (θ|y) to approximate the distribution. Technical

background of MCMC in general and the Gibbs sampler in particular are outlined

in Section 2.6.

2.2 Bayesian vs. frequentist inference

Bayesian and frequentist methods differ in the assumption concerning the parameter:

Frequentist approaches assume parameters to be unknown but fixed quantities, while

in Bayesian analysis, parameters are considered as random quantities which are

unobservable and are contrasted to the observable random quantities which are

commonly called variables. In that sense, the differentiation between random and

fixed parameters in frequentist mixed models is less clear in the Bayesian context

(Gelman et al., 2004).

Confidence intervals provide a range of parameter values, in which the parameter

of interest lies with a pre-specified confidence probability (1 − α). Bayesian and

frequentist approaches differ in the interpretation of this probability: Frequentist

confidence intervals are designed such that the true, fixed parameter lies within the
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confidence bounds in (1− α)100% of the cases when a given random experiment is

repeated n → ∞ times (e.g. Ellison, 2004). It is not correct to state, for a given

realization of the random experiment, that the true parameter lies within the confi-

dence interval with probability (1−α). Rather, it is still unknown whether the true

value lies within the confidence interval; it is only known that it would lie within

(1 − α)100% of the intervals computed by the same method, when the experiment

would be repeated many times. In Bayesian analysis, the somewhat unpleasant fre-

quentists interpretation of probability is replaced by a subjective interpretation of

probability. I.e., probability is interpreted as the ’subjective belief in the probability

of an event’ (Ellison, 2004): The beliefs concerning the distribution of the parameter

which are known prior to the experiment are summarized in the prior distribution.

The posterior distribution, i.e., the prior belief, updated by the information con-

cerning the parameter of interest obtained from the sample, is still subjective. The

(1 − α) confidence bounds obtained from this distribution can properly be inter-

preted as a range of parameter values which are believed to occur with probability

(1 − α) (Ellison, 2004). For that reason, ’Bayesian confidence intervals’ (Carlin et

al., 2006) are commonly referred to as ’credibility intervals’ or ’credible intervals’.

2.3 Choice of prior distributions

A prior density is called proper, if it is independent of the data and integrates to

1 (Gelman et al., 2004). To ensure that prior distributions are proper is important

for the following inference based on the posterior distribution. However, even an

improper prior might lead to a proper prior distribution and therefore valid inference

(Carlin et al., 2006). Nevertheless, this has to be checked in each particular case

(Gelman et al., 2004) and therefore improper priors will not be used here.

A prior is called conjugate, if the posterior density p (θ|y) following from the com-

bination of the sampling distribution p (y|θ) and the prior p (θ) has the same para-

metric form as the prior. This can be shown analytically for a number of simple

models, e.g. for assuming a one parameter binomial sampling distribution and a
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Beta prior distribution (Gelman et al., 2004). Choosing the prior to be conjugate

allows analytical solutions for the posterior in simple cases, and to interpret the prior

information as additional data (Gelman et al., 2004). However, if a chosen prior is

not conjugate, this does not lead to problems in the inference based on the posterior

distribution (Gelman et al., 2004). Also, for complex models, conjugate priors may

not even exist (Gelman et al., 2004). Hence, whether a prior is chosen conjugate or

not, is not discussed here in detail for the particular models, but priors are chosen

similar to those found in related models in the literature and worked examples.

Priors for mean and variance parameters

Gelman et al. (2004) recommend not to use non-informative priors when the number

of parameters is large, but to use hierarchical models with hyperpriors instead. In

the generalized linear model, imposing a normal prior on the mean parameter β on

the scale of the link is usually a non-conjugate prior (Gelman et al., 2004).

When choosing a non-informative prior for variance parameters (or inverse variance

parameters), distributions are needed the cover the range [0,∞]. A natural candi-

date is the gamma distribution. However, the adequate choice of priors for variance

parameters is under discussion, especially for complex models (Zhao et al., 2006;

Browne and Draper, 2005; Gelman, 2006; Kass and Natarajan, 2006). While uni-

form, gamma and several folded distributions are discussed, the uniform and gamma

distribution are commonly found in worked examples (Zhao et al., 2006; Spiegelhal-

ter et al., 2007). Gelman et al. (2004) notes that it is hard to define principles for

the choice of prior distributions that are appropriate in all cases. For example, al-

though intuitively reasonable, uniform priors should be used with care for precision

parameters on the log scale or in mixture models (Gelman et al., 2004). In this

work, only gamma and uniform priors are used for variance parameters.
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Non-informative priors

Generally, if there is no information concerning θ, the prior distribution P (θ) has a

flat (vague, diffuse, about uniform) distribution in the parameter space Θ. Then, it

contributes an about equal, very small probability to Equation (2.4), independent

of the particular choice of θ. In this case, the posterior depends only on the sample

y and the imposed distributional assumption. However, if Θ is unbounded, i.e.,

Θ = [0,∞] or Θ = [−∞,∞], a truly uniform prior that is also a proper prior

is not possible. Occasionally, further principles are applied when choosing a non-

informative prior density: Jeffreys priors are chosen such that the result of the

analysis is invariant with regard to a transformation of the parameter of interest;

this is most important in the case of the binomial parameter, where invariance

with regard to the exchange of success and failure is often required (Gelman et

al., 2004; Agresti and Min, 2005). When non-informative priors are assumed for the

parameters, Bayesian analysis approaches the solutions found by frequentist analysis

(Gelman et al., 2004).

The prior θ ∼ N (0, 1000) will in the following be used for mean parameters with Θ =

]−∞,∞[. The priors θ ∼ gamma (0.001, 1000) or θ ∼ unif (0, 1000) will be used for

variance parameters with Θ = [0,∞[ in the following considerations. Although both

choices are frequently found in worked examples (Zhao et al., 2006; Spiegelhalter et

al., 2007), Zhao et al. (2006) recommends the use of gamma priors only with smaller

variance, e.g. θ ∼ gamma (0.01, 100). Gelman (2006) discourages the use of the

family of gamma priors because this distribution is not truly non-informative and

the resulting inference depends on the particular choice of the parameters a and b of

the gamma distribution (See Appendix A for the parametrization used here). The

discussion among Browne and Draper (2005); Gelman (2006); Zhao et al. (2006)

shows that there is no consensus on this issue.
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2.4 Safety assessment in the Bayesian context

Purely Bayesian approaches to assess equivalence of novel treatments to a standard

treatment often use different approaches to decide between the two informal state-

ments (1) ’The novel practice is harmful’ and the (2) ’The novel practice is not

harmful’. Most interesting is the concept of a loss function as discussed by Lindley

(1998) as an alternative to the definition of fixed margins θ, θ. Other authors ex-

plicitly test hypotheses of equivalence as defined in Equations (1.1) and (1.2), using

decision rules based on Bayes factors (Williamson, 2006) and posterior probabili-

ties of hypotheses (Selwyn et al., 1981; Ghosh and Rosner, 2007). None of these

approaches aims at controlling the type-I error at a low pre-specified level. In this

work, such alternative approaches to decide for equivalence of two treatments are

not considered.

2.5 Multiple comparisons in the Bayesian context

Various authors discuss the problem of multiple comparisons in the Bayesian con-

text, with focus on problems of multiple hypotheses testing, with elementary null hy-

potheses describing the state of no effect (Westfall et al., 1997; Berry and Hochberg,

1999; Efron et al., 2001; Chen and Sarkar, 2004; Scott and Berger, 2006; Ji et al.,

2008; Pennello, 2007). This is motivated by the important field of application in

microarray experiments (e.g. Efron et al., 2001; Efron, 2004; Scott and Berger, 2006;

Efron, 2007; Ji et al., 2008) with focus on criteria similar to the false discovery rate

rather than familywise error rate, and no focus on interval estimation.

Procedures for multiple hypotheses testing in the Bayesian context usually differ

from frequentist procedures in both, the aims and approaches. Starting with Dun-

can (1965) and Waller and Duncan (1969) (reviewed in Berry and Hochberg, 1999),

procedures are proposed which decide between null and alternative hypothesis by

loss functions that control the ratio of type-I to type-II errors (e.g. Scott and Berger,

2006; Pennello, 2007). Hence, such procedures usually do not control the family-
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wise error rate and do not aim to do so. Other approaches try to avoid finding too

many effects in multiple hypothesis testing by modelling the parameters of inter-

est as members of a population, which is modeled by common hyper parameters.

I.e., the parameter of interest which are tested in the elementary hypotheses are

jointly modeled as a random effect. In this way, estimates are shrunk towards each

other, making the analysis more conservative (Berry and Hochberg, 1999). Using

Dirichlet priors for jointly modelling the parameters of interest allows to calculate

posterior probabilities of specific hypotheses, e.g. for the hypotheses of all pair wise

comparisons (Berry and Hochberg, 1999). However, such models usually rely on the

assumption that the single parameters are exchangeable. This assumption appears

acceptable in the context of microarrays but not in the context discussed in this

work, where the parameters of interest are known to be correlated in non-trivial

structures (see Chapter 4). Only few papers explicitly consider multiple treatment

comparisons, which are of main interest in this work. Examples are Westfall et

al. (1997) and Berry and Hochberg (1999) for all pairwise comparisons, Chen and

Sarkar (2004) for comparisons to control and Nashimoto and Wright (2008); Shang

et al. (2008) for appraoches to include order restriction. Simultaneous intervals are

not considered by these authors.

A common Bayesian argument against multiplicity adjustments is that controlling

the familywise error rate is only important when many or all null hypotheses could be

plausibly true. Conversely, when there is relatively firm prior knowledge indicating

that some of the null-hypotheses are true, some are false, the necessity to adjust for

multiple comparisons in order to control the familywise error rate decreases (Westfall

and Young, 1993). Westfall et al. (1997) investigate this point more closely. They

find that, depending on the prior probability that is assigned to the global null hy-

pothesis in multiple testing, Bayesian reasoning leads to similar adjustments as that

of Bonferroni for independent hypotheses or a frequentist adjustment proposed for

all pairwise comparisons. However, in safety assessment for non-target species, firm

prior knowledge concerning the safety hypotheses is rarely available. The reasons are

that sampling is expensive and there is relatively low public interest in non-target
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species compared to safety or efficacy analyses in clinical trials; hence, prior knowl-

edge is usually sparse. Prior knowledge may be reasonably available for the range

of mean abundances in conventional treatments, but will be rarely available for the

novel treatments. Hence, when primary interest is in parameters of dissimilarity

between standard and novel treatments, there is usually no firm prior knowledge

available, and the above arguments against multiplicity corrections do not apply.

2.6 Short introduction to Markov Chain Monte

Carlo (MCMC)

MCMC aims to draw samples from the posterior density of the parameter of interest

θ conditional on the sample y: p (θ|y).

1. T updates θ(t), t = 1, ..., T , are drawn, where θ(t) depends only on θ(t−1),

2. at each step t, a value θ′ is drawn based on the density centered at θ(t).

3. The parameter value is updated, θ(t+1) = θ
′ , or the last value is kept θ(t+1) =

θ(t), depending on ratios p
(
θ
′ |y
)
/p
(
θ(t)|y

)
and further transition probabilities

depending on θ(t) and θ′ ,

4. by frequent updates, the distribution of sampled values θ(t) converges to p (θ|y).

Different available algorithms differ in the way by which transition probabilities are

calculated for the decision whether the parameter is updated θ(t+1) = θ
′ or not

θ(t+1) = θ(t) (Gelman et al., 2004; Congdon, 2006).

The Gibbs sampler is especially designed for multi-parameter problems. It might be

used with different algorithms (but all using the rejection sampling strategy above)

to perform the single steps in the following structure:

• The vector θ is split into D sub vectors (θ1, ..., θD), d = 1, ..., D.

• In the tth update of a particular subvector θd′ , θ
(t)
d′ is updated depending on

θ
(t−1)
d′ for d′ = d but depending on θ(t)

d for d 6= d′



2.7. FREQUENTIST PERFORMANCE OF MCMC BASED CI 25

(Gelman et al., 2004). The chain
(
θ(1), ..., θ(T )

)
, t = 1, ..., T sampled in such a

way, starts at initial values and converges to the target distribution P (θ|y) with

increasing t. Hence, the part of θ(1), ..., θ(T ) with sufficiently high t can be taken as

a sample from P (θ|y). In the following, such a sample will be denoted θ∗

2.7 Assessing the frequentist performance of

MCMC based confidence intervals

As outlined in the introduction, safety assessment might need both, frequentist

or Bayesian approaches, depending on the availability of prior information and

the acceptance of Bayesian methods. In the Bayesian context, analysis with non-

informative priors might be presented to ’let the data speak for themselves’ (Gelman

et al., 2004). In this case, the posterior depends only on the observed sample, and

therefore is not influenced by subjective information except the choice of the distri-

butional assumption. That is the reason why occasionally non-informative priors are

called objective. A statistical procedure might then be validated by its frequentist

performance. Additionally, for situations with more complex designs and unusual

distributional assumptions, simple frequentist methods may provide unacceptable

solutions (an example is given in Chapter 5) and more appropriate frequentist ap-

proaches have so far not been generalized to cover particular problems. In these

situations, the Gibbs sampler is a flexible tool to sample from ’objective’ posterior

distributions for the parameters of interest. Whether confidence intervals obtained

in this way may be interpreted in a frequentist manner can then be assessed by

simulation studies.

Numerous authors assess the matching of non-informative Bayesian and frequentist

solutions for special problems, either by analytical approaches (Welch and Peers,

1963; Peers, 1965; Nicolaou, 1993; Datta and Ghosh, 1995; Datta, 1996; Sweeting,

2001; Ghosh et al., 2003; Dilba, 2006; Berger and Sun, 2008, to name some) or

by simulation studies or other approaches to describe the empirical properties (e.g.
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Nicolaou, 1993; Ghosh and Kim, 2001; Agresti and Min, 2005; Shi and Bai, 2008).

Some analytic approaches which provide solutions for particular problems focus on

relatively simple problems as estimating various parameters in the bivariate normal

model (Berger and Sun, 2008), estimation for the two-parameter gamma distribution

(Nicolaou, 1993), parameters following a general linear model (i.e. Gaussian error

distribution, Ghosh et al. (2003)), models for 2× 2 contingency tables (Agresti and

Min, 2005; Shi and Bai, 2008) or the comparisons of two means in the Behrens-Fisher

problem (Ghosh and Kim, 2001). More complex problems with computations based

on the Gibbs sampler have not been addressed so far. Also the specific problem of

frequentist performance of simultaneous credible sets for contrasts of mean param-

eters in generalized linear models has not been considered. In the remaining part

of this work, the main focus is on the question, whether marginal and simultaneous

credible intervals based on samples of the joint distribution derived by the Gibbs

sampler lead to valid frequentist marginal and simultaneous confidence intervals,

when non-informative priors are used and interest is in various models for count

data. Since for a part of the considered models and inferential problems, frequentist

methods have not been proposed so far, the frequentist coverage probabilities are

assessed by simulation studies.

Definition of coverage probabilities

Assume a confidence interval
[
θ̂L, θ̂U

]
for the parameter θ. The coverage probability

of a two-sided confidence interval (CPts) is then defined P
(
θ̂L ≤ θ ≤ θ̂U

)
when the

random experiment of calculating the confidence interval based on random data is

performed many times. Accordingly, the coverage probability of the one-sided lower

confidence interval (CPl) is then defined as P
(
θ̂L ≤ θ

)
, and the coverage probability

of the one-sided upper confidence interval (CPu) is defined as P
(
θ ≤ θ̂U

)
.

Assume that
[
θ̂mL, θ̂mU

]
, m = 1, ...,M define the bounds of the confidence set for

an M -dimensional parameter θ. The simultaneous coverage probability of a two-

sided confidence interval (SCPts) is defined as P (θ̂mL ≤ θm ≤ θ̂mU , ∀m = 1, ...,M).

Accordingly, SCPl is defined as P (θ̂mL ≤ θm, ∀m = 1, ...,M) and SCPu is defined
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as P (θm ≤ θ̂mU , ∀m = 1, ...,M).

Technical details

For the simulation study, R-2.6.0 (R Development Core Team, 2007) has been used.

The Gibbs sampler implementation OpenBUGS 3.0.2 (Spiegelhalter et al., 2007) has

been used to draw samples from joint posterior distributions. For calling OpenBUGS

from within R, the package R2WinBUGS 2.1-6 (Sturtz et al., 2005) has been used.

The BUGS language allows flexible definition of various models and also mis-specified

models can be run as long as they are syntactically correct and fitting data and initial

values are provided. Hence, for completeness and reproducibility, the BUGS code used

in the simulations is always shown next to the simulation results. Attached to the

BUGS code are technical details for the MCMC updates, since the convergence and

hence the quality of representation of the target distribution by the MCMC sample

may greatly depend on these details and the particular BUGS code.

Quality of approximation of the (joint) posterior distribution

The quality of MCMC derived intervals can only be sufficient, when they are con-

structed based on a sufficient number of values K, truly sampled using MCMC from

the posterior distribution of interest. Both, a small sample K used for interval

construction and sampling from a distribution that has not readily converged to

the posterior of interest will lead to credible intervals with insufficient properties.

The convergence of the sampling distribution to the distribution of interest crucially

depends on the combination of the initial values, the number of updates, the auto-

correlation between consecutive updates, the number of observations discarded at

the beginning of the chain of updates (burn-in) and finally, the frequency by which

sampled values are discarded within the sampled chain (thinning):

1. The initial values are 0 for parameters with θ ∈ [−∞;∞] and for 1 for pa-

rameters with θ ∈ [0;∞]. This is clearly a suboptimal choice: In real world
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applications, convergence might be sped up by using sample estimates as initial

values. For all simulations, only one MCMC chain has been run.

2. The number of updates finally used for interval construction, is usually

K=1000.

3. For the considered models and their BUGS implementations, the autocorrelation

increases with complexity of the models.

4. The number of updates discarded at the beginning of the chain (burn-in) needs

to be increased when autocorrelation slows down the convergence. The burn-in

has been chosen specifically for each model in particular based on simulated

example data, such that Gewekes test on convergence (Gelman et al., 2004;

Geweke, 1992) did not show deviations.

5. The number of values discarded within the chains was chosen for each model

specifically based on simulated example data, such that autocorrelation plots

in OpenBUGS or the function acf in the R-package coda did not show autocor-

relations for lags greater or equal 2.

Due to the high computational intensity of MCMC sampling for complex mod-

els, the number of random samples y drawn from the assumed distribution

in order to assess the coverage probability of the intervals is usually S=1000.

Repeating a binomial experiment 1000 times, the probability of success π (here

defined as the probability to cover the true parameter) such that the hypothe-

sis H0 : π ≥ 0.95 can be rejected at the 0.05 level for less than 936 out of 1000 events.



Chapter 3

Concepts for constructing confidence

intervals

In this Chapter, general concepts to construct confidence intervals for a parameter

θ are shortly reviewed.

3.1 Desirable properties of confidence intervals

Let θ be the parameter of interest in parameter space Θ, and denote
[
θ̂L; θ̂U

]
the

confidence interval for θ derived from sample y.

1. In the frequentist setting, the interval should cover θ with probability (1−α).

2. Two-sided confidence interval should be symmetric in the probability to ex-

clude the true parameter θ, i.e. equi-tailed: When a two-sided (1− 2α) confi-

dence interval is constructed, the probability to exclude θ should be α for both

the lower and the upper bound.

3. The confidence intervals should be informative when the sample y is informa-

tive with respect to θ, i.e.,
[
θ̂L; θ̂U

]
⊂ Θ, and not

[
θ̂L; θ̂U

]
⊆ Θ!

4. The confidence interval should be non-degenerate for incomplete knowledge

with respect to θ and reasonable outcomes Y , i.e., θ̂L < θ̂U .

29
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5. If the evidence for θ > θ0 is higher in sample yi than in sample yj, it is required

that θ̂Li > θ̂Lj; correspondingly, if the evidence for θ < θ0 is higher based on

sample yi than sample yj, it is required θ̂Ui < θ̂Uj.

3.2 Wald-type confidence intervals based on normal

approximation

When it can be shown that for large N the distribution of T = θ̂−E(θ)√
V̂ (θ̂)

∼ N(0, 1),

a Wald-type confidence interval can be constructed by analytically inverting the

(Wald-type) test by solving for θ0 in Equation (3.1)

θ̂ − θ0√
V̂
(
θ̂
) = z. (3.1)

These confidence limits then are:[
θ̂L; θ̂U

]
=

[
θ̂ ± z

√
V̂
(
θ̂
)]

. (3.2)

Here, z = z1−α/2 is the (1−α/2) quantile of the standard normal distribution. When

the normal approximation is sufficiently precise, such intervals achieve the objectives

stated in Section 4.1. When the normal approximation is inappropriate due to small

sample sizes, discrete, skewed, or kurtotic distributions of θ̂ at least some objectives

in Section 4.1 are violated.

The term Wald-type, e.g. in Brown et al. (2001); Brown and Li (2005), refers to

the fact that the variance of θ̂, V̂
(
θ̂m

)
contributes as a constant to the Equations

(3.1) and (3.2). The uncertainty that is introduced in the dependency of V
(
θ̂
)
on θ

by the uncertainty on θ itself is not taken into account. However, this procedure is

reasonable for large sample sizes, most simple, applicable for many scenarios and can

be easily extended to the problem of multiple comparisons (Chapter 4). However, for

small sample sizes and discrete distributions with parameters close to the boundary

of the parameter space, obtained variance estimates can be unreasonable (e.g. Brown

et al., 2001). Then, single events may exist that result in confidence intervals which
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are degenerated to a point or comprise the whole parameter space. Hence, they may

violate the desirable properties outlined in 3., 4., and 5. in Section 3.1 above.

3.3 Profile likelihood methods to construct confi-

dence intervals

The latter problem of Wald-type intervals for parameters of discrete distributions

may be overcome by intervals that are constructed by point-wise inversion of a test

for a sufficient number of points θ0 ∈ Θ, and which include the variance of θ̂ based on

θ0 rather than θ̂. For simple problems, such tests can even be inverted analytically

(Wilson, 1927). More generally applicable concepts are the point-wise inversion

of likelihood ratio tests, e.g. Venzon and Moolgavkar (1988) or the construction

of intervals based on deviance profiles (Chen and Jennrich, 1996). For example,

confidence intervals based on the inversion of a likelihood ratio test (Chen and

Jennrich, 1996) can be constructed by evaluating Equation (3.3) for a sufficient

number of values for θc. Let L (θ) denote the likelihood function derived from the

probability model assumed for the creation of Y given θ. Then a confidence interval

based on the profile likelihood method is given by

I =

θc : −2log
L (θc)

L
(
θ̂
) ≤ χ2

1,1−α

 , (3.3)

where χ2
1,1−α is the 1 − α quantile of the χ2 distribution with 1 degree of freedom

and I the set of values which forms the confidence set, with its smallest and largest

values [θ̂L; θ̂U ]. Instead of comparing the likelihood ratio vs. a χ2 quantile, other

functions f(θ|y), e.g. the deviance, might be compared vs. quantiles of other ade-

quate distributions.

Constructing confidence intervals based on this approach is computationally more

intensive and expanding its idea to construct simultaneous confidence intervals in-

cluding the correlation among parameters (see Chapter 4 for a brief motivation) is

not straightforward. Of course, simultaneous confidence intervals based on profile
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methods can be constructed using the Bonferroni correction.

3.4 Confidence intervals based on an empirical (pos-

terior) distribution

Assume a sample θ∗ = (θ∗1, ..., θ
∗
K) ofK values from the posterior distribution P (θ|y)

has been drawn using an MCMC implementation, where the values are indexed by

k = 1, ..., K. Then, a (1−α) credible interval for θ can be derived by calculating the

sample quantiles Q̂α/2 and Q̂1−α/2 from θ∗. Hyndman and Fan (1996) summarize the

properties of several definitions to calculate Q̂α. Here, definition 7 of Hyndman and

Fan (1996) is used. The obtained values divide the range of θ∗ into k − 1 intervals,

of which 100α % lie to the left of Q̂α and 100(1− α) % lie to the right of Q̂α.

Intervals constructed in such a way should have the properties of tail intervals (prop-

erty 2 in Section 3.1). Such intervals are favored since interest is in both, estimation

and hypothesis testing with subsequent one-sided interpretation. However, in case

that interest would be purely in estimation, also highest posterior density (HPD) in-

tervals (Gelman et al., 2004; Geweke, 2005) would be an appropriate method. These

do not have the property of a tail interval for skewed posteriors (Agresti and Min,

2005), and hence are not considered in this work.



Chapter 4

Concepts for constructing

simultaneous confidence intervals

In this Chapter, general concepts to construct simultaneous confidence intervals

(SCI) for anM -dimensional parameter vector θ, with elements θm,m = 1, ...,M , and

θ ∈ Θ, are reviewed. As a first step one might consider the problem of constructing

a simultaneous confidence set for θ, i.e., a subspace of Θ in which the true parameter

vector θ is included with probability (1 − α). Such sets might be constructed by

pointwise inversion of a simultaneous test and could have shapes very different from a

hyper rectangle (Dilba, 2005). However, for interpretations in problems withM > 2,

usually a projection to the axes is needed, resulting in simultaneous confidence limits

that form a hyper rectangle in Θ. For this reason, in this work only such methods

are considered which lead to rectangular confidence sets; these are referred to as

simultaneous confidence intervals (SCI) for simplicity.

4.1 Desirable properties of simultaneous confidence

intervals

Additional to the objectives defined in Section 3.1, one may define the following

properties of simultaneous confidence intervals as desirable:

33
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1. Simultaneous coverage probability: Cover θ with probability (1 − α).

For am M -dimensional confidence set with bounds
[
θ̂mL; θ̂mU

]
for its

mth element, the simultaneous coverage probability is formally defined as

P
(
θm ∈

[
θ̂mL; θ̂mU

]
;∀m = 1, ...,M

)
.

2. When used to obtain decisions on hypotheses, confidence sets should be equi-

tailed, i.e., when a two-sided (1−α) confidence set is constructed by 2M limits,

the probability to exclude a part of θ by each bound should be α/ (2M).

4.2 Simple solutions: Bonferroni and Sidak

Objective 1 in Section 4.1 can be best achieved when the correlation among the M

parameters of interest is taken into account. However, simple solutions exist that

perform conservative in common situations; the term conservative is used for the

situation P
(
θm ∈

[
θ̂mL; θ̂mU

]
;∀m = 1, ...,M

)
> 1− α.

Bonferroni adjustment

Motivated by Equation (4.1) below, the Bonferroni adjustment preserves the simulta-

neous coverage probability by constructing marginal confidence intervals
[
θ̂mL; θ̂mU

]
with level (1− α/M) for each θm, m = 1, ...,M . Doing so, the joint distribution of

the θ̂m is ignored, but a general, conservative solution (Nelson, 1989) for any type

of correlation structure among the elementary θ̂m is provided.

1− P
(
θm ∈

[
θ̂mL; θ̂mU

]
;∀m = 1, ...,M

)
≤

M∑
m=1

1− P
(
θm ∈

[
θ̂mL; θ̂mU

])
(4.1)

Figure 4.1 illustrates the Bonferroni-adjustment by a random sample of a bivariate

Gaussian distribution in (4.2), y1

y2

 ∼MVN

 µ1

µ2

 ,

 1 ρ

ρ 1

 , (4.2)

with ρ = −0.5, 0, 0.5. The solid lines are empirical (0.975)-quantiles q1 and q2 of the

marginal distributions y1 and y2 obtained as outlined in Section 3.4. Interesting is
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Bivariate Gaussian, negative correlation
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Bivariate Gaussian, no correlation
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Figure 4.1: Scatter plots of 2000 realizations of bivariate Gaussian random variables

with correlation ρ = −0.5 (left), ρ = 0 (center) and ρ = 0.5 and upper (1− 0.05/2)-

quantiles of the marginal distributions.

the proportion of the sample in which at least one of the variables x1 and x2 is larger

than at least the corresponding quantile q1, q2 respectively (realizations in quadrants

I, II and IV). This proportion is about 0.05 in the cases ρ = −0.5 and ρ = 0. With

positive correlation ρ = 0.5, a certain proportion of the sample is larger than both, q1

and q2 (quadrant I). Hence, when q1 and q2 are chosen independently of each other,

in order to cut off 2.5% of the marginal distributions, a part larger than 95% of the

joint distribution is below both quantiles (quadrant III). The Bonferroni-adjustment

leads to increasingly conservative intervals, when the probability mass in quadrant

I increases, hence for increasingly positive correlations.

Sidak adjustment

The Sidak adjustment imposes the additional assumption that the elements of the

estimator for θ are mutually independent and preserves the simultaneous coverage

probability whenever the true correlations are non-negative (Nelson, 1989). When

mutually independent, the probabilities to contain the true parameters factorize for

the elements of θ.

P
(
θm ∈

[
θ̂mL; θ̂mU

]
;∀m = 1, ...,M

)
=

M∏
m=1

P
(
θm ∈

[
θ̂mL; θ̂mU

])
1− α = (1− αm)k
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(1− α)
1
k = 1− αm

Therefore, constructing confidence intervals with local confidence levels (1 − α)1/k

for each θm, based on the marginal distribution lead to simultaneous confidence

intervals with simultaneous confidence coefficient (1−α). The result is only slightly

different from the Bonferroni adjustment and is conservative, when correlations are

positive for the reasons illustrated in Figure 4.1. The Sidak procedure derived as

above is suitable for one-sided inference; also two-sided versions have been proposed,

see Nelson (1989).

4.3 Wald-type simultaneous confidence intervals

based on approximation with the multivariate

normal distribution

When it can be shown that for large N , that T ∼ MVN (0,R), with T =

(T1, ..., Tm, ..., TM)′, Tm = θ̂m−E(θm)√
V̂ (θ̂m)

, simultaneous Wald-type confidence intervals

can be constructed by analytically solving Equation (4.3) for θm0:∣∣∣∣∣∣∣∣
θ̂m − θm0√
V̂
(
θ̂m

)
∣∣∣∣∣∣∣∣ = z (4.3)

Here, z = ztwo−sidedM,R,1−α of an M -variate standard normal distribution which is chosen

such that P
(
|Z| ≤ ztwo−sidedM,R,1−α

)
= 1 − α, where Z is an M -variate standard normal

random vector with (M ×M) correlation matrix R. The confidence bounds are:

[
θ̂Lm; θ̂Um

]
=

[
θ̂m ± z

√
V̂
(
θ̂m

)]
(4.4)

One-sided intervals can be obtained by using the critical value z = zone−sidedM,R,1−α such

that P
(
Z ≤ zone−sidedM,R,1−α

)
= 1 − α. Numerically, quantiles zM,R,1−α can be obtained

from the R-function qmvnorm in the add-on package mvtnorm, introduced by Hothorn

et al. (2001). This adjustment takes the number of estimated parametersM , as well
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as the correlation R among them into account.

For general problems, the correlation matrix R has elements rmm′ , m 6= m′, following

from Equation (4.5):

rmm′ =

ˆCOV
(
θ̂m, θ̂m′

)
√
V̂
(
θ̂m

)
V̂
(
θ̂m′
) (4.5)

When the normal approximation is sufficiently precise, such intervals achieve the ob-

jectives stated in Section 4.1. When the normal approximation is inappropriate due

to small sample sizes, discrete, skewed, or kurtotic distributions of θ̂m the objectives

in Section 4.1 are violated.

4.4 Simultaneous confidence intervals based on an

empirical joint posterior distribution

While the construction of marginal confidence intervals from posterior distributions

is standard in Bayesian application and software, the construction of simultaneous

confidence sets is rarely considered. Suppose that MCMC has been used to draw

samples from the joint posterior distribution of θ given a sample y, the statistical

model assumed for the creation of y given θ and the prior assumptions on the joint

distribution of θ. In the following, a sample of K values from the M -dimensional

joint posterior will be denoted θ∗. θ∗ is written as a (K × M) matrix and will

be called empirical joint posterior distribution of θ. Besag et al. (1995) describe

the construction of simultaneous credible regions for θ based on a sample of K

realizations of an MCMC run, where the realizations are indexed by k = 1, ..., K.

The region is intended to contain 100(1−α)% of theK realizations. For this purpose,

the nearest integer to K(1 − α) is chosen and denoted k∗. Denote θkm be the kth

value of the mth element of θ∗.

1. Order each of the M columns of θ∗ separately. Results are the order statistics

θ
[k]
m , and the ranks ukm, written in an (K × M) matrix U. In that way,

the empirical distributions of the elementary parameters θ1, ..., θm, ..., θM are
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brought into a comparable scale, the rank scale.

2. Calculate the minimum and maximum over each of the K rows of U, u(min)
k =

min (uk1, ..., ukm, ..., ukM), u(max)
k = max (uk1, ..., ukm, ..., ukM), and then cal-

culate u(maxmin)
k = max

(
K + 1− u(min)

k , u
(max)
k

)
, for each k = 1, ..., K. This

step leads to the ’empirical distribution’ of the maximum of the ranks after

folding over the median. This is the basic step of making the credible intervals

simultaneous.

3. The vector u(maxmin) =
(
u

(maxmin)
1 , ..., u

(maxmin)
k , ..., u

(maxmin)
K

)
is again ordered,

leading to order statistics u[k] and the corresponding ranks r(k). This allows

for finding the (k∗)th quantile of the distribution of the maximum on the rank

scale.

4. The ’critical value’ or quantile is then t∗ = u[k∗], taking the k∗th value from

the ordered sample from the folded empirical distribution of the maximum. It

has a similar function as the critical value ztwo−sidedM,R,1−α in the parametric confi-

dence intervals above, which also is the (1− α) quantile of the distribution of

max (|Z1| , ..., |Zm| , ..., |ZM |).

5. Finally, the confidence limits are constructed for each elementary parameter

θm by taking
[
θ

[K+1−t∗]
m ; θ

[t∗]
m

]
, i.e. the K + 1 − t∗th and t∗th value from the

ordered sample of the joint empirical distribution obtained for θm.

The derived region is two-sided for each parameter θm. Analogously, one-sided

regions can be constructed. E.g., lower limits can be obtained in the following way:

1. Order θ∗ for each component M separately. Results are the order statistics

θ
[k]
m , and the ranks ukm,

2. Calculate for each of the K rows, k = 1, ..., K, of U u
(min)
k = K + 1 −

min (uk1, ..., ukm, ..., ukM),

3. Order the vector u(min) =
(
u

(min)
1 , ..., u

(min)
k , ..., u

(min)
K

)
, leading to order statis-

tics u[k] and the corresponding ranks r(k).

4. The ’critical value’ or quantile is then t∗ = u[k∗], taking the k∗th value from the
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ordered sample from the empirical distribution of the minimum on the rank

scale.

5. Then the one-sided lower M -dimensional credible set for θ is constructed by

taking
[
θ

[K+1−t∗]
m ;∞

]
for each m = 1, ...,M .

The subsets of θ∗ constructed in such a way have the following properties: For dis-

crete joint empirical distributions, the SCI contain more than (1−α)K values of the

K realizations. Hence, the confidence intervals derived in such a way are conserva-

tive in theory. This conservative performance increases with increasing dimensionM

(Besag et al., 1995). Confidence regions derived in such a way are non-parametric,

in the sense that they do not depend on assumptions concerning the distribution of

θ.

In initial investigations, Dilba (2006) showed the similarity of simultaneous cred-

ible intervals derived from MCMC with non-informative priors and those derived

by frequentist analysis (Dilba, 2005; Dilba et al., 2006) in case studies assuming

homoscedastic Gaussian response.

4.5 Parameters of interest in multiple treatment

comparisons

Let µ, with elements µn, n = 1, ..., N be the vector of parameters modeling the

expectation of the observable response variable y, with elements yn, n = 1, ..., N in

dependence of a factor variable. Let g () be a transforming function (link function);

in most models considered in the following, the log-link is used, g (µn) = log (µn).

Consider generalized linear models (McCullagh and Nelder, 1989) of the form:

g (µ) = η = Xβ, (4.6)

where the variable defining the grouping of the observations y according to the I

treatments is dummy coded in the (N × I) design matrix X with elements xni and

β be an (I × 1) vector modeling the expectations of y in dependence of X on the
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link. Further, let ε denote an (N × 1) vector, containing the sums of all additional

(random) effects which are not of primary interest.

Throughout this work, the design matrix X has the form of a cell means model,

i.e., its elements have the value xni = 1 when observation yn belonged to the ith

treatment of the factor variable and xni = 0 otherwise. See (4.7) for an illustration.



1

1

2

2

2
...

I

I



: X =



1 0 . . . 0

1 0 . . . 0

0 1 . . . 0

0 1 . . . 0

0 1 . . . 0
...

... . . .
...

0 0 . . . 1

0 0 . . . 1



(4.7)

With this parametrization, β models the means of levels i = 1, ..., I on the scale

of the link. However, when also numeric covariates are of interest, other choices

are more appropriate, e.g. containing an intercept column, I − 1 columns for the

differences to the intercept and columns containing the standardized values of the

(standardized) covariates (Spiegelhalter et al., 2007).

As outlined in Section 1, interest is usually not directly in the elements of β, βi, but

in parameters that express the dissimilarity among the I treatments, e.g. in terms

of particular differences of elementary βi or corresponding ratios on the original

scale of expected values of y, µ. For simplicity of the model definition and to allow

a more general consideration of multiple comparison problems, the M -dimensional

parameter vector of interest is defined in terms of (M × I) contrast matrices C

with elements cmi.
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Canonical parameters for dissimilarity among groups

The canonical choice to express dissimilarity among groups in models assuming addi-

tivity on the link scale, is to define linear combinations, i.e., differences (of weighted

arithmetic means) of the elements βi, with weights cmi. Then, the parameters of

interest δm, m = 1, ...,M are:

δm =
I∑
i=1

cmiβi. (4.8)

Note, that in case of generalized linear models with log-link, defining the parameter

of interest as in Equation (4.8), i.e., as differences of expected values on the log-scale,

results in ratios of (weighted geometric means of) expected values on the original

scale after applying the exponential function to δm from Equation (4.8):

ρm = exp (δm) . (4.9)

If only pairwise comparisons are considered, using the ratio as parameter for dis-

similarity among groups makes sense. In case that other contrasts than pairwise

comparisons of treatments are defined in a (M × I) contrast matrices C with the

constraints
∑I

i=1 cmi = 0,∀m = 1, ...,M and
∑

i:cmi>0 cmi = 1,∀m = 1, ...,M , the

parameter of interest resulting from Equations (4.8) and (4.9) can then be written

as in Equation (4.10):

ρm =

∏
i:cmi≥0 [exp (βi)]

cmi∏
i:cmi<0 [exp (βi)]

|cmi|
. (4.10)

When the choice of the geometric mean to pool among several groups is not ap-

propriate, one might also define ratios of (weighted) arithmetic means to compare

pooled means of several groups.

Non-canonical parameters for dissimilarity among groups

In a Gaussian model with identity link, g (µn) = µn, interest may be in M ratios

of (linear combinations of) the elements βi. For that purpose, Dilba et al. (2006)

define two (M×I) matrices, A and B, with elements ami and bmi, respectively. The

ratios ρm, m = 1, ...,M are then defined:

ρm =

∑I
i=1 amiβi∑I
i=1 bmiβi

. (4.11)
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However, the definition of ratios as in Equation (4.9) is considered as the canonical

choice to describe dissimilarity among groups for strictly non-negative count data.

Note, that in case of group-wise comparisons to control and all cases with |cim| =

1,∀i = 1, ..., I ∩ ∀m = 1, ...,M strictly fulfilled, the definition of ratios in Equation

(4.9) does not differ from that in Equation (4.11).

Occasionally, one might be interested in the differences of (weighted arithmetic

means of) expected values on the original scale also for models assuming additivity

on the log scale:

δm =
I∑
i=1

cimexp (βi) . (4.12)

Comparisons to control

One of the most common experimental questions are multiple comparisons to a

single control treatment, or comparisons of a single novel treatment to several control

treatments. For comparisons to the first group, the (M × I), M = I − 1 contrasts

matrix C with elements cmi can be formally defined as:

cmi =


−1 if i=1,

1 if i=m+1,

0 otherwise.

(4.13)

Such matrices yield differences to the control group (i = 1) when applied in Equa-

tions (4.8), (4.12) and ratios to control when applied in Equation (4.9). Exemplarily,

for a setting with I = 4 treatments and M = 3 parameters of interest, the contrast

matrix C is:

C =


−1 1 0 0

−1 0 1 0

−1 0 0 1

 (4.14)

If interest is in ratios to control one might use the definition of Dilba et al. (2006):

ami =

 1 if i=m+1,

0 otherwise.
(4.15)
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bmi =

 1 if i=1,

0 otherwise.
(4.16)

yielding

A =


0 1 0 0

0 0 1 0

0 0 0 1

 (4.17)

and

B =


1 0 0 0

1 0 0 0

1 0 0 0

 , (4.18)

in the example with I = 4 treatments.

Further contrasts

The following choices of contrasts C are not of major importance in safety assess-

ment. Nevertheless, they will be considered for a small number of settings in the

simulation studies in order to expand the scope of this work to more general multiple

comparison problems.

All pairwise comparisons are frequently of interest. In the context of multiple con-

trast tests the resulting parameters have a correlation matrix which is not of full rank

(Bretz, 1999), hence are a problematic choice. For the example of I = 4 treatments,

one yields

C =



−1 1 0 0

−1 0 1 0

−1 0 0 1

0 −1 1 0

0 −1 0 1

0 0 −1 1


. (4.19)

Further, trend tests can be expressed as multiple contrast tests (Bretz, 1999; Bretz

and Hothorn, 2002). One example is the Williams-type contrasts for unbalanced
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sample sizes introduced by Bretz (2006). With ni denoting the sample size in the

ith treatment, i = 1, ..., I, the contrast matrix C has the form:

C =


−1 0 · · · 0 0 1

−1 0 · · · 0 nI−1

nI−1+nI

nI
nI−1+nI

...
... · · · ...

...
...

−1 n2

n2+···+nI
· · · nI−2

n2+···+nI
nI−1

n2+···+nI
nI

n2+···+nI

 (4.20)

Such contrasts differ from those mentioned before by defining differences of weighted

arithmetic means when the parameter of interest is δ = Cβ.

Joint posterior for the parameter of interest

Assume that MCMC is used to derive a sample of K values from the joint posterior

distribution of a primary parameter vector β = (β1, ..., βI)
t, stored in a (K × I)

matrix β∗ with elements β∗ki. A sample of K values from the joint posterior of the

parameter of interest θ = (θ1, ..., θM) can be derived by applying

θ∗km =
I∑
i=1

cmiβ
∗
ki, (4.21)

when the parameter of interest can be defined as in (4.8) or (4.12), and

θ∗km =

∑I
i=1 amiβ

∗
ki∑I

i=1 bmiβ
∗
ki

, (4.22)

when the parameter of interest can be defined as in (4.11), for all k = 1, ..., K,

m = 1, ...,M . Likewise, the joint distribution for the parameters of interest in

Equations (4.9) and (4.12) can be obtained.

4.6 SCI in a one-way model with Gaussian response

This section attempts to show that, in principle, MCMC can be used to construct

simultaneous credible intervals with competitive frequentist performance, when a

non-informative prior is assumed for the parameters of interest. However, the sit-

uations of primary interest (Sections 6 and 7) are characterized by discrete distri-

butions in complex models. These situations also involve the problem of jointly
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estimating the expectation and variance, in situations where these moments jointly

depend on several parameters. Hence, problems of estimation which might be dif-

ficult irrespective of the used method. In complex hierarchical models, technically

inappropriate choices of parameters in the update process of MCMC may cause con-

vergence problems and autocorrelations might lead to inappropriate approximations

of joint empirical distributions. Hence, the proof of concept is tried for the well

behaved problem of multiple comparisons in the one-way layout with homoscedastic

Gaussian response. As an example, Dunnett-type comparisons to control are con-

sidered. Both the difference and the ratio are taken as measures of dissimilarity,

for which frequentist solutions have been published long ago (Dunnett, 1955) and

recently (Dilba et al., 2006), respectively.

4.6.1 Model

Assume the following model:

Yn = µn + εn

µn =
∑I

i=1 xniβi

εn ∼ N (0, σ2)

(4.23)

Non-informative priors are assumed for both β and σ: βi ∼ N (0, 1000), and τ =

1/σ2 ∼ Gamma (a = 0.001, b = 1000). The BUGS code defining this model and the

technical details of the MCMC updates can be found in Section 4.6.4.

4.6.2 An example

As a comparison on the basis of realized confidence intervals, the Angina pectoris

data set of Westfall et al. (1999, p.164) is considered in detail. The data set (Sum-

mary statistics in Table 4.1) is a dose response study of a drug to treat Angina

pectoris, with an untreated control (Dose 0) and four doses (Dose 1,...,4). The re-

sponse variable is the difference post treatment - pre treatment of the duration of

pain-free walking, i.e, large values indicate positive drug effects on the patients.
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Table 4.1: Summary statistics of the Angina pectoris data set: sample size if the ith

treatment, ni, arithmetic mean of the ith sample, ŷi, standard deviation of the ith

sample σ̂i, minimal min (yi) and maximal max (yi) value.

Dose ni ŷi σ̂i min (yi) max (yi)

0 10 14.1 3.1 10.35 19.06

1 10 16.2 4.0 9.63 23.78

2 10 17.5 2.7 13.51 22.86

3 10 19.1 3.2 13.03 23.38

4 10 24.6 4.1 18.25 32.32

Assuming model (4.23) for the data leads to a primary parameter vector with ele-

ments βi, i=1,...,5. Interest is in the ratios and differences to control, as defined in

Equations (4.11) and (4.8), respectively. Applying the BUGS code in Section 4.6.4

(with one additional column in the design matrix), running 4000 updates, discard-

ing the first 2000 updates and every second update in the remaining part yields a

joint posterior distribution β∗ for which all bivariate projections are shown in Figure

4.6.2. The independence assumed for the five samples is reflected in the apparently

uncorrelated joint distributions of the βi. Applying Equation (4.21) with a (4 × 5)

Dunnett-type contrast matrix C and Equation (4.22), yields joint posterior distribu-

tions for the parameters of interest as shown in Figures 4.6.2 and 4.6.2, respectively.

The obvious correlation of the parameters of interest in Figure 4.6.2 reflects the

theoretically expected correlation rmm′ = 0.5 for m 6= m′ in the case of differences to

control (Dunnett, 1955). As can be expected from the results of Dilba et al. (2006),

the correlations among the ratios to control is slightly higher and differs slightly for

the different comparisons, since the observed ratios are increasingly greater than 1

with increasing dose. Finally, applying the method outlined in Section 4.4 to the

joint posterior distributions yields the simultaneous confidence intervals shown in

Table 4.2. This table also shows the bounds obtainable by directly using Dunnett

(1955) and Dilba et al. (2006) based on sample estimates for βi and σ. The bounds

obtained by MCMC appear practically equivalent to those obtained by the standard
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Figure 4.2: Bivariate projections of the MCMC sample of the joint distribution of

the I = 5 means of the treatment groups. Lines join consecutive draws in the MCMC

sample.
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Figure 4.3: Scatter plots of bivariate projections of the MCMC sample of the joint

distribution of theM = 4 differences of means of the dose groups to the mean of the

untreated groups. The solid lines indicate the limits of 0.95 confidence sets derived

by MCMC.
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Figure 4.4: Scatter plots of bivariate projections of the MCMC sample of the joint

distribution of the M = 4 ratios of means of the dose groups to the mean of the

untreated groups. The solid lines indicate the limits of 0.95 confidence sets derived

by MCMC.
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methods.

Table 4.2: Two-sided 0.95 confidence intervals for the M = 4 comparisons to control

based on the ratios and differences of means. The first column names the parame-

ter, column two gives the sample estimate, columns three and four show the lower

and upper bounds of the simultaneous (0.95) confidence intervals according to the

frequentist solutions of Dilba et al. (2006) and Dunnett (1955), columns five and

six show lower and upper bounds of simultaneous (0.95) confidence intervals derived

from MCMC sampling.

Frequentist MCMC

Parameter Estimate Lower Upper Lower Upper

µ1/µ0 1.149 0.890 1.496 0.869 1.470

µ2/µ0 1.241 0.972 1.606 0.965 1.574

µ3/µ0 1.354 1.071 1.742 1.081 1.710

µ4/µ0 1.745 1.411 2.213 1.405 2.202

µ1 − µ0 2.095 −1.825 6.015 −2.227 6.088

µ2 − µ0 3.397 −0.523 7.317 −0.964 7.025

µ3 − µ0 4.995 1.075 8.915 1.177 8.577

µ4 − µ0 10.499 6.579 14.419 6.549 14.211
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4.6.3 Simulation study: Summary of results

Table 4.3 in Section 4.6.5 shows simulation results for 15 settings with balanced

sample sizes ni = 5, 10, 100 for nominal two-sided 0.95 SCI and their lower and upper

0.975 bounds, respectively. Simultaneous confidence intervals were computed for δ

and ρ as defined in (4.13) and (4.15, 4.16), respectively. The coverage probability

is close to the nominal level for small sample sizes ni = 5 for two-sided as well as

one-sided consideration. For larger sample sizes, the SCI become slightly liberal in

tendency.

Here it is found that simultaneous credible intervals from empirical joint distributions

obtained from MCMC may have acceptable frequentist coverage probability, when

non-informative priors are imposed on the parameters of interest.

4.6.4 BUGS code and update parameters

Consider a one way layout with homoscedastic Gaussian response I = 4 groups

and non-informative priors on the means and the variance parameter as defined

in (4.23). Y is the (N × 1) matrix of observations, the (N × 4) design matrix X

and the corresponding (4× 1) parameter vector β are assumed to be parameterized

as a cellmeans model. Note that the normal distribution is parameterized with

expectation mu and precision parameter tau, the reciprocal of the variance.

model

{

for(n in 1:N){

X[n,1] <- X1[n]

X[n,2] <- X2[n]

X[n,3] <- X3[n]

X[n,4] <- X4[n]

Y[n] ~ dnorm(mu[n], tau)

mu[n] <- inprod(X[n,], beta[])
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}

for(p in 1:P){

beta[p] ~ dnorm(0,0.0001)

muvec[p]<-beta[p]

}

tau ~ dgamma(0.001, 0.001)

sigma<-1/sqrt(tau)

}

A similar model can be found in the OpenBUGS example manual (Spiegelhalter et al.,

2007). For updating the model, the vectors Y, X1, X2, X3, X4 and the integers N and

P need to be provided along with initial values for the vector beta and the real tau.

The simulation has been run with S=1000 Monte Carlo draws from the assumed

model for each parameter setting. For each random sample, SCI were computed

based on an MCMC run with 2000 updates, first 1000 updates discarded and no

thinning, resulting in a sample of K = 1000 values from the joint posterior.

4.6.5 Detailed results
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Table 4.3: Simultaneous coverage probability of two-sided nominal 0.95 SCI derived

from MCMC with σ = 1, for Dunnett-type contrasts for the ratio ρ and difference δ

of means of Gaussian samples. Simulations based on K = 1000 and S=1000.

ρ δ

µ1 µ2 µ3 µ4 ni SCPts SCPl SCPu SCPts SCPl SCPu

50.0 50.0 50.0 50.0 5 0.952 0.977 0.974 0.952 0.977 0.974
50.0 62.5 50.0 62.5 5 0.943 0.973 0.970 0.940 0.969 0.971
50.0 40.0 50.0 40.0 5 0.944 0.970 0.974 0.941 0.969 0.972
50.0 50.0 50.0 250.0 5 0.955 0.975 0.980 0.951 0.978 0.973
50.0 50.0 50.0 5.0 5 0.949 0.978 0.971 0.942 0.968 0.974
50.0 50.0 50.0 50.0 10 0.934 0.956 0.978 0.934 0.956 0.978
50.0 62.5 50.0 62.5 10 0.939 0.963 0.976 0.942 0.967 0.975
50.0 40.0 50.0 40.0 10 0.939 0.966 0.973 0.940 0.967 0.973
50.0 50.0 50.0 250.0 10 0.961 0.978 0.983 0.950 0.976 0.974
50.0 50.0 50.0 5.0 10 0.955 0.975 0.980 0.951 0.974 0.977
50.0 50.0 50.0 50.0 100 0.946 0.963 0.983 0.946 0.963 0.983
50.0 62.5 50.0 62.5 100 0.937 0.964 0.973 0.937 0.962 0.975
50.0 40.0 50.0 40.0 100 0.936 0.957 0.978 0.941 0.962 0.979
50.0 50.0 50.0 250.0 100 0.938 0.963 0.975 0.931 0.953 0.978
50.0 50.0 50.0 5.0 100 0.935 0.965 0.970 0.944 0.966 0.978
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Chapter 5

Confidence intervals for ratios of

means of negative binomials in the

one-way layout

In this Chapter, methods formally described in Chapter 3 are applied to the problem

of constructing local and simultaneous confidence intervals for contrasts of group-

wise means, where the response variable y is assumed to follow a negative binomial

distribution.

5.1 Statistical model

Assume a simple one-way layout with a response vector y, containing N mutually

independent observations yn, which are classified by a single variable with I levels,

i = 1, ..., I. The classifying variable is dummy coded (0, 1) in an (N × I) design

matrix X, and β is a (I × 1) parameter vector, estimating the group means on the

log-scale. For simplicity, it is assumed that X is defined as outlined in Section 4.5,

Equation (4.7). It is assumed that the variability of y can be entirely described by the

unknown expectation µ and the assumption of the negative binomial distribution

with unknown but common dispersion parameter τ . The model can be formally

55
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defined by Equation (5.1):

Yn ∼ NB (µn, τ)

log (µn) = ηn

ηn =
∑I

i=1 xniβi

(5.1)

In the simplest case, consider the model in Equation 5.1 with I = 2, where interest

is in confidence intervals for the ratio of the means, θ = µ2/µ1.

5.1.1 Model fit and estimation of the dispersion parameter

In the frequentist setting, the above model can be fitted using maximum likelihood

methods as described in Venables and Ripley (2002) or the algorithm proposed by

Rigby and Stasinopoulos (2005). However, the problem involves joint estimation of

mean and dispersion parameters, where the variance of Y depend on the parameters

µ and τ in Equation (A.7) or on a and b in Equation (A.6). Saha and Paul (2005)

investigated estimation procedures for the dispersion parameters. They come to

the conclusion that different previously proposed methods lead to negatively biased

estimators. Consequently, they propose a bias-corrected estimator which, however,

still shows negative bias for relevant parameter settings.

5.1.2 Inference for negative binomial parameters

Although the negative binomial distribution has been used since long to model

overdispersed count data (Anscombe, 1949, 1950; Bliss and Fisher, 1953), the validity

of inferential methods following the model fit in general and the coverage probabil-

ity of local and simultaneous confidence intervals for dissimilarity of µi in particular

has rarely been considered. Lawless (1987) recommends the normal approximation

for estimating µ for samples as small as n = 25, 30. Simulation studies show that

the distribution of sample estimates for µi in two-parameter problems has heavier

tails than a standard normal distribution. Breslow (1990) considers tests for main
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effects (tests for the significance of added variables) in log-linear models assuming

negative binomial response among others; he shows that tests are conservative when

overdispersion is negligible, but become liberal when there is marked overdispersion.

Campbell et al. (1999) consider the size of F-tests and χ2-tests for two-factorial

additive models assuming the negative binomial distribution; they again find that

large overdispersion leads to markedly liberal tests while for settings close to the

Poisson distribution, the considered methods become conservative. Gerhard and

Schaarschmidt (2007) show simulation results for the coverage probability of Wald-

type intervals for the ratio of two means, with results corresponding to those of

Breslow (1990) and Campbell et al. (1999). Recently, Hothorn et al. (2008) con-

sider asymptotic inference for multiple treatment comparisons in generalized linear

models; however, small sample properties of the described simultaneous Wald-type

confidence intervals are not considered.

5.2 Wald-type confidence intervals

Fitting the model in Equation (5.1) yields estimates for the expectation on the log-

scale β̂ with elements β̂1, β̂2 and the estimated variance-covariance matrix Σ̂ with

the diagonal elements σ̂1, σ̂2 (McCulloch and Searle, 2001). Assuming completely

randomized designs and a parametrization as outlined in (4.7), the off-diagonal el-

ements of Σ are 0 and marginal (1 − 2α) Wald-type confidence intervals can be

constructed using Equation (5.2), (McCulloch and Searle, 2001):

[
θ̂l; θ̂u

]
= exp

(
β̂2 − β̂1 ± z1−α

√
σ̂2

2 + σ̂2
1

)
, (5.2)

where z1−α is the 1 − α quantile of the standard normal distribution. Gerhard

and Schaarschmidt (2007) showed by simulation studies that Wald intervals for

the considered model may be liberal when there is clear overdispersion and sample

sizes are small (5-10 observations per group). For other parameter settings with

small sample sizes, the intervals may be very conservative, namely covering the true

parameter with probability close to 1.
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5.3 Confidence intervals based on MCMC

One can translate the statistical model in (5.1) for the case I = 2 into the BUGS

model in Section 6.3.2 with non-informative priors imposed on all parameters. An

empirical distribution for θ is obtained by recording the K values of exp (β2 − β1)

of an MCMC run with K updates. Confidence intervals can then be constructed as

described in Section 3.4.

5.4 Performance for observing only zeros

The result of observing only zeros in at least one sample is a common problem in

overdispersed count data (e.g. Prescher, 2005, personal communication; Rauschen

et al., 2008). For small samples, large overdispersion and small mean abundance,

the case may occur that no individual is counted in at least one of the samples

(see Table 5.1). Since that event is a reasonable outcome for a negative binomial

random variable, and is not contradictory to the negative binomial assumption, it

can be required that also in this particular case, confidence intervals for ρ = µi/µi′

are obtained that have the properties outlined in Section 3.1.

Table 5.1: Probability to observe only zeros in a sample of N independent draws

from a negative binomial distribution with parameters µ and τ as defined in Equation

(A.7) in the Appendix.

Expectation µ

0.10 0.50 0.80 1.00 1.25 2.00 10.00

N = 5, τ = 1 0.621 0.132 0.053 0.031 0.017 0.004 0.000

N = 10, τ = 1 0.386 0.017 0.003 0.001 0.000 0.000 0.000

N = 5, τ = 10 0.608 0.087 0.021 0.009 0.003 0.000 0.000

N = 10, τ = 10 0.370 0.008 0.000 0.000 0.000 0.000 0.000

Consider the case of two independent samples, y1 and y0, each consisting of eight

observations (Table 5.2). Consider now the problem of estimating two-sided nominal
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Table 5.2: Hypothetical example with only 0 counts in one sample.

y0 = (y1, ..., y8)
′ 0 0 0 0 0 0 0 0

y1 = (y9, ..., y16)
′ 0 0 0 2 0 0 0 1

0.9 confidence intervals for the ratio of mean abundance in sample y1 relative to the

mean abundance in sample y0, µ0/µ1. Table 5.3 shows the resulting lower and upper

0.95 confidence limits of four methods: First, the Wald-type interval according to

(5.2), based on estimates for β and Σ obtained from the algorithm of Rigby and

Stasinopoulos (2005). Second, an MCMC derived interval using the BUGS code in

Section 5.6.1 with a non-informative prior on βi,

βi ∼ N (0, 1000) . (5.3)

Third, an MCMC derived interval using the BUGS code in Section 5.6.1 with a weakly

informative prior on βi,

βi ∼ N (0, 10) . (5.4)

Both MCMC derived intervals rely on a sample of K = 1000 values from the poste-

rior, obtained from a single chain of 4000 values, with 2000 values discarded in the

beginning and one out of two values discarded in the remaining part of the chain.

Finally, an interval based on a likelihood profile is shown, using R code (Gerhard,

2008, personal communication; Venables and Ripley, 2002) which makes the calcu-

lation of likelihood profiles feasible for extreme events by restricting the parameter

space on the log scale to [−25, 25], being implemented in the package pairwiseCI

(Schaarschmidt, 2008).

Obviously, the Wald-type interval covers practically the whole parameter space

[0,∞], resulting from the simple problem, that the estimate for β0 goes to −∞

and the variance estimate at the position of the point estimate is (numerically close

to) ∞. Using MCMC with a non-informative prior in Equation (5.3) results in

a rather narrow confidence interval [0; 0.054], implying a rather clear dissimilarity

based on the weak empirical basis provided by the data. Using MCMC with the

weakly informative prior in Equation (5.4) results in an interval with both bounds
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Table 5.3: Lower and upper 0.95 confidence limits for the ratio of mean abundances

µ0/µ1, based on the samples in Table 5.2, according to four different methods.

CI method Estimate Lower 0.95 limit Upper 0.95 limit

Wald-type 2.2e−05 2.2e−58 2.3e+48

MCMC, non-informative prior 2.2e−09 3.3e−26 5.4e−02

MCMC, weakly informative prior 7.2e−02 2.4e−03 9.6e−01

Likelihood profile interval 1.5e−09 0.0e+00 6.8e−01

closer to 1 than the previous, [0.002; 0.96]. Here, the lower bound is mainly gov-

erned by the prior assumption on the means. The likelihood profile method yields

[0; 0.68], with the upper bound closest to the MCMC solution based on the weakly

informative prior.

For the parameter µ1/µ0, similar inconsistencies between the methods are observed

(Table 5.4). The Wald-type interval again practically covers the parameter space

and fails to reflect that the evidence for µ1 > µ0 is slightly larger than the evidence

for µ1 < µ0 after observing the sample.

Table 5.4: Lower and upper 0.95 confidence limits for the ratio of mean abundances

µ1/µ0, based on the samples in Table 5.2, according to four different methods.

CI method Estimate Lower 0.95 limit Upper 0.95 limit

Wald-type 4.5e+04 4.4e−49 4.6e+57

MCMC, non-informative prior 7.9e+08 2.2e+01 3.2e+25

MCMC, weakly informative prior 1.2e+01 1.3e+00 4.5e+02

Likelihood profile interval 6.7e+08 1.5e+00 ∞

From the above considerations of a case where one sample consists only of 0-counts

it is obvious that Wald-type confidence intervals yield inappropriate results for this

important special case. Bounds close to [0,∞] appear whenever one sample contains

only zeros, even when the other sample contains many non-zero counts, and therefore
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provides substantial evidence for a dissimilarity in means. In a frequentist simulation

of the coverage probability, this problem will show up as conservative performance

(coverage probability larger than the prespecified level (1− α)), when settings with

small sample size and mean abundance and large overdispersion are considered (see

Gerhard and Schaarschmidt, 2007). In the two-sample case, point-wise inversion of

a likelihood ratio test can be a remedy to this problem. MCMC derived intervals

based on non-informative priors may yield too narrow confidence intervals.
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5.5 Frequentist performance of MCMC derived con-

fidence intervals: Simulation study

In simulation studies, the frequentist performance of MCMC derived marginal con-

fidence intervals was assessed. Several models, slightly differing in the definition of

prior distributions, were considered.

Model (5.1) can be written as the BUGS model in Section 5.6.1. In the simulation

study with details shown in Section 5.6, for fixed values of βi, i = 1, 2 and τ , the cov-

erage probability of confidence intervals for ρ = exp (β2 − β1) and the non-canonical

parameter δ = exp (β2) − exp (β1) was assessed for settings with balanced group-

wise sample size 10, 20, 50 (i.e., N = 20, 40, 100 equally distributed to the I = 2

treatments). In the simulations, two-sided nominal 0.9 confidence intervals were

calculated and frequentist coverage probabilities were estimated based on 10000 or

1000 replications of the random experiment.

Along with assessing the frequentist performance of the MCMC derived confidence

intervals for different parameter values, technical parameters (number of updates,

number of values discarded) of the MCMC runs were varied in order to assess whether

the chosen technical parameters have influence on the observed performance.

5.5.1 Effect of mean abundance and sample size

Tables 5.6, 5.7 and 5.8 show that, with noticeable overdispersion τ = 1, MCMC de-

rived confidence interval for the ratio of means have a coverage probability decreasing

with decreasing mean abundance and decreasing sample size. About nominal cov-

erage probability is achieved when the mean abundance is large or intermediate

µ1 = 50, 10 in combination with large group-wise sample sizes of 50. For intermedi-

ate group-wise sample sizes 20 the coverage probability may still be acceptable with

large mean abundances but can be as small as 0.8 for nominal two-sided 0.9 intervals,

when the mean abundance is about µi = 1. For the often realistic sample size of 10

(Table 5.6), coverage probabilities are slightly below the nominal level (0.88-0.89) for
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large abundances but clearly below the nominal level (0.84-0.88) when abundance is

only intermediate and severely liberal (0.6-0.85) for abundances close to 1.

5.5.2 Upper and lower bounds

The coverage probabilities of lower and upper bounds separately are about equal,

except in cases where group-wise sample sizes are small and the ratios extreme

(ρ = 0.1, 10). Hence two-sided 0.9 confidence intervals for the ratio of means might

be used for a proof of safety with level approximately 0.05, provided that sample

sizes are at least 20 per group, mean abundance is not very low and the dissimilarity

between the groups is not extreme.

5.5.3 Results for the difference of means

Considering the non-canonical difference of means yields similar overall conclusions

concerning the validity of the confidence intervals, but slightly different results in the

actual violations of the nominal levels. Also here, the coverage probabilities of lower

and upper bounds separately are close to 0.95 for nominal two-sided 0.9 intervals,

as long as the group-wise sample size is at least 20, the abundance is not too small

(at least about 10).

5.5.4 Moderate overdispersion

Comparing the above results to situations with relatively moderate overdispersion

with τ = 10 (Tables 5.10 and 5.9 for group-wise sample sizes 20 and 10, respectively)

the intervals are less liberal when abundances are low, but are about as liberal or

more liberal than in a situation with high overdispersion.
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5.5.5 Effect of using a gamma prior on τ

Table 5.5 contains results for defining the BUGS code with a non-informative uni-

form prior for the precision parameter τ ∼ unif (0, 1000) while Table 5.11 shows re-

sults for the same parameter settings and model parameters using a non-informative

gamma prior τ ∼ gamma (0.001, 1000) for the precision parameter. For the most

relevant setting of group-wise sample sizes 10, the confidence intervals based on a

model with gamma prior are uniformly closer to the nominal level. Although the

use of the gamma prior does not avoid the extremely liberal performance when

mean abundance is very low (µ2 = 0.1) it has coverage probabilities 0.86-0.89 for

situations with low abundance where the model using a uniform prior results in cov-

erage probabilities 0.76-0.85. Based on the few simulated settings, one may carefully

recommend to use a gamma prior instead a uniform prior.

5.5.6 Effects of number of updates

Comparing Table 5.5 with the results in Table 5.6 shows that a sufficient number

of updates was used in the MCMC runs underlying the results discussed above.

Decreasing the number of updates to 2000 and basing the confidence intervals on

a sample of K = 1000 values from the posterior results in about equal estimates

for the coverage probability. Additionally (results not shown), considering Gewekes

(Gelman et al., 2004; Geweke, 1992) tests for convergence on the simulation results

showed that the null-hypotheses is rejected less often than can be expected under

the null-hypotheses of a stationary chain. When those simulations were omitted

for which Gewekes test rejected the null-hypotheses for at least one parameter in

the model or all parameters in the model, the resulting estimates for the coverage

probability did not differ markedly from those shown in the Tables in Section 5.6.
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5.5.7 Summary

MCMC-based confidence intervals for the ratio of two means assuming a negative

binomial response show a liberal performance for the considered settings. Especially

for very small mean abundance, the probability to cover the true parameter is sub-

stantially lower than the nominal level. When applied in a proof of safety, such

confidence intervals will lead too often to a conclusion for safety when indeed the

null-hypothesis of hazardousness is true.

5.6 A uniform prior for the dispersion parameter

5.6.1 BUGS code and update parameters

The following BUGS code represents the one-way model with negative binomial re-

sponse of Equation (5.1), with I = 2 groups. The parametrization of the negative

binomial and normal distribution as used in the following implementations in BUGS

is explained in Appendix A.

model

{

for(n in 1:N)

{

X[n,1] <- X1[n]

X[n,2] <- X2[n]

Y[n] ~ dnegbin(pi[n], r)

pi[n] <- r/(r+mu[n])

mu[n] <- exp(eta[n])

eta[n] <- inprod(X[n,], beta[])

}

for(p in 1:P)

{
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beta[p] ~ dnorm(0, 0.001)

muvec[p]<-exp(beta[p])

}

r ~ dunif(0,1000)

}

For running the model, the vectors Y, X1, X2, and the integers N and P have to be

provided along with initial values for the vector beta with two elements and the real

r.

5.6.2 Detailed results for K = 1000

In the following simulations, a chain of 2000 updates was run, with the first 1000

values discarded and no thinning, resulting in a sample of K = 1000 values from

the posterior distribution. The estimates of the coverage probability are based on

S=10000 random draws of y from the model in Equation (5.1) with I = 2, τ = 1

and further parameters as indicated in the headers of the tables. Table 5.5 shows

coverage probabilities for high, intermediate and low abundances and sample size

ni = 10.



5.6. UNIFORM PRIOR FOR DISPERSION 67

Table 5.5: Coverage probability of two-sided nominal 0.9 confidence intervals for the

ratio ρ and difference δ of means, assuming the negative binomial model in Equation

(5.1), based on K = 1000 and S = 10000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
50 10 0.1 −45.0 0.863 0.933 0.930 0.860 0.924 0.935
50 10 0.5 −25.0 0.873 0.937 0.936 0.873 0.928 0.945
50 10 0.8 −10.0 0.873 0.938 0.935 0.873 0.935 0.938
50 10 1 0.0 0.875 0.939 0.936 0.876 0.940 0.936
50 10 1.2 10.0 0.875 0.938 0.938 0.878 0.942 0.936
50 10 2 50.0 0.875 0.937 0.938 0.884 0.949 0.934
50 10 5 200.0 0.875 0.935 0.940 0.885 0.947 0.938
10 10 0.1 −9.0 0.850 0.941 0.908 0.836 0.904 0.932
10 10 0.5 −5.0 0.866 0.938 0.928 0.868 0.926 0.942
10 10 0.8 −2.0 0.868 0.937 0.931 0.870 0.934 0.936
10 10 1 0.0 0.867 0.936 0.931 0.867 0.936 0.931
10 10 1.2 2.0 0.872 0.939 0.933 0.871 0.941 0.930
10 10 2 10.0 0.872 0.939 0.933 0.873 0.948 0.925
10 10 5 40.0 0.869 0.937 0.932 0.875 0.947 0.928
10 10 10 90.0 0.878 0.939 0.940 0.883 0.943 0.940
1 10 0.1 −0.9 0.570 0.950 0.620 0.743 0.836 0.907
1 10 0.5 −0.5 0.765 0.892 0.873 0.768 0.869 0.899
1 10 0.8 −0.2 0.761 0.881 0.881 0.758 0.871 0.886
1 10 1.0 0.0 0.762 0.881 0.881 0.762 0.881 0.881
1 10 1.2 0.2 0.758 0.878 0.880 0.756 0.882 0.874
1 10 2.0 1.0 0.765 0.882 0.883 0.743 0.900 0.843
1 10 5.0 4.0 0.819 0.902 0.916 0.775 0.930 0.845
1 10 10.0 9.0 0.853 0.915 0.938 0.834 0.935 0.900
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5.6.3 Detailed results for K = 5000

The following Tables 5.6, 5.7 and 5.8 show coverage probabilities, based on a chain

of 6000 updates, with the first 1000 values discarded and no thinning, resulting in a

sample of K = 5000 values from the posterior distribution. Coverage probabilities

are based on S = 1000 draws of y from model (5.1) for each parameter setting.

Tables 5.6, 5.7 and 5.8 show results for noticeable overdispersion, τ = 1, for group-

wise sample size of 10, 20 and 50, respectively. Tables 5.9 and 5.10 show results for

low overdispersion, τ = 10, for group-wise sample size of 10 and 20 respectively.

Table 5.6: Coverage probability of two-sided nominal 0.9 confidence intervals for the

ratio and difference of means, assuming the negative binomial model in Equation

(5.1) with noticeable overdispersion, τ = 1. Simulations based on K=5000, S=1000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
50 10 0.1 −45.0 0.887 0.937 0.950 0.891 0.940 0.951
50 10 0.5 −25.0 0.877 0.941 0.936 0.889 0.936 0.953
50 10 0.8 −10.0 0.880 0.945 0.935 0.889 0.943 0.946
50 10 1.0 0.0 0.889 0.949 0.940 0.889 0.949 0.940
50 10 1.2 10.0 0.894 0.946 0.948 0.891 0.946 0.945
50 10 2.0 50.0 0.887 0.941 0.946 0.881 0.948 0.933
50 10 5.0 200.0 0.882 0.938 0.944 0.878 0.942 0.936
10 10 0.1 −9.0 0.840 0.925 0.915 0.816 0.890 0.926
10 10 0.5 −5.0 0.849 0.921 0.928 0.856 0.913 0.943
10 10 0.8 −2.0 0.849 0.916 0.933 0.855 0.917 0.938
10 10 1.0 0.0 0.857 0.929 0.928 0.857 0.929 0.928
10 10 1.2 2.0 0.868 0.933 0.935 0.865 0.936 0.929
10 10 2.0 10.0 0.875 0.934 0.941 0.857 0.942 0.915
10 10 5.0 40.0 0.869 0.935 0.934 0.882 0.959 0.923
10 10 10.0 90.0 0.878 0.944 0.934 0.886 0.951 0.935
1 10 0.1 −0.9 0.604 0.952 0.652 0.740 0.824 0.916
1 10 0.5 −0.5 0.758 0.880 0.878 0.760 0.850 0.910
1 10 0.8 −0.2 0.751 0.864 0.887 0.754 0.858 0.896
1 10 1.0 0.0 0.752 0.864 0.888 0.752 0.864 0.888
1 10 1.2 0.2 0.743 0.860 0.883 0.749 0.870 0.879
1 10 2.0 1.0 0.771 0.874 0.897 0.755 0.887 0.868
1 10 5.0 4.0 0.818 0.894 0.924 0.809 0.927 0.882
1 10 10.0 9.0 0.849 0.907 0.942 0.844 0.933 0.911
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Table 5.7: Coverage probability of two-sided nominal 0.9 confidence intervals for the

ratio and difference of means, assuming the negative binomial model in Equation

(5.1), with noticeable overdispersion, τ = 1. Simulations based onK=5000, S=1000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
50 20 0.1 −45.0 0.899 0.948 0.951 0.902 0.948 0.954
50 20 0.5 −25.0 0.893 0.944 0.949 0.898 0.946 0.952
50 20 0.8 −10.0 0.878 0.938 0.940 0.886 0.939 0.947
50 20 1.0 0.0 0.886 0.939 0.947 0.886 0.939 0.947
50 20 1.2 10.0 0.893 0.946 0.947 0.894 0.946 0.948
50 20 2.0 50.0 0.892 0.946 0.946 0.893 0.956 0.937
50 20 5.0 200.0 0.895 0.944 0.951 0.892 0.949 0.943
10 20 0.1 −9.0 0.885 0.956 0.929 0.882 0.939 0.943
10 20 0.5 −5.0 0.880 0.943 0.937 0.886 0.941 0.945
10 20 0.8 −2.0 0.875 0.940 0.935 0.871 0.939 0.932
10 20 1.0 0.0 0.875 0.942 0.933 0.875 0.942 0.933
10 20 1.2 2.0 0.893 0.948 0.945 0.889 0.948 0.941
10 20 2.0 10.0 0.891 0.953 0.938 0.898 0.958 0.940
10 20 5.0 40.0 0.882 0.945 0.937 0.881 0.945 0.936
10 20 10.0 90.0 0.879 0.947 0.932 0.875 0.939 0.936
1 20 0.1 −0.9 0.816 0.954 0.862 0.783 0.870 0.913
1 20 0.5 −0.5 0.813 0.915 0.898 0.795 0.889 0.906
1 20 0.8 −0.2 0.798 0.903 0.895 0.803 0.903 0.900
1 20 1.0 0.0 0.798 0.905 0.893 0.798 0.905 0.893
1 20 1.2 0.2 0.811 0.913 0.898 0.807 0.918 0.889
1 20 2.0 1.0 0.826 0.914 0.912 0.818 0.932 0.886
1 20 5.0 4.0 0.873 0.940 0.933 0.870 0.954 0.916
1 20 10.0 9.0 0.881 0.940 0.941 0.845 0.931 0.914
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Table 5.8: Coverage probability of two-sided nominal 0.9 confidence intervals for the

ratio and difference of means, assuming the negative binomial model in Equation

(5.1), with noticeable overdispersion, τ = 1. Simulations based onK=5000, S=1000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
50 50 0.1 −45.0 0.904 0.949 0.955 0.908 0.949 0.959
50 50 0.5 −25.0 0.906 0.949 0.957 0.905 0.947 0.958
50 50 0.8 −10.0 0.901 0.948 0.953 0.905 0.951 0.954
50 50 1.0 0.0 0.896 0.950 0.946 0.895 0.949 0.946
50 50 1.2 10.0 0.892 0.954 0.938 0.893 0.954 0.939
50 50 2.0 50.0 0.894 0.949 0.945 0.896 0.951 0.945
50 50 5.0 200.0 0.888 0.953 0.935 0.894 0.957 0.937
10 50 0.1 −9.0 0.886 0.955 0.931 0.882 0.944 0.938
10 50 0.5 −5.0 0.894 0.948 0.946 0.905 0.953 0.952
10 50 0.8 −2.0 0.893 0.951 0.942 0.891 0.951 0.940
10 50 1.0 0.0 0.901 0.958 0.943 0.901 0.958 0.943
10 50 1.2 2.0 0.907 0.958 0.949 0.912 0.959 0.953
10 50 2.0 10.0 0.903 0.953 0.950 0.905 0.957 0.948
10 50 5.0 40.0 0.903 0.955 0.948 0.906 0.955 0.951
10 50 10.0 90.0 0.909 0.956 0.953 0.906 0.955 0.951
1 50 0.1 −0.9 0.862 0.964 0.898 0.841 0.910 0.931
1 50 0.5 −0.5 0.857 0.937 0.920 0.850 0.925 0.925
1 50 0.8 −0.2 0.850 0.937 0.913 0.857 0.939 0.918
1 50 1.0 0.0 0.867 0.943 0.924 0.867 0.943 0.924
1 50 1.2 0.2 0.870 0.941 0.929 0.868 0.944 0.924
1 50 2.0 1.0 0.887 0.956 0.931 0.882 0.959 0.923
1 50 5.0 4.0 0.902 0.953 0.949 0.890 0.955 0.935
1 50 10.0 9.0 0.895 0.948 0.947 0.897 0.952 0.945
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Table 5.9: Coverage probability of two-sided nominal 0.9 confidence intervals for the

ratio and difference of means, assuming the negative binomial model in Equation

(5.1), with low overdispersion, τ = 10. Simulations based on K=5000, S=1000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
50 10 0.1 −45.0 0.866 0.945 0.921 0.807 0.901 0.906
50 10 0.5 −25.0 0.845 0.937 0.908 0.828 0.921 0.907
50 10 0.8 −10.0 0.857 0.938 0.919 0.847 0.933 0.914
50 10 1.0 0.0 0.868 0.944 0.924 0.867 0.944 0.923
50 10 1.2 10.0 0.869 0.942 0.927 0.860 0.944 0.916
50 10 2.0 50.0 0.858 0.938 0.920 0.861 0.944 0.917
50 10 5.0 200.0 0.865 0.938 0.927 0.859 0.943 0.916
10 10 0.1 −9.0 0.857 0.952 0.905 0.802 0.889 0.913
10 10 0.5 −5.0 0.828 0.922 0.906 0.805 0.901 0.904
10 10 0.8 −2.0 0.808 0.903 0.905 0.802 0.897 0.905
10 10 1.0 0.0 0.814 0.912 0.902 0.814 0.912 0.902
10 10 1.2 2.0 0.820 0.906 0.914 0.821 0.906 0.915
10 10 2.0 10.0 0.822 0.913 0.909 0.813 0.918 0.895
10 10 5.0 40.0 0.853 0.917 0.936 0.836 0.925 0.911
10 10 10.0 90.0 0.868 0.926 0.942 0.848 0.932 0.916
1 10 0.1 −0.9 0.604 0.971 0.633 0.874 0.908 0.966
1 10 0.5 −0.5 0.859 0.940 0.919 0.875 0.935 0.940
1 10 0.8 −0.2 0.857 0.940 0.917 0.861 0.934 0.927
1 10 1.0 0.0 0.864 0.934 0.930 0.864 0.934 0.930
1 10 1.2 0.2 0.871 0.935 0.936 0.869 0.936 0.933
1 10 2.0 1.0 0.862 0.925 0.937 0.867 0.948 0.919
1 10 5.0 4.0 0.866 0.918 0.948 0.827 0.925 0.902
1 10 10.0 9.0 0.875 0.917 0.958 0.815 0.919 0.896
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Table 5.10: Coverage probability of two-sided nominal 0.9 confidence intervals for

the ratio and difference of means, assuming the negative binomial model in Equation

(5.1), with low overdispersion, τ = 10. Simulations based on K=5000, S=1000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
50 20 0.1 −45.0 0.899 0.951 0.948 0.859 0.922 0.937
50 20 0.5 −25.0 0.879 0.937 0.942 0.884 0.932 0.952
50 20 0.8 −10.0 0.884 0.932 0.952 0.881 0.928 0.953
50 20 1.0 0.0 0.884 0.933 0.951 0.882 0.932 0.950
50 20 1.2 10.0 0.889 0.937 0.952 0.891 0.942 0.949
50 20 2.0 50.0 0.893 0.940 0.953 0.897 0.952 0.945
50 20 5.0 200.0 0.893 0.935 0.958 0.895 0.941 0.954
10 20 0.1 −9.0 0.888 0.952 0.936 0.822 0.888 0.934
10 20 0.5 −5.0 0.851 0.920 0.931 0.839 0.904 0.935
10 20 0.8 −2.0 0.833 0.906 0.927 0.833 0.900 0.933
10 20 1.0 0.0 0.843 0.913 0.930 0.843 0.913 0.930
10 20 1.2 2.0 0.849 0.916 0.933 0.847 0.917 0.930
10 20 2.0 10.0 0.864 0.918 0.946 0.858 0.917 0.941
10 20 5.0 40.0 0.870 0.921 0.949 0.874 0.936 0.938
10 20 10.0 90.0 0.883 0.928 0.955 0.888 0.939 0.949
1 20 0.1 −0.9 0.836 0.972 0.864 0.854 0.913 0.941
1 20 0.5 −0.5 0.871 0.944 0.927 0.870 0.932 0.938
1 20 0.8 −0.2 0.870 0.934 0.936 0.868 0.934 0.934
1 20 1.0 0.0 0.869 0.934 0.935 0.869 0.934 0.935
1 20 1.2 0.2 0.873 0.940 0.933 0.880 0.942 0.938
1 20 2.0 1.0 0.865 0.933 0.932 0.881 0.948 0.933
1 20 5.0 4.0 0.850 0.921 0.929 0.848 0.931 0.917
1 20 10.0 9.0 0.858 0.919 0.939 0.832 0.929 0.903
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5.7 A gamma prior for the dispersion parameter

5.7.1 BUGS code and update parameters

The following model BUGS code represents the one-way model with negative binomial

response of Equation (5.1), with I = 2 groups. In the following simulations the model

of section 5.6.1 is used with the only difference that

r ~ unif(0,1000)

is replaced by

r ~ dgamma(0.001,0.001).

I.e., in contrast to the model in Section 5.6, a (conjugate), non-informative gamma

prior is assumed for the parameter τ of the negative binomial distribution τ ∼

gamma (0.001, 1000).

5.7.2 Detailed results

The technical details for running MCMC are the same as in Section 5.6.2. The

estimated coverage probability is based on S=10000 random draws of y from the

model in Equation (5.1) with I = 2, τ = 1 and further parameters as indicated in

the headers of the Tables. Tables 5.11 shows situations with high, intermediate and

low mean abundance and group-wise sample size of 10.
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Table 5.11: Coverage probability of two-sided nominal 0.9 confidence intervals for the

ratio and difference of means, assuming the negative binomial model in Equation

(5.1), with noticeable overdispersion, τ = 1. Simulations are based on K=1000,

S=10000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
50 10 0.1 −45.0 0.885 0.941 0.944 0.889 0.940 0.949
50 10 0.5 −25.0 0.888 0.945 0.943 0.891 0.938 0.952
50 10 0.8 −10.0 0.883 0.944 0.939 0.884 0.941 0.943
50 10 1.0 0.0 0.886 0.947 0.939 0.887 0.948 0.940
50 10 1.2 10.0 0.885 0.945 0.940 0.884 0.947 0.937
50 10 2.0 50.0 0.888 0.949 0.939 0.888 0.954 0.934
50 10 5.0 200.0 0.892 0.949 0.943 0.895 0.956 0.940
10 10 0.1 −9.0 0.881 0.952 0.930 0.886 0.939 0.947
10 10 0.5 −5.0 0.885 0.944 0.941 0.893 0.941 0.953
10 10 0.8 −2.0 0.886 0.943 0.943 0.889 0.941 0.948
10 10 1.0 0.0 0.886 0.944 0.942 0.886 0.944 0.942
10 10 1.2 2.0 0.888 0.943 0.945 0.886 0.944 0.942
10 10 2.0 10.0 0.888 0.944 0.944 0.887 0.952 0.936
10 10 5.0 40.0 0.883 0.944 0.939 0.883 0.950 0.933
10 10 10.0 90.0 0.889 0.948 0.941 0.887 0.950 0.937
1 10 0.1 0.9 0.598 0.973 0.625 0.887 0.939 0.948
1 10 0.5 0.5 0.862 0.941 0.920 0.867 0.921 0.946
1 10 0.8 0.2 0.862 0.931 0.931 0.863 0.923 0.940
1 10 1.0 0.0 0.865 0.928 0.938 0.865 0.927 0.938
1 10 1.2 −0.2 0.866 0.927 0.939 0.867 0.932 0.935
1 10 2.0 −1.0 0.872 0.928 0.944 0.871 0.942 0.928
1 10 5.0 −4.0 0.879 0.925 0.954 0.880 0.948 0.932
1 10 10.0 −9.0 0.886 0.929 0.957 0.887 0.946 0.941
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5.8 Imposing weakly informative priors on the log-

means

5.8.1 BUGS code and update parameters

The following model BUGS code represents the one-way model with negative binomial

response of Equation (5.1), with I = 2 groups. The code shown in Section 5.6.1 is

used with the only difference that

beta[p] ~ dnorm(0, 0.001)

is replaced by

beta[p] ~ dnorm(0, 0.1).

The technical details for running MCMC are the same as in Section 5.6.3. Note

that in contrast to the model in Section 5.6, a weakly informative prior, tau=0.1, is

imposed on the mean parameter on the log-scale, β, i.e. βi ∼ N (µ = 0, σ2 = 10).

5.8.2 Detailed results

The estimated coverage probability is based on S =1000 random draws of y from

the model in Equation (5.1) with I = 2, τ = 1 and further parameters as indicated

in the headers of the tables. Table 5.12, and 5.13 show situations with intermediate

and low mean abundance, for group-wise sample sizes of 10 and 20, respectively.
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Table 5.12: Coverage probability of two-sided nominal 0.9 confidence intervals for

the ratio and difference of means, assuming the negative binomial model in Equation

(5.1) with noticeable overdispersion, τ = 1, and a weakly informative prior imposed

on the mean parameter on the log-scale, β. Simulations based on K=5000, S=1000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
10 10 0 −9.000 0.845 0.918 0.927 0.815 0.881 1
10 10 0 −5.000 0.852 0.920 0.932 0.855 0.909 1
10 10 1 −2.000 0.842 0.913 0.929 0.843 0.909 1
10 10 1 0.000 0.855 0.927 0.928 0.855 0.927 1
10 10 1 2.000 0.865 0.933 0.932 0.863 0.934 1
10 10 2 10.000 0.868 0.930 0.938 0.857 0.946 1
10 10 5 40.000 0.866 0.938 0.928 0.867 0.963 1
10 10 10 90.000 0.873 0.946 0.927 0.873 0.961 1
1 10 0 −0.900 0.916 0.941 0.975 0.747 0.824 1
1 10 0 −0.500 0.777 0.878 0.899 0.773 0.852 1
1 10 1 −0.200 0.750 0.863 0.887 0.762 0.857 1
1 10 1 0.000 0.754 0.865 0.889 0.754 0.865 1
1 10 1 0.200 0.744 0.860 0.884 0.760 0.875 1
1 10 2 1.000 0.770 0.878 0.892 0.758 0.892 1
1 10 5 4.000 0.816 0.896 0.920 0.808 0.935 1
1 10 10 9.000 0.856 0.918 0.938 0.847 0.941 1
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Table 5.13: Coverage probability of two-sided nominal 0.9 confidence intervals for

the ratio and difference of means, assuming the negative binomial model in Equation

(5.1) with noticeable overdispersion, τ = 1 and a weakly informative prior imposed

on the mean parameter on the log-scale, β. Simulations are based on K=5000,

S=1000.

Ratio ρ Difference δ
µ1 ni µ2/µ1 µ2 − µ1 CPts CPl CPu CPts CPl CPu
10 10 0.1 −9.0 0.889 0.955 0.934 0.884 0.933 0.951
10 10 0.5 −5.0 0.879 0.943 0.936 0.888 0.939 0.949
10 10 0.8 −2.0 0.875 0.945 0.930 0.875 0.939 0.936
10 10 1.0 0.0 0.877 0.945 0.932 0.877 0.945 0.932
10 10 1.2 2.0 0.886 0.943 0.943 0.888 0.947 0.941
10 10 2.0 10.0 0.891 0.953 0.938 0.897 0.960 0.937
10 10 5.0 40.0 0.878 0.946 0.932 0.875 0.952 0.923
10 10 10.0 90.0 0.883 0.953 0.930 0.873 0.948 0.925
1 10 0.1 −0.9 0.873 0.938 0.935 0.780 0.861 0.919
1 10 0.5 −0.5 0.816 0.914 0.902 0.795 0.887 0.908
1 10 0.8 −0.2 0.797 0.902 0.895 0.801 0.900 0.901
1 10 1.0 0.0 0.804 0.906 0.898 0.804 0.906 0.898
1 10 1.2 0.2 0.814 0.915 0.899 0.807 0.917 0.890
1 10 2.0 1.0 0.834 0.920 0.914 0.820 0.934 0.886
1 10 5.0 4.0 0.876 0.943 0.933 0.867 0.957 0.910
1 10 10.0 9.0 0.879 0.944 0.935 0.847 0.935 0.912
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Chapter 6

Simultaneous confidence intervals for

ratios of means of negative binomials

in the one-way layout

In this Chapter, simultaneous confidence intervals for ratios of means assuming a

negative binomial response are investigated. Consider model (5.1) with I > 2, for

example I = 4. Then, interest might be in comparisons to control defined as ratios

as in Equations (4.9) and (4.13), Section 4.5. However, the methods described below

are generally applicable when the parameter of interest can be defined as θ = Cβ.

6.1 Wald-type SCI for the ratio of means to the

control mean

Fitting the model yields an estimate β̂ for β and an estimate of the variance co-

variance matrix Σ̂ of β̂. In the case of mutually independent observations and a

parameterization as outlined in (4.7) the off-diagonal elements of Σ are zero and

only the I diagonal elements σ̂2
i are of interest: σ̂2 = diag

(
Σ̂
)
. Assuming asymp-

totic normality on the scale of β, one can construct simultaneous asymptotic (1−α)

79
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confidence intervals by using Equation 6.1.

[
θ̂lm; θ̂um

]
= exp

 I∑
i=1

cmiβ̂i ± ztwo−sidedM,R,1−α

√√√√ I∑
i=1

c2miσ̂
2
i

 (6.1)

The correlation matrix R with elements ρmm′ depends on known constants cmi as

well as on unknown parameters which have to be estimated.

ρmm′ =

∑I
i=1 cimcim′σ̂

2
i√∑I

i=1 c
2
imσ̂

2
i

∑I
i=1 c

2
im′σ̂

2
i

(6.2)

As a special case, such confidence intervals are considered by Hothorn et al. (2008).

However, their small sample properties for particular distributional assumptions

have not been considered. Similar to the two-sample Wald type intervals consid-

ered in Section 5.3, this method will yield solutions practically equivalent to the

parameter space, when the extreme event yn ≡ 0 is observed for all n belonging

to one group involved in the contrast. Less importantly, the extreme variance es-

timates resulting in that event disturb the estimation of the correlation structure

in (6.2). As can be expected from the results shown in Section 5.3 and those in

Gerhard and Schaarschmidt (2007), Wald type simultaneous confidence intervals

show a conservative performance for small samples and abundances in unpublished

simulation studies by (Gerhard, 2008, personal communication). The performance

of such intervals is not considered here in detail.

6.2 SCI based on MCMC

One can translate the statistical model in Equation (5.1) for the case I = 4 into

the BUGS model in Section 6.3.2 with non-informative priors imposed on all param-

eters. Note that the non-informative prior for the inverse dispersion parameter τ of

the negative binomial distribution is gamma distribution, τ ∼ gamma (0.001, 1000).

Although the use of gamma priors is discouraged by a number of authors, the confi-

dence intervals derived from the model in Section 6.3.2 performed uniformly better

than those derived from models with a uniform prior τ ∼ unif (0, 1000) (results not

shown).



6.3. MCMC DERIVED SCI: SIMULATION STUDY 81

Following the methodology in Sections 4.4 and 4.5, simultaneous confidence intervals

can be constructed. Following the Equations (4.8) and (4.9) yields ratios of mean

abundances; following Equation (4.12) yields differences of mean abundances, for

which interval construction is not straightforward based on the generalized linear

model fits in Section 6.1 above.

6.3 MCMC derived SCI: Simulation study

As outlined in Section 1.4, simultaneous confidence intervals may be used for esti-

mating the effect size, for testing hypotheses of non-inferiority vs. several standards,

or for performing a proof of hazard. Main focus of the simulation study is on com-

parisons to control (Tables 6.1, 6.2, 6.3, 6.4). The simultaneous coverage probability

of lower limits with nominal level 0.95 and of two-sided simultaneous confidence

intervals with nominal level 0.95 was assessed. In order to expand the scope to

multiple contrasts in general, also all pairwise comparisons as outlined in (4.19) and

Williams type contrasts as defined in (4.20), Section 4.5, are considered for a limited

number of settings (Tables 6.5, 6.6, 6.7, 6.8). In general, the ratios are defined by

ρm = exp
(∑I

i=1 cmiβi

)
and the differences are defined by δm =

∑I
i=1 cimexp (βi).

As for the two-sample comparisons, high (∼= 50), intermediate (∼= 10) and low (∼= 1)

mean abundances are considered, with exp (βi) ∈ [0.1, 250]. The inverse dispersion

parameter τ of the negative binomial distribution was fixed at τ = 1 in all the set-

tings considered. Predominantly, balanced designs with group-wise sample size of

20 and 10 are considered. Moderately unbalanced designs are considered merely for

the Williams contrast (Tables 6.7 and 6.8).

6.3.1 Summary of results

Tables 6.1 and 6.2 show simultaneous coverage probabilities of lower simultaneous

0.95 confidence limits for ratios and differences to control. For both parameters,

the confidence intervals achieve close to nominal or slightly too low coverage prob-
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abilities, when sample sizes are at least 20, or mean abundances are about 10 or

greater. With mean abundances about 1 and group-wise sample size 10, the actual

coverage probabilities of nominal 0.95 lower limits were as low as 0.91-0.92 for ratios

and 0.89-0.93 for differences.

For two-sided 0.95 confidence limits (Tables 6.3 and 6.4), the results are similar, with

an overall tendency of being too liberal. The coverage probability of the lower and

upper bounds is close to, but usually below 0.975, with upper bounds being slightly

more liberal in most settings. The most extreme deviations from the nominal level

occurred for settings with small mean abundance and sample size 10: 0.75-0.93, 0.91-

0.92 for ratio and difference, respectively. Most liberal results within settings with

similar abundance were observed for extreme effect sizes (exp (β)′ = (50, 50, 50, 250),

and exp (β)′ = (1, 1, 1, 0.1)), due to markedly liberal upper bounds. Reasons for this

might be that the number of updates was too low for this situation and the chosen

initial values, such that the confidence intervals have been constructed based on

joint distributions which did not have converged for the most extreme parameter.

However, the technical parameters were chosen such that (for less extreme settings)

simulated example data sets showed no signs of autocorrelation among consecutive

values of the MCMC chains and Gewekes test did not reject the null-hypothesis

of convergence. Moreover, applying Gewekes test on the simulation results did not

lead to marked differences in the number of simulation runs which showed deviations

from the null hypothesis (results not shown) among the settings considered in Tables

6.1 and 6.2.

For Tukey type contrasts (Tables 6.5 and 6.6) the simultaneous confidence intervals

are even more liberal: For ratios, the coverage probabilities are 0.92-0.93 with sample

size 10 and intermediate to high abundances, and 0.67-0.91 for the settings with

low abundance. For differences, they range in 0.9-0.93 for intermediate to high

abundances and 0.87-0.9 for low abundances. Again, most extreme deviations occur

for the setting involving extremely low abundance: exp (β)′ = (1, 1, 1, 0.1).

Williams contrasts (with parameters being pooled means over several βi) show a

more stable performance, comparable or better than that of the Dunnett con-
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trasts (Tables 6.7 and 6.8 for ratios and differences). For all considered settings

(ni ∈ [10, 35]) and exp (βi) ∈ [1, 250], observed coverage probabilities range between

0.94 and 0.95. Hence, also pooling contrasts in the presence of unbalanced settings

may lead to simultaneous confidence intervals based on MCMC samples of the joint

posterior, with acceptable frequentist properties.

6.3.2 BUGS code and update parameters

The one-way model with negative binomial response as defined in model (5.1), with

I = 4 groups may lead to the following BUGS model:

model

{

for(n in 1:N)

{

X[n,1] <- X1[n]

X[n,2] <- X2[n]

X[n,3] <- X3[n]

X[n,4] <- X4[n]

Y[n] ~ dnegbin(pi[n], r)

pi[n] <- r/(r+mu[n])

mu[n] <- exp(eta[n])

eta[n] <- inprod(X[n,], beta[])

}

for(p in 1:P)

{

beta[p] ~ dnorm(0, 0.001)

muvec[p]<-exp(beta[p])

}

r ~ dgamma(0.001,0.001)

}
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For running the model, the vectors Y, X1, X2, X3, X4 and the integers N and P have

to be provided along with initial values for the vector beta and the real r.

In the simulations, the model was updated 7000 times, with first 5000 updates

discarded and every second value discarded in the remaining part of the chain,

resulting in a sample of K = 1000 values from the joint distribution (Tables 6.3,

6.4, and 6.5). All estimated coverage probabilities are based on S=1000 simulation

runs.

6.3.3 Detailed results

Lower 0.95 limits for Dunnett type contrasts

Table 6.1: Simultaneous coverage probability of lower 0.95 simultaneous confidence

limits derived from MCMC with I = 4, group-wise sample size 10, markedly overdis-

persed data, τ = 1, for Dunnett-type contrasts for the ratio and difference of means

of negative binomial samples.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPl SCPl
50.0 50.0 50.0 50.0 0.946 0.943
50.0 62.5 50.0 62.5 0.946 0.940
50.0 40.0 50.0 40.0 0.954 0.951
50.0 50.0 50.0 250.0 0.942 0.948
50.0 50.0 50.0 5.0 0.939 0.926
10.0 10.0 10.0 10.0 0.945 0.942
10.0 12.5 10.0 12.5 0.937 0.935
10.0 8.0 10.0 8.0 0.953 0.945
10.0 10.0 10.0 50.0 0.951 0.948
10.0 10.0 10.0 1.0 0.953 0.935
1.0 1.0 1.0 1.0 0.910 0.895
1.0 1.2 1.0 1.2 0.915 0.911
1.0 0.8 1.0 0.8 0.914 0.899
1.0 1.0 1.0 5.0 0.912 0.933
1.0 1.0 1.0 0.1 0.920 0.887
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Table 6.2: Simultaneous coverage probability of lower 0.95 simultaneous confidence

limits derived from MCMC with I = 4, group-wise sample size 20, markedly overdis-

persed data, τ = 1, for Dunnett-type contrasts for the ratio and difference of means

of negative binomial samples.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPl SCPl
50.0 50.0 50.0 50.0 0.937 0.935
50.0 62.5 50.0 62.5 0.947 0.943
50.0 40.0 50.0 40.0 0.948 0.944
50.0 50.0 50.0 250.0 0.947 0.942
50.0 50.0 50.0 5.0 0.940 0.936
10.0 10.0 10.0 10.0 0.945 0.940
10.0 12.5 10.0 12.5 0.955 0.953
10.0 8.0 10.0 8.0 0.954 0.943
10.0 10.0 10.0 50.0 0.944 0.947
10.0 10.0 10.0 1.0 0.955 0.942
1.0 1.0 1.0 1.0 0.944 0.935
1.0 1.2 1.0 1.2 0.942 0.938
1.0 0.8 1.0 0.8 0.940 0.936
1.0 1.0 1.0 5.0 0.950 0.949
1.0 1.0 1.0 0.1 0.950 0.943
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Two-sided 0.95 intervals for Dunnett type contrasts

Table 6.3: Simultaneous coverage probability (1000 simulations) of two-sided nom-

inal 0.95 SCI derived from MCMC with I = 4, ni = 10, τ = 1, for Dunnett-type

contrasts for the ratio and difference of means of negative binomial samples.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPts SCPl SCPu SCPts SCPl SCPu
50.0 50.0 50.0 50.0 0.938 0.971 0.967 0.928 0.970 0.958
50.0 62.5 50.0 62.5 0.944 0.976 0.968 0.941 0.974 0.967
50.0 40.0 50.0 40.0 0.949 0.977 0.972 0.944 0.976 0.968
50.0 50.0 50.0 250.0 0.925 0.969 0.956 0.920 0.971 0.949
50.0 50.0 50.0 5.0 0.944 0.974 0.970 0.942 0.975 0.967
10.0 10.0 10.0 10.0 0.941 0.971 0.970 0.938 0.970 0.968
10.0 12.5 10.0 12.5 0.945 0.975 0.970 0.942 0.975 0.967
10.0 8.0 10.0 8.0 0.951 0.975 0.976 0.943 0.972 0.971
10.0 10.0 10.0 50.0 0.936 0.968 0.968 0.936 0.972 0.964
10.0 10.0 10.0 1.0 0.937 0.976 0.961 0.938 0.978 0.960
1.0 1.0 1.0 1.0 0.919 0.961 0.958 0.915 0.965 0.950
1.0 1.2 1.0 1.2 0.927 0.965 0.962 0.923 0.970 0.953
1.0 0.8 1.0 0.8 0.914 0.960 0.954 0.909 0.960 0.949
1.0 1.0 1.0 5.0 0.927 0.969 0.958 0.922 0.975 0.946
1.0 1.0 1.0 0.1 0.754 0.974 0.780 0.923 0.970 0.953
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Table 6.4: Simultaneous coverage probability (1000 simulations) of two-sided 0.95

SCI derived from MCMC with I = 4, ni = 20, τ = 1, for Dunnett-type contrasts for

the ratio and difference of means of negative binomial samples.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPts SCPl SCPu SCPts SCPl SCPu
50.0 50.0 50.0 50.0 0.946 0.971 0.975 0.944 0.969 0.975
50.0 62.5 50.0 62.5 0.949 0.973 0.976 0.942 0.975 0.967
50.0 40.0 50.0 40.0 0.946 0.975 0.971 0.945 0.975 0.970
50.0 50.0 50.0 250.0 0.947 0.967 0.980 0.947 0.970 0.977
50.0 50.0 50.0 5.0 0.947 0.970 0.977 0.948 0.974 0.974
10.0 10.0 10.0 10.0 0.944 0.977 0.967 0.940 0.979 0.961
10.0 12.5 10.0 12.5 0.948 0.977 0.971 0.944 0.978 0.966
10.0 8.0 10.0 8.0 0.950 0.980 0.970 0.945 0.978 0.967
10.0 10.0 10.0 50.0 0.949 0.976 0.973 0.946 0.979 0.967
10.0 10.0 10.0 1.0 0.950 0.980 0.970 0.946 0.977 0.969
1.0 1.0 1.0 1.0 0.938 0.970 0.968 0.935 0.971 0.964
1.0 1.2 1.0 1.2 0.940 0.974 0.966 0.934 0.975 0.959
1.0 0.8 1.0 0.8 0.931 0.967 0.964 0.926 0.969 0.957
1.0 1.0 1.0 5.0 0.950 0.978 0.972 0.947 0.979 0.968
1.0 1.0 1.0 0.1 0.827 0.973 0.853 0.928 0.971 0.957
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Two-sided 0.95 intervals for Tukey type contrasts

Table 6.5: Simultaneous coverage probability (1000 simulations) of two-sided nom-

inal 0.95 SCI derived from MCMC with I = 4, ni = 10, τ = 1, for Tukey-type

contrasts for the ratio and difference of means of negative binomial samples.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPts SCPl SCPu SCPts SCPl SCPu
50.0 50.0 50.0 50.0 0.936 0.964 0.966 0.913 0.950 0.955
50.0 62.5 50.0 62.5 0.942 0.969 0.968 0.922 0.957 0.959
50.0 40.0 50.0 40.0 0.929 0.960 0.960 0.900 0.940 0.946
50.0 50.0 50.0 250.0 0.941 0.966 0.970 0.926 0.960 0.966
50.0 50.0 50.0 5.0 0.926 0.959 0.962 0.935 0.959 0.965
10.0 10.0 10.0 10.0 0.923 0.963 0.950 0.902 0.949 0.942
10.0 12.5 10.0 12.5 0.922 0.962 0.951 0.910 0.957 0.942
10.0 8.0 10.0 8.0 0.932 0.966 0.959 0.917 0.956 0.949
10.0 10.0 10.0 50.0 0.936 0.964 0.963 0.928 0.963 0.960
10.0 10.0 10.0 1.0 0.927 0.965 0.957 0.919 0.950 0.952
1.0 1.0 1.0 1.0 0.899 0.947 0.941 0.876 0.930 0.932
1.0 1.2 1.0 1.2 0.903 0.948 0.941 0.884 0.940 0.930
1.0 0.8 1.0 0.8 0.895 0.945 0.935 0.874 0.932 0.924
1.0 1.0 1.0 5.0 0.914 0.948 0.951 0.900 0.955 0.939
1.0 1.0 1.0 0.1 0.673 0.959 0.702 0.894 0.926 0.946
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Table 6.6: Simultaneous coverage probability (1000 simulations) of two-sided nom-

inal 0.95 SCI derived from MCMC with I = 4, ni = 20, τ = 1, for Tukey-type

contrasts for the ratio and difference of means of negative binomial samples.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPts SCPl SCPu SCPts SCPl SCPu
50.0 50.0 50.0 50.0 0.938 0.969 0.966 0.931 0.963 0.962
50.0 62.5 50.0 62.5 0.935 0.970 0.959 0.926 0.966 0.954
50.0 40.0 50.0 40.0 0.929 0.962 0.963 0.920 0.956 0.955
50.0 50.0 50.0 250.0 0.935 0.963 0.967 0.940 0.967 0.969
50.0 50.0 50.0 5.0 0.938 0.966 0.967 0.933 0.960 0.962
10.0 10.0 10.0 10.0 0.942 0.976 0.960 0.931 0.969 0.954
10.0 12.5 10.0 12.5 0.947 0.973 0.969 0.940 0.969 0.966
10.0 8.0 10.0 8.0 0.949 0.976 0.967 0.938 0.965 0.962
10.0 10.0 10.0 50.0 0.946 0.970 0.968 0.941 0.971 0.966
10.0 10.0 10.0 1.0 0.931 0.969 0.961 0.934 0.966 0.957
1.0 1.0 1.0 1.0 0.923 0.957 0.956 0.910 0.952 0.946
1.0 1.2 1.0 1.2 0.940 0.968 0.960 0.930 0.963 0.954
1.0 0.8 1.0 0.8 0.934 0.971 0.955 0.928 0.964 0.953
1.0 1.0 1.0 5.0 0.933 0.959 0.967 0.938 0.970 0.964
1.0 1.0 1.0 0.1 0.827 0.972 0.849 0.918 0.957 0.948
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Two-sided 0.95 intervals for Williams type contrasts

Table 6.7: Simultaneous coverage probability of SCI derived from MCMC with

I = 4, with moderately unbalanced group-wise sample sizes n1, ..., n4, and τ = 1,

for Williams-type contrasts defined at the ratio ρ of means µi = exp (βi) of negative

binomial samples.

Ratio ρ
µ1 µ2 µ3 µ4 n1 n2 n3 n4 SCPts SCPl SCPu
50 50.0 50 50.0 35 15 15 15 0.951 0.978 0.973
50 62.5 50 62.5 20 10 20 30 0.942 0.966 0.976
50 40.0 50 40.0 20 10 20 30 0.936 0.964 0.972
50 50.0 50 250.0 30 20 20 10 0.944 0.971 0.973
50 50.0 50 5.0 10 20 20 30 0.944 0.974 0.970
10 10.0 10 10.0 35 15 15 15 0.941 0.967 0.974
10 12.5 10 12.5 20 10 20 30 0.951 0.973 0.978
10 8.0 10 8.0 20 10 20 30 0.943 0.970 0.973
10 10.0 10 50.0 30 20 20 10 0.951 0.974 0.977
10 10.0 10 1.0 10 20 20 30 0.933 0.971 0.962
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Table 6.8: Simultaneous coverage probability of SCI derived from MCMC with

I = 4, with moderately unbalanced group-wise sample sizes n1, ..., n4, and τ = 1,

for Williams-type contrasts defined at the difference δ of means µi = exp (βi) of

negative binomial samples.

Difference δ
µ1 µ2 µ3 µ4 n1 n2 n3 n4 SCPts SCPl SCPu
50 50.0 50 50.0 35 15 15 15 0.949 0.980 0.969
50 62.5 50 62.5 20 10 20 30 0.945 0.971 0.974
50 40.0 50 40.0 20 10 20 30 0.932 0.962 0.970
50 50.0 50 250.0 30 20 20 10 0.950 0.975 0.975
50 50.0 50 5.0 10 20 20 30 0.945 0.976 0.969
10 10.0 10 10.0 35 15 15 15 0.941 0.968 0.973
10 12.5 10 12.5 20 10 20 30 0.951 0.975 0.976
10 8.0 10 8.0 20 10 20 30 0.943 0.973 0.970
10 10.0 10 50.0 30 20 20 10 0.951 0.974 0.977
10 10.0 10 1.0 10 20 20 30 0.947 0.978 0.969
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Chapter 7

SCI for ratios of means in a number

of simple mixed models assuming

overdispersed count data

7.1 Estimation in hierarchical models using MCMC

In Bayesian modeling, there is no clear distinction of fixed and random effect models,

since all parameters influencing the observable data are again modeled as random

quantities derived from hyper distributions at a lower level (e.g. Clayton, 1996). In

this way, also overdispersion might be modeled by a random effect on the scale of

individual observations.

In a model with three levels of effects (Gelman et al., 2004):

y|X,β,Σy ∼ N (Xβ,Σy) ,

β|Xβ, ξ,Σβ ∼ N (Xβξ,Σβ) ,

ξ|ξ0,Σξ ∼ N (ξ0,Σξ) ,

(7.1)

the first part models the likelihood of the observable data y given the unknown,

unobservable parameters β for mean and variance Σy and the assumption of a

93
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Gaussian distribution, with the design matrix X describing the structure of the

data with respect to β. The second part models the prior knowledge or assumption

on the distribution of the unobservable parameter of means, β. Here, ξ and Σβ

model the mean, variance and covariance of β, given an imposed structure Xβ

for the elements of β. The third level models the parameters of the second level

as a hyper distribution. Multiple levels of nesting or complex assumptions on the

structure of effects add levels to the hierarchy or add complexity to design matrices

X or the variance parameters Σ.

Practically, adding levels to hierarchical models increases the computational burden

in the update process of the Gibbs Sampler, increases the autocorrelation of the

samples drawn from the posterior and thence slows down convergence. Technical

strategies to increase the convergence (’hierarchical centering’) are discussed e.g. by

Gelfand et al. (1995).

The hierarchical models considered in detail in the literature often exhibit only

simple treatment structures, e.g. linear regression problems. Thence only simple

inferential problems follow for the ’fixed effects’, i.e., the mean parameters on the

first level (Zhao et al., 2006; Spiegelhalter et al., 2007). The problems of factorial

treatment structures are rarely considered explicitly, e.g. by Clayton (1996) and

Nobile and Green (2000).

7.2 Formal definition of the models considered

In the following, a number of models is formally introduced, which will later on be

used in simulation studies. Throughout this chapter it is assumed that the fixed

effects design matrix X is formulated without intrinsic aliasing of treatment levels

(Clayton, 1996), i.e., with dummy coding of treatment levels chosen in a way that

the model is not overspecified. Further, in the Equations (7.3) and (7.4), the non-

informative priors are omitted. Hence, for all parameters for which no distributional

assumption is stated in the following equations, an appropriate non-informative prior

can be found in the BUGS code preceding the detailed results.
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In order to be close to usual definitions of generalized linear mixed models in the

frequentists sense (McCulloch and Searle, 2001), the following general notation is

used:

η = Xβ +Zγ + ε. (7.2)

Here, η is an (N × 1) vector of expectations on the link scale, with n = 1, ..., N

being the index of the observations. X is an (N × I) design matrix for those effects

for which inferential interest is in each particular element, i.e., the design matrix of

the fixed effects. The (1 × I) vector β with elements βi, i = 1, ..., I then is defined

by the choice of X. Since major interest is in general multiple comparisons among

treatment groups, X will be defined as a outlined in Section 4.5, and illustrated in

Equation (4.7).

Independent of the choice of X, the choice of the (N × J) matrix Z defines the

meaning of the (1×J) vector γ, in which there is no primary inferential interest, and

which might be called the random effects part of the model. In all models considered,

Z contains the information in which clusters the individual observations in Y were

arranged. For all the simple hierarchical models introduced in the following sections,

it is assumed that there is only one level of hierarchy in clustering, either in a

simple multi-year or multi-location trial or in a simple repeated measurement design.

Thence, the Z may again have the structure of a cell means model, allowing all

elements of γ, γj, to be modeled identically γj ∼ N (0, σ2
u). Such simple random

effects might be modeled in a computationally more efficient way. However, the

chosen notation allows generalization to more complicated models.

Finally, the (N × 1) vector ε with elements εn, n = 1, ..., N models variability in the

response Y at the level of individual observations which is not taken into account

by variance of the distribution assumed for Y . In the considered models, ε models

overdispersion of Y if Yn ∼ Pois(µn) is assumed.

In the following sections, three particular models are defined, which are used in simu-

lation studies in Sections 7.3.1, 7.4.1, and 7.5.1 to assess the frequentist simultaneous
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coverage probability of simultaneous credible intervals for linear combinations of β.

All models assume that the data can sufficiently described by a linear model on the

link scale, using the log-link, i.e. log (µ) = η.

7.3 A simple hierarchical model with overdispersed

Poisson response

Assume a trial where data are obtained from J clusters (e.g. years or locations),

indexed by j = 1, ..., J . Within each cluster, I treatments are randomly assigned to

the observational units, with treatments indexed by i = 1, ..., I. The total number

of observations is denoted N , with the observations indexed by n = 1, ..., N . The

treatment structure is represented in a (N × I) matrix X. The affiliation of obser-

vations to the clusters are represented by a (N × J) matrix Z. Note, that in this

simple model, the effects of clusters and treatments are assumed to be additive on

the log-scale. Denoting the elements of X as xni and the elements of Z as znj, the

parameter vector β with elements βi, i = 1, ..., I models the means of treatments

and the parameter γ with elements γi, i = 1, ..., J models the variability between

the clusters. Primary interest is in β, for which the absence of prior information is

assumed. There is no interest in the particular elements of γ. Rather, the aim is to

model the variability that is introduced into Y by the different clusters.

Yn ∼ Pois (µn)

µn = exp (ηn)

ηn = β0 +
∑I

i=1 xniβi +
∑J

j=1 znjγj + εn

γj ∼ N (0, σ2
u)

εn ∼ N (0, σ2
e)

(7.3)

The term εn models variability on the scale of individual measurements. Note that

Zγ here just models the effects of clusters to be additive to the treatment effects

modeled by Xβ. This means that the model in (PoisMMod) assumes the absence

of a cluster-treatment interaction.
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7.3.1 Simulation study

In a simulation study, the simultaneous coverage probabilities of two-sided nominal

0.95 confidence intervals are assessed for a design with I = 4 treatments, J =

10 clusters and three replications within each cluster. Nine settings with µn ∈

[0.5, 250] are considered, once with extra-Poisson variability mainly emerging from

dissimilarity among clusters σu = 0.5, σe = 0.1 (Table 7.1), and once with extra-

Poisson variability mainly present at the level of individual observations σu = 0.5,

σe = 0.1 (Table 7.2).

7.3.2 Summary of results

For eight of nine settings (Tables 7.1 and 7.2), the coverage probability is very

close to the nominal level or slightly below. However, for the setting exp (β) =

(50, 50, 50, 250), the confidence intervals for the difference to control violate the

nominal level severely for the upper limit. Apparently, the posterior did not converge

for the chosen initial values exp (β) = (1, 1, 1, 1) and the 15000 updates with first

5000 discarded. Such a situation is less likely to occur when sample estimates are

used as initial values.

7.3.3 BUGS code and update parameters

A representation of the model (7.3) in the BUGS language for I = 4 and J = 10 is:

model{

for(i.obs in 1:n.obs)

{

X[1,i.obs] <- X1[i.obs]

X[2,i.obs] <- X2[i.obs]

X[3,i.obs] <- X3[i.obs]

X[4,i.obs] <- X4[i.obs]

Z[1,i.obs] <- Z1[i.obs]
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Z[2,i.obs] <- Z2[i.obs]

Z[3,i.obs] <- Z3[i.obs]

Z[4,i.obs] <- Z4[i.obs]

Z[5,i.obs] <- Z5[i.obs]

Z[6,i.obs] <- Z6[i.obs]

Z[7,i.obs] <- Z7[i.obs]

Z[8,i.obs] <- Z8[i.obs]

Z[9,i.obs] <- Z9[i.obs]

Z[10,i.obs] <- Z10[i.obs]

epsi[i.obs] ~ dnorm(0, tau.e)

eta[i.obs] <- inprod(X[,i.obs], beta[])

+ inprod(Z[,i.obs],gamma[]) + epsi[i.obs]

log(mu[i.obs]) <- eta[i.obs]

Y[i.obs] ~ dpois(mu[i.obs])

}

for(i.treat in 1:n.treat)

{

beta[i.treat] ~ dnorm(0, 0.001)

}

for(i.year in 1:n.year)

{

gamma[i.year] ~ dnorm(0, tau.year)

}

tau.e ~ dgamma(0.001,0.001)

tau.year ~ dgamma(0.001, 0.001)

sigma.year <- 1/tau.year

}

The vectors X1,...,X4, Z1,...,Z10, and the numerics n.obs, n.treat, n.year

have to be provided as input data. Initial values need to be provided for the vectors

beta[], gamma[], epsi[], and the numerics tau.year, tau.e.



7.3. OVERDISPERSED POISSON 99

7.3.4 Detailed results

The simulations are based on MCMC chains with 15000 updates, first 5000 updates

discarded, and 9 out of 10 updates discarded in the remaining part of the chain,

resulting in a sample of K=1000 values from the joint posterior. Estimated coverage

probabilities are based on S=1000 simulation runs.

Table 7.1: Simultaneous coverage probabilities of nominal 0.95 two-sided confidence

intervals for ratios ρ and differences δ to control, following a hierarchical model

assuming Pois(µ) response, I = 4 treatments, J = 10 clusters, and 3 replications

of each treatments within each cluster. The variance parameter on the cluster level

was chosen σu = 0.5, the variance parameter on the observation level (overdispersion

parameter) was chosen σe = 0.1

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPts SCPl SCPu SCPts SCPl SCPu
50 50 50 50.0 0.942 0.966 0.976 0.941 0.966 0.975
50 50 50 250.0 0.955 0.972 0.983 0.310 0.979 0.318
50 50 50 5.0 0.935 0.972 0.963 0.924 0.949 0.975
10 10 10 10.0 0.957 0.978 0.979 0.957 0.980 0.977
10 10 10 50.0 0.938 0.965 0.973 0.942 0.971 0.971
10 10 10 1.0 0.949 0.980 0.969 0.951 0.979 0.972
5 5 5 5.0 0.944 0.970 0.974 0.942 0.969 0.973
5 5 5 25.0 0.950 0.970 0.980 0.946 0.968 0.977
5 5 5 0.5 0.953 0.984 0.969 0.941 0.975 0.966
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Table 7.2: Simultaneous coverage probabilities of nominal 0.95 two-sided confidence

intervals, following a hierarchical model assuming Pois(µ) response, with I = 4

treatments, J = 10 clusters, and 3 replications of each treatments within each

cluster. The variance parameter on the cluster level was chosen σu = 0.1, the

variance parameter on the observation level (overdispersion) was chosen σe = 0.5

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPts SCPl SCPu SCPts SCPl SCPu
50 50 50 50.0 0.953 0.974 0.979 0.951 0.975 0.976
50 50 50 250.0 0.948 0.974 0.974 0.260 0.982 0.265
50 50 50 5.0 0.959 0.985 0.974 0.937 0.962 0.975
10 10 10 10.0 0.945 0.973 0.972 0.944 0.975 0.969
10 10 10 50.0 0.943 0.975 0.968 0.945 0.979 0.966
10 10 10 1.0 0.924 0.963 0.961 0.944 0.971 0.973
5 5 5 5.0 0.939 0.971 0.968 0.936 0.971 0.965
5 5 5 25.0 0.941 0.964 0.977 0.936 0.966 0.970
5 5 5 0.5 0.936 0.962 0.974 0.938 0.964 0.974
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7.4 A simple hierarchical model assuming negative

binomial response

Another common approach to model overdispersion of count data is the negative

binomial distribution:

Yn ∼ NB (µn, τ)

µn = exp (ηn)

ηn =
∑I

i=1 xniβi +
∑J

j=1 znjγj

γj ∼ N (0, σ2
u)

(7.4)

Here, the parameter τ models the overdispersion in dependence of µn as a common

function for all treatments and clusters.

7.4.1 Simulation study

In the simulation study, the coverage probability for simultaneous confidence inter-

vals was assessed for comparisons to control among I = 4 treatments in a design

with J = 10 clusters and three replications of each treatment within each cluster.

Tables 7.3, 7.4, and 7.5 show the simultaneous coverage probabilities for lower 0.95

simultaneous confidence limits, two-sided nominal 0.9, and twos-sided nominal 0.95

SCI, respectively. The fixed population means exp (βi) range in [0.5, 250], but are

mostly fixed at 5, 10 and 50. The parameter modeling the variability were fixed at

σu = 0.5 and τ = 1.

7.4.2 Summary of results

For both the ratio and the difference, the observed simultaneous coverage probabili-

ties are close to the nominal level, and only for one among the 27 considered settings

the observed coverage probability is significantly lower than the nominal level. The

probabilities to exclude the true parameter is about equally distributed to the upper

and lower limits.
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7.4.3 BUGS code and update parameters

A representation of the model (7.4) in the BUGS language for I = 4 and J = 10 is:

model{

for(i.obs in 1:n.obs)

{

X[1,i.obs] <- X1[i.obs]

X[2,i.obs] <- X2[i.obs]

X[3,i.obs] <- X3[i.obs]

X[4,i.obs] <- X4[i.obs]

Z[1,i.obs] <- Z1[i.obs]

Z[2,i.obs] <- Z2[i.obs]

Z[3,i.obs] <- Z3[i.obs]

Z[4,i.obs] <- Z4[i.obs]

Z[5,i.obs] <- Z5[i.obs]

Z[6,i.obs] <- Z6[i.obs]

Z[7,i.obs] <- Z7[i.obs]

Z[8,i.obs] <- Z8[i.obs]

Z[9,i.obs] <- Z9[i.obs]

Z[10,i.obs] <- Z10[i.obs]

eta[i.obs] <- inprod(X[,i.obs], beta[]) + inprod(Z[,i.obs],gamma[])

mu[i.obs] <- exp(eta[i.obs])

pi[i.obs] <- r/(r + mu[i.obs])

Y[i.obs] ~ dnegbin(pi[i.obs], r)

}

for(i.treat in 1:n.treat)

{

beta[i.treat] ~ dnorm(0, 0.001)

}

for(i.year in 1:n.year)

{
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gamma[i.year] ~ dnorm(0, tau.year)

}

r ~ dgamma(0.001,0.001)

tau.year ~ dgamma(0.001, 0.001)

}

The vectors X1,...,X4, Z1,...,Z10, and the numerics n.obs, n.treat, n.year

have to be provided as input data. Initial values need to provided for the terms

beta[], gamma[], r, tau.year.

7.4.4 Detailed results

In each of 1000 simulations per parameter setting, a chain of 12000 updates was run,

with first 2000 values in the chains discarded, and 1 out of 10 values retained after

thinning, resulting in a sample of K = 1000 values from the joint posterior. The

estimated coverage probabilities are based on S=1000 simulation runs.

Table 7.3: Simultaneous coverage probability of nominal lower 0.95 confidence limits

following a hierarchical model assuming aNB (µi, τ) response with common negative

binomial dispersion parameter τ = 1, with I = 4 treatments, J = 10 clusters, and 3

replications of each treatments within each cluster. The variance parameter on the

cluster level was σu = 0.5.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPl SCPl
50 50 50 50.0 0.951 0.948
50 50 50 250.0 0.946 0.945
50 50 50 5.0 0.951 0.947
10 10 10 10.0 0.954 0.950
10 10 10 50.0 0.940 0.939
10 10 10 1.0 0.949 0.941
5 5 5 5.0 0.952 0.948
5 5 5 25.0 0.952 0.953
5 5 5 0.5 0.961 0.955
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Table 7.4: Simultaneous coverage probability for nominal 0.9 two-sided confidence

intervals following a hierarchical model assuming a NB (µi, τ) response with com-

mon dispersion parameter τ = 1, with I = 4 treatments, J = 10 clusters, and 3

replications of each treatment within each cluster. The variance parameter on the

cluster level was σu=0.5.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPts SCPl SCPu SCPts SCPl SCPu
50 50 50 50.0 0.889 0.949 0.940 0.885 0.949 0.936
50 50 50 250.0 0.904 0.960 0.944 0.897 0.961 0.935
50 50 50 5.0 0.899 0.953 0.946 0.899 0.957 0.942
10 10 10 10.0 0.896 0.949 0.947 0.890 0.949 0.941
10 10 10 50.0 0.874 0.943 0.931 0.872 0.944 0.927
10 10 10 1.0 0.897 0.952 0.944 0.880 0.949 0.931
5 5 5 5.0 0.891 0.948 0.943 0.886 0.948 0.938
5 5 5 25.0 0.898 0.954 0.944 0.900 0.957 0.943
5 5 5 0.5 0.888 0.956 0.932 0.894 0.960 0.934

Table 7.5: Simultaneous coverage probability for nominal 0.95 two-sided confidence

intervals following a hierarchical model assuming aNB (µi, τ) response with common

dispersion parameter τ = 1, with I=4 treatments, J=10 clusters, and 3 replications

of each treatment within each cluster. The variance parameter on the cluster level

was σu = 0.5.

Ratio ρ Difference δ
µ1 µ2 µ3 µ4 SCPts SCPl SCPu SCPts SCPl SCPu
50 50 50 50.0 0.952 0.982 0.970 0.951 0.983 0.968
50 50 50 250.0 0.954 0.982 0.972 0.944 0.979 0.965
50 50 50 5.0 0.944 0.978 0.966 0.947 0.976 0.971
10 10 10 10.0 0.947 0.970 0.977 0.943 0.970 0.973
10 10 10 50.0 0.943 0.969 0.974 0.939 0.970 0.969
10 10 10 1.0 0.941 0.975 0.966 0.945 0.976 0.969
5 5 5 5.0 0.947 0.975 0.972 0.940 0.972 0.968
5 5 5 25.0 0.954 0.980 0.974 0.948 0.977 0.971
5 5 5 0.5 0.938 0.978 0.960 0.946 0.979 0.967
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7.5 A simple model for repeated measurements

with overdispersed Poisson response

Let N denote the total number of observations with index n = 1, ..., N , let J denote

the number of treatments j = 1, ..., J and let H denote the number of randomized

experimental units or clusters, h = 1, ..., H. Further, assume that within each

experimental unit h, a number of T repeated measures are taken. The population

effects of treatments and time, as well as their interaction is of primary interest

in statistical inference. Then, Y is an (N × 1) vector of all observations (with

N = HT ), X is an (N × I), matrix with I = JT , containing the crossed treatment

and time effects as dummy-coded variables and Z is a (N ×H) matrix containing

the information which observations of Y belong to the same experimental unit by

H dummy coded variables. Let yn, xni, and znh denote the elements of Y , X, and

Z, respectively.

Yn ∼ Pois (µn)

µn = exp (ηn)

ηn =
∑I

i=1 xniβi +
∑H

h=1 znhγh + εn

γh ∼ N (0, σ2
h)

εn ∼ N (0, σ2
e)

(7.5)

In this model, the parameters βi, i = 1, ..., I, I = JT model the treatment-time-

interaction on the log-scale, the parameters γh model the mean differences between

the experimental units on the log-scale and the quantities εn model the extra-Poisson

variability of the response. The correlation among measurements within each subject

is assumed equal, i.e., a compound symmetry model (assuming that the individual

measurements are exchangeable) is applied.

Note, that with this parametrization the computational burden becomes relatively

high since sums over a large number of (unnecessary) products have to be calculated

which contain mainly zero elements. In difference to the model in Equations (7.3)

and (7.4), here it is assumed that the random effect is clustered within the subjects
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and hence within the treatments which are unique for each subject whereas in (7.3)

and (7.4) the treatments are crossed with the random effects, i.e., all treatments

may occur within each cluster.

7.5.1 Simulation study

The Tables 7.8 and 7.9 in Section 7.5.1) show simultaneous coverage probabilities

for two-sided nominal 0.95 and 0.9 confidence intervals. A balanced experimental

design with J = 3, T = 4, H = 24 was simulated according to (7.5). Due to high

computational intensity, only few parameter settings with µi ∈ [5, 50], σu = 0.5, σe =

0.01 and σu = 1, σe = 1 were studied.

7.5.2 Summary of results

The simultaneous coverage probability is close to or markedly lower than the nominal

level, for both ratio and difference of means. The probability to exclude the true

parameter is about equally distributed to lower and upper limits. Most pronounced

violations are observed for high abundances in presence of high overdispersion (Table

7.9).

7.5.3 BUGS code and update parameters

model{

for(i.obs in 1:n.obs)

{

epsi[i.obs] ~ dnorm(0, tau.e)

eta[i.obs] <- inprod(beta[], X[i.obs,])

+ inprod(gamma[],S[i.obs,])

+ epsi[i.obs]

log(mu[i.obs]) <- eta[i.obs]

Y[i.obs] ~ dpois(mu[i.obs])
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}

for(i.treat in 1:n.treat)

{

beta[i.treat] ~ dnorm(0, 0.001)

}

for(i.sub in 1:n.subj)

{

gamma[i.sub] ~ dnorm(0,tau.subj)

}

tau.e ~ dgamma(0.001,0.001)

sigma.e <- 1/tau.e

tau.subj ~ dgamma(0.001, 0.001)

sigma.subj <- 1/tau.subj

}

Note, that for running this model in OpenBugs, the vector Y, the structure X with

dimension n.obs, n.treat, the structure S, with dimension n.obs, n.subj and the

numerics n.obs, n.treat, and n.subj have to be provided as input data. Initial

values need to provided for the terms beta[], gamma[], tau.e , tau.subj.

7.5.4 Detailed results

The simulations are based on an MCMC chain of 15000 updates with 5000 first

values discarded and 9 out of 10 values discarded in the remaining part of the chain,

hence on a sample of K = 1000 values from the joint posterior distribution. The

estimated coverage probabilities are based on S=1000 simulation runs.

Simulations were run for a model with H = 24 independent experimental units,

assigned to J = 3 treatments, with 8 experimental units assigned to each treatment.

Within each treatment, T = 4 repeated measures were simulated, resulting in a

parameter β with I = 12 elements βi. For the fixed quantities of µi = exp (ηi)

in Table 7.6, simultaneous coverage probabilities were simulated based on S=1000
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draws from the model in Equation (7.5). Table 7.7 shows the contrast coefficients

Table 7.6: Fixed expected values exp (β1) , ..., exp (β12) for the 3 treatments and 4

time points in the simulations. In setting 50b, there is a distinct time effect and a

time-treatment interaction in treatment 1 compared to treatment 2 and 3, in setting

10b there is a time and a treatment effect but no interaction on the log-scale.

Treatment i 1 2 3
Time t 1 2 3 4 1 2 3 4 1 2 3 4
50a 50 50 50 50 50 50 50 50 50 50 50 50
50b 50 27 8 10 50 30 10 50 50 30 10 50
10a 10 10 10 10 10 10 10 10 10 10 10 10
10b 10 5 5 10 8 4 4 8 10 5 5 10
5a 5 5 5 5 5 5 5 5 5 5 5 5

cmi used in the simulation. Parameter of interest are the M = 6 values θm =

exp
(∑I

i=1 cmiβi

)
. For a situation with low overdispersion at the level of individual

Table 7.7: Contrast coefficients applied in the simulation study. In practical applica-

tion, these contrasts allow to assess whether the dissimilarity in mean abundance to

the reference time point 1 is changed in the treatment 1 compared to two reference

treatments 2 and 3.

Treatment j 1 2 3
Time t 1 2 3 4 1 2 3 4 1 2 3 4

i 1 2 3 4 5 6 7 8 9 10 11 12
m = 1 1 −1 0 0 −1 1 0 0 0 0 0 0
m = 2 1 0 −1 0 −1 0 1 0 0 0 0 0
m = 3 1 0 0 −1 −1 0 0 1 0 0 0 0
m = 4 1 −1 0 0 0 0 0 0 −1 1 0 0
m = 5 1 0 −1 0 0 0 0 0 −1 0 1 0
m = 6 1 0 0 −1 0 0 0 0 −1 0 0 1

observations (σe = 0.01) and larger variation at the level of experimental units

(σu = 0.5) simultaneous coverage probabilities of 0.95 SCI are shown in Table 7.8.

For a situation with about equally large overdispersion at the level of individual

observations (σe = 1) and at the level of experimental units (σu = 1), simultaneous

coverage probabilities of 0.9 SCI are shown in Table 7.9.
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Table 7.8: Simultaneous coverage probability of two-sided nominal 0.95 confidence

intervals estimated for ratios ρ and differences δ from the model in Equation (7.5),

assuming the fixed means exp (βi) , i = 1, ..., 12 shown in Table 7.6, σu = 0.5, σe =

0.1.

Ratio ρ Difference δ
Setting SCPts SCPl SCPu SCPts SCPl SCPu
50a 0.941 0.977 0.964 0.951 0.977 0.974
50b 0.944 0.974 0.970 0.959 0.977 0.982
10a 0.931 0.968 0.963 0.937 0.968 0.969
10b 0.947 0.977 0.969 0.952 0.970 0.982
5a 0.960 0.975 0.985 0.965 0.979 0.986

Table 7.9: Simultaneous coverage probability of two-sided nominal 0.9 confidence

intervals for ratios ρ and differences δ from the model in Equation (7.5), assuming

the fixed means exp (βi) , i = 1, ..., 12 in Table 7.6, σu = 1, σe = 1.

Ratio ρ Difference δ
Setting SCPts SCPl SCPu SCPts SCPl SCPu
50a 0.847 0.921 0.926 0.866 0.931 0.935
50b 0.859 0.930 0.929 0.853 0.916 0.937
10a 0.911 0.958 0.953 0.912 0.955 0.957
10b 0.894 0.952 0.942 0.903 0.954 0.949
5a 0.889 0.941 0.948 0.913 0.951 0.962
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Chapter 8

Application to real data sets

8.1 Abundance of Cecidomyiidae in a genetically

modified and three standard crops

In a field trial (Prescher, 2005, personal communication) four varieties were assigned

to 32 experimental units, with eight replications each, in a randomized complete

block design. One variety, Novum, was a genetically modified variety, a second,

Standard, is its near isogenic counter part. The two remaining varieties are con-

ventional varieties, A and B, included in the trial to include the variety specific

variability of the abundance of non-target species. At six time points, 12.07., 26.07.,

09.08, 24.08, 06.09, and 25.09, the abundance (expressed as number of individuals)

of gall midges (family Cecidomyiidae) was assessed with an eklektor trap placed in

each experimental unit. For modeling the data, the Poisson distribution is assumed

for the counts. Since interest might be in variety main effects as well as variety-

time interaction, the primary parameters of interest are the 24 means of the four

varieties (j = 1, ..., 4) at each time point (t = 1, ..., 6), modeled on the log-scale.

In the design matrix X, the means appear in the sequence Novum,1, Novum,2, ...,

Novum,6, Standard,t, A,t, B,t. A possibly present correlation between observations

from the same experimental units is modeled via the plot effects (corresponding to a

compound-symmetry assumption) for which the normal distribution on the log-link

111
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Figure 8.1: Abundance of Cecidomyiidae vs. the six time points, separately for the

four varieties. Lines join observations from the same experimental units.
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is assumed. To account for extra Poisson variability which is neither explained by

mean differences nor by the plot effect, an additional normal distributed error term

is introduced on the log-scale for individual observations. This model is formally

defined in Equation (7.5) in Section 7.5. This model accounts for possible correla-

tions between repeated observations from the same plots and the variability among

plots in the field. The model ignores that the treatments are randomized only within

blocks. A model that also includes a random block effect and a random effect for

block-time interaction would be more appropriate for this dataset, but is beyond the

scope of the models investigated in Chapter 7.

Although gall midges feed on plants they are non-target organisms in this context

and it is assumed that safety is compromised, when their abundance is decreased

in the novel variety. Assume further, that primary interest is in comparison of the

varieties pooled over time. On the scale of mean abundance, the hypotheses of

interest might be defined as:

H0 :
µNovum
µStandard

≤ ρ ∩ µNovum
µA

≤ ρ ∩ µNovum
µB

≤ ρ, ρ < 1 (8.1)

H1 :
µNovum
µStandard

> ρ ∪ µNovum
µA

> ρ ∪ µNovum
µB

> ρ, ρ < 1, (8.2)

where µj, j = 1, ..., 4 are the expectations of abundance counts on the original scale

for each of the four treatments (pooled over time by building geometric means).

Simultaneous lower 0.95-confidence limits for the three ratios can be used as tool for

rejecting the null-hypothesis with error probability α = 0.05, when there is consensus

with respect to ρ. The contrast matrix applied to β in order to obtain comparisons

to control pooled over time then can be conveniently defined by using the Kronecker

product ⊗:

C(pool) =


1 −1 0 0

1 0 −1 0

1 0 0 −1

⊗ ( 1/6 1/6 1/6 1/6 1/6 1/6
)

(8.3)

The parameter of interest is then a column vector of length M = 3: θ =

exp
(
C(pool)β

)
.
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8.1.1 Analysis with non-informative priors

Assume, that there is no prior information available on the parameter of primary

interest, β. For the elements β as defined in (7.5), the prior

βi ∼ N (0, 1000) , i = 1, ..., 24 (8.4)

is imposed, resulting in an about equal weight contributed to the posterior for βi ∈

[0.001, 10000]. Hence, the posterior is merely conditional to the data. Running the
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Figure 8.2: Non-informative prior for βi assumed in the MCMC run leading to the

confidence intervals for ratios of mean abundances in Table 8.1. Shown is the pdf of

the prior for values exp (βi) ∈ [0.001, 10000] and exp (βi) ∈ [0.1, 100]

model in (7.5.3) with 20000 updates, discarding the first 10000 values from the chain,

and retaining one out of ten values in the remaining part of the chain, results in

a sample of K = 1000 values from the joint posterior. Histograms of the MCMC

samples of the primary parameters are shown in Figure 8.3.

Exceptional histograms are those for β24 and τh = 1/σ2
h (tau.subj in the BUGS

model). The parameter β24 models the mean abundance at the last time point for

variety B, where no individual was observed in any of the eight experimental units.



8.1. CECIDOMYIIDAE IN GM AND THREE STANDARDS 115

beta[1]

0.0 1.0 2.0

0
20

40

beta[2]

−1.0 0.0 1.0 2.0

0
20

40

beta[3]

0.0 1.0 2.0

0
20

50

beta[4]

2.0 3.0

0
20

40
60

beta[5]

−2 −1 0 1

0
40

beta[6]

−3 −1 0 1

0
20

50

beta[7]

0.0 1.0 2.0

0
20

40

beta[8]

−1.5 0.0 1.0 2.0

0
40

80

beta[9]

0.0 1.0 2.0 3.0

0
20

50

beta[10]

0.0 1.0 2.0

0
20

40
60

beta[11]

−2.5 −1.0 0.5

0
40

80

beta[12]

−2.5 −1.0 0.5

0
40

80

beta[13]

0.0 1.0 2.0

0
20

40

beta[14]

−1.0 0.0 1.0 2.0

0
20

40

beta[15]

0.0 1.0 2.0

0
20

50

beta[16]

−0.5 0.5 1.5

0
20

50

beta[17]

−8 −6 −4 −2 0

0
20

50

beta[18]

−2.0 −0.5 0.5

0
20

40

beta[19]

−0.5 0.5 1.5 2.5

0
20

40
60

beta[20]

−1.0 0.0 1.0 2.0

0
20

40

beta[21]

1.0 2.0 3.0

0
20

50

beta[22]

1.5 2.5

0
30

60

beta[23]

−4 −2 0 1

0
40

80

beta[24]

−120 −60 −20

0
20

50

tau.subj

0 200 500

0
40

0
10

00

tau.e

1.0 2.0

0
20

50

deviance

560 600 640 680

0
20

40

Figure 8.3: Histograms of the marginal posterior distributions from the primary

output of the MCMC run, based on K = 1000 values, shown are β1, ..., β24 (beta[]),

τe = 1/σ2
e , (tau.e), τh = 1/σ2

h (tau.subj) and the deviance.
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Being only conditional to the sample, the posterior yields very low values. The

posterior for τh (tau.subj, with σ2
h modeling the variance of repeated observations

with the same plot) is highly skewed, ranging between 0.9 and 188, with a proportion

of 0.95 of the values between 1.7 and 19, and median at 4. The posterior means

Table 8.1: Estimates and simultaneous lower 0.95 confidence limits for the ratio of

mean abundance defined in (8.1), (8.2), based on the non-informative prior for the

means on the log-scale, defined in (8.4).

Ratio Estimate Lower 0.95 limit

Novum/Standard 1.22 0.56

Novum/A 1.81 0.77

Novum/B 35.03 1.23

and the simultaneous confidence intervals for the three ratios of interest are shown

in Table 8.1. Due to the low values of β24, the dissimilarity between Novum and B

might be overestimated.
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8.1.2 Analysis with a weakly informative prior

Using the above priors in (8.4) implies that, for all time points and varieties, mean

abundance exp (βi) of 0.001, or 10000 are considered about as probable as mean

abundances of 1 or 10. However, assessing species abundance by counting individuals

with sample size 8 implies that a priori the taxon is expected to be observable (e.g.

mean abundance > 0.1) and practically countable (e.g., mean abundance < 1000)

in the experimental setup. Assuming mean abundances centered at exp (βi) ∼= 2.5,

mean abundances of below 0.1 and above 100 to be relatively rare (probability less

than 1/6 for each) and mean abundances below 0.01 or above 1000 to be less probable

than 3-4%, could be expressed by the weakly informative prior:

βi ∼ N
(
µ = 1, σ2 = 10

)
(8.5)
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Figure 8.4: Weakly informative prior for βi assumed in the MCMC run leading to

the intervals for ratios of mean abundances in Table 8.2. Shown is the pdf of the

prior for values exp (βi) ∈ [0.001, 10000] and exp (βi) ∈ [0.1, 100]

Imposing this weakly informative prior on β results in the posterior samples shown in
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Figure 8.5: Histograms of the marginal posterior distributions from the primary

output of the MCMC run with the weakly informative prior in (8.5), based on K =

1000 values, shown are β1, ..., β24 (beta[]), τe = 1/σ2
e , (tau.e) τh = 1/σ2

h (tau.subj)

and the deviance.
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Table 8.2: Estimates and simultaneous lower 0.95 credible limits for the ratio of

mean abundance defined in (8.1), (8.2), based on the weakly informative prior for

the means on the log-scale defined in (8.5).

Estimate lower

Novum/Standard 1.23 0.59

Novum/A 1.65 0.73

Novum/B 1.67 0.72

Figure 8.5 and the simultaneous intervals shown in Table 8.2. Based on the slightly

subjective lower bounds for the three ratios of interest and a relevance margin ρ = 0.5

one could conclude with 0.95 credibility: The abundance of Cecidomyiidae in the

GM crop is not relevantly decreased compared to at least one of the conventional va-

rieties, and furthermore, is not relevantly decreased compared to all the conventional

varieties, Standard, A, and B.
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8.1.3 Exploring interactions

The above decisions are based on the dissimilarity among varieties, pooled over all

time points. A secondary experimental question could be to assess the presence of an

interaction between time and variety. Interest here is not in all possible interactions

in the 4 × 6 design, but rather in assessing whether and how the ratios of mean

abundance in Novum to the three conventional varieties changes in the time points

2, 3, 4, 5, 6 with reference to time point 1:

C(IA) =


1 −1 0 0

1 0 −1 0

1 0 0 −1

⊗



1 −1 0 0 0 0

1 0 −1 0 0 0

1 0 0 −1 0 0

1 0 0 0 −1 0

1 0 0 0 0 −1


. (8.6)

The parameter of interest is then the vector θ = exp
(
C(IA)β

)
. The elements of θ

are ratios of two ratios of mean abundances. The first element of θ relates the ratio

of mean abundances in Novum to that in Standard at the first time point to the

ratio of mean abundances in Novum to that in Standard at the second time point,

θ1 =
µNovum,Time1/µStandard,T ime1
µNovum,Time2/µStandard,T ime2

. If this parameter is larger than one, this means that

the ratio of mean abundances (µNovum/µStandard) has decreased from time 1 to time

2. If it is smaller than one, the ratio µNovum/µStandard at time 2 is larger than at

time 1. In Figure 8.6, this parameter will be denoted (N1/S1)/(N2/S2). The other

standard treatments are denoted A and B, the time points are identified by their

numbers 1,...,6.

Based on Equation (8.6), Figure 8.6 shows simultaneous 0.95 confidence intervals

for the ratios of Novum to the three standard treatment, being compared between

time points t = 2, ..., 6 and the first time point t = 1. The intervals are based on the

posterior sample of K = 1000 obtained by assuming a non-informative prior with

the BUGS code in Section 7.5.3. The confidence limits are given in numbers in Table

8.3. Figure 8.7 and Table 8.7 show simultaneous 0.95 credible intervals based on the

analysis with the weakly informative prior defined in Equation (8.5) imposed on the

elements of β.
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The confidence intervals in Figures 8.6 and 8.7 are very wide, many ranging between

0.1 and 10 fold change in the ratios of mean abundances. Based on these results, it

is hard to assume the absence of any change over time in the relevant comparisons

to the novel treatment. However, there is also no strong evidence for the presence

of such type of an interaction between time and treatment. The only interval which

does not contain the value 1 is that for the ratio µNovum,Time1/µB,Time1
µNovum,Time6/µB,Time6

. The data alone

indicate that the ratio µNovum/µB is significantly larger at the sixth time point than

at the first time point, due to the very low counts in treatment B at time six.

Imposing the prior knowledge leads to a slight shift of the posterior medians of the

parameters of interest, and largely increases the upper bound for µNovum,Time1/µB,Time1
µNovum,Time6/µB,Time6

.

Table 8.3: Posterior means and simultaneous 0.95 confidence intervals for the M =

15 parameters defined in (8.6) to explore interactions between treatment and time.

Comparison Estimate Lower Upper

(N1/S1)/(N2/S2) 0.71 0.05 6.40

(N1/S1)/(N3/S3) 0.94 0.10 6.70

(N1/S1)/(N4/S4) 0.40 0.04 2.90

(N1/S1)/(N5/S5) 0.88 0.07 14.00

(N1/S1)/(N6/S6) 2.30 0.13 42.00

(N1/A1)/(N2/A2) 0.90 0.11 6.00

(N1/A1)/(N3/A3) 0.66 0.08 4.50

(N1/A1)/(N4/A4) 0.22 0.03 1.20

(N1/A1)/(N5/A5) 0.10 0.00 2.90

(N1/A1)/(N6/A6) 2.80 0.27 40.00

(N1/B1)/(N2/B2) 1.10 0.12 12.00

(N1/B1)/(N3/B3) 1.60 0.21 9.50

(N1/B1)/(N4/B4) 0.68 0.09 3.60

(N1/B1)/(N5/B5) 0.80 0.08 11.00

(N1/B1)/(N6/B6) 0.00 0.00 0.43
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Figure 8.6: Simultaneous 0.95 confidence intervals for the M = 15 parameters de-

fined in (8.6) to explore interactions between treatment and time.
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Figure 8.7: Simultaneous 0.95 confidence intervals for the M = 15 parameters de-

fined in (8.6) to explore interactions between treatment and time; results based on

the analysis with weakly informative priors.
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Table 8.4: Posterior means and simultaneous 0.95 confidence intervals for the M =

15 parameters defined in (8.6) to explore interactions between treatment and time;

results based on the analysis with weakly informative priors.

Comparison Estimate Lower Upper

(N1/S1)/(N2/S2) 0.68 0.07 5.10

(N1/S1)/(N3/S3) 0.91 0.14 6.30

(N1/S1)/(N4/S4) 0.37 0.06 3.30

(N1/S1)/(N5/S5) 0.87 0.06 9.90

(N1/S1)/(N6/S6) 2.10 0.12 38.00

(N1/A1)/(N2/A2) 0.85 0.13 6.80

(N1/A1)/(N3/A3) 0.67 0.08 4.00

(N1/A1)/(N4/A4) 0.23 0.03 1.30

(N1/A1)/(N5/A5) 0.16 0.00 3.50

(N1/A1)/(N6/A6) 2.40 0.17 41.00

(N1/B1)/(N2/B2) 1.10 0.12 7.90

(N1/B1)/(N3/B3) 1.70 0.25 10.00

(N1/B1)/(N4/B4) 0.66 0.08 5.30

(N1/B1)/(N5/B5) 0.83 0.08 9.20

(N1/B1)/(N6/B6) 0.07 0.00 4.60
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8.2 Abundance of plant and leaf hoppers in a GM,

near isogenic and insecticide treatment

Rauschen et al. (2008) report a field trial where the abundance of plant hoppers

and leaf hoppers (suborder Auchenorrhyncha) was assessed by visual assessments in

a field trial arranged as a randomized complete block design with eight blocks and

three treatments. The treatments are a GM-variety (GM), the corresponding near-

isogenic line (Iso) and a conventional variety treated with an insecticide (Insecticide).

The obtained data are summarized in Figure 8.8: The following model is assumed
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Figure 8.8: Boxplots of the abundance of Auchenorrhyncha in the three treatments.

The bold lines mark the sample median, the lower and upper end of the boxes mark

the 0.25 and 0.75 sample quantiles and the whiskers mark the minimal and maximal

values.
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for the data:
Yn ∼ NB (µn, τ)

µn = exp (ηn)

ηn =
∑I

i=1 xniβi +
∑J

j=1 znjγj

γj ∼ N(0, σ2
u)

(8.7)

Primary interest is in comparison of the treatments (i.e., the βi, i = 1, 2, 3), whereas

the potential effects of the blocks (i.e., the γj, j = 1, ..., 8) are modeled as normal

distributed on the log-link by the hyper parameter σu.

In safety assessment, the hypothesis of primary interest then is:

H01 : µGM/µIso ≤ ρ
1
∪ µGM/µIso ≥ ρ1 (8.8)

H11 : µGM/µIso > ρ
1
∩ µGM/µIso < ρ1 (8.9)

with ρ
1
< 1 and ρ1 > 1 specified a priori. A marginal 0.95 lower and 0.95 upper

confidence limit for µGM/µIso are adequate statistical tools for deciding on these

hypotheses and presenting the results, especially when there is no a priori consensus

concerning ρ
1
and ρ1.

Of secondary interest might be the comparison of the GM line to the insecticide

treatment. Here it might be of interest to show the non-inferiority or superiority of

GM vs. Insecticide.

H02 : µGM/µInsecticide ≤ ρ
2

(8.10)

H12 : µGM/µInsecticide > ρ
2

(8.11)

where ρ2 might be chosen ρ2 < 1, ρ2 = 1, or ρ2 > 1, depending on whether it

is of interest to show non-inferiority, marginal dissimilarity or superiority of GM

compared to Insecticide. A lower 0.95 confidence limit for the ratio µGM/µInsecticide

is an appropriate tool to decide on such hypotheses, independent of the choice of ρ2.

Note, that the hypotheses (8.8), (8.9) and (8.10), (8.11) imply different aspects of

safety assessment for the GM variety and hence might be adequate not to control

the familywise error for both. Still, if interest is in controlling the familywise error

for the two experimental questions, it is reasonable to impose an a priori order on

the hypotheses, where again marginal confidence limits for the two parameters of

interest are appropriate (Hothorn and Lehmacher, 1991).
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8.2.1 Analysis with non-informative prior

βi ∼ N (0, 1000) , i = 1, 2, 3 (8.12)

Table 8.5: Posterior medians, lower 0.95 and upper 0.95 confidence limits for the

parameters of interest in (8.8) and (8.10) when analysed with the non-informative

prior for βi in (8.12).

Comparison Estimate Lower 0.95 limit Upper 0.95 limit

GM/Iso 1.5 0.69 3.3

GM/Insecticide 22.4 8.3 61.4

8.2.2 Analysis with a weakly informative prior

βi ∼ N (0, 10) , i = 1, 2, 3 (8.13)

Table 8.6: Posterior medians, lower 0.95 and upper 0.95 confidence limits for the

parameters of interest in (8.8) and (8.10) when analysed with the weakly informative

prior for βi in (8.13).

Comparison Estimate Lower 0.95 limit Upper 0.95 limit

GM/Iso 1.6 0.68 3.3

GM/Insecticide 23.4 8.8 65.8

Assuming relevance margins of ρ
1

= 0.5 and ρ1 = 2.0 for the equivalence problem of

primary interest, one can not conclude for equivalence of GM compared to Iso, since

an increase of abundance in GM to more than 3.3 times the abundance in Iso can not

be ruled out with high confidence. However, one may conclude with 0.95 confidence

that the abundance of plant and leaf hoppers is relevantly increased in GM compared

to their abundance in the insecticide treatment. Based on the non-informative prior,
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one might conclude with 95% confidence that the abundance of Auchenorrhyncha

in the GM variety is at least 8.3 times higher than in the conventional variety with

insecticide treatment. However, based on the simulation study in Chapter 5, one can

know that bounds constructed in this way exclude the true value more often than

in 5% of the cases. Hence, the actual frequentist confidence in the above statement

is somewhat lower than 95%, even if the assumptions of the statistical model hold

true.

Comparing the results of the analysis with a non-informative and a weakly informa-

tive prior shows, that the confidence limits of interest are not very sensitive for the

particular choices of prior distributions.
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Discussion

The problem of local and simultaneous confidence intervals for dissimilarity in mean

abundance among two or several samples is a relevant problem with applications in

monitoring the ecological impact of novel practices, chemicals or varieties on non-

target species. Similar applications with increasing public interest arise in fishery

management and epidemiology of parasites. The construction of valid confidence

intervals and simultaneous confidence sets for ratios or differences of means abun-

dances has not gained much attention in the literature so far. Especially the problem

of simultaneous confidence intervals has not been considered in detail. This work

briefly reviews methods to construct marginal and simultaneous confidence intervals

for dissimilarity in mean abundance. After briefly comparing their performance in a

relevant extreme data realization, the focus is on the frequentist coverage probability

of marginal and simultaneous confidence intervals constructed using the MCMC. It

is shown that, in principle, the application of Bayesian models with non-informative

prior distributions in the Gibbs sampler, may yield correct frequentist marginal and

simultaneous confidence intervals. The frequentist validity of such confidence inter-

vals is shown for a variety of statistical models, including the completely randomized

one-way layout and some simple hierarchical models with clustered experimental

units or repeated measurements. However, the simulation studies show that for

small sample sizes and low abundances, both marginal and simultaneous confidence

intervals derived from the Gibbs sampler perform liberal. I.e., in the frequentist way

129
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of thinking they cover an assumed true parameter value less often than prespecified.

Hence, when applied in safety assessment as a tool for deciding in a proof of equiv-

alence or non-inferiority, the prespecified consumers’ risk is inflated. Especially, the

application of the discussed methods can not be recommended when abundances are

very small and when the species of interest is absent in at least one group. Under

favorable conditions, i.e., with mean abundances at least 10 and groupwise sample

sizes at least 20, both, marginal and simultaneous confidence intervals have a cover-

age probability close to the nominal level. Additionally, the simulation studies show

that it is surprisingly simple to construct valid (simultaneous) confidence intervals

for differences of mean abundances, which is a non-canonical measure of dissimilar-

ity in terms of generalized linear models with log-link. However, its use in safety

assessment is limited.

Using the Gibbs sampler to derive simultaneous confidence intervals, as discussed

in this work, has a number of drawbacks. First, the communication between two

software packages, R and OpenBUGS, complicates the technical execution of the sta-

tistical analysis. Further, without much theoretical background, the definition of

many different models is possible and MCMC will produce an output as long as the

BUGS code is syntactically correct and fits to the input data. Hence, in practical

application, where computation time is not as problematic as in simulation studies,

more effort should be put on thoroughly assessing the convergence, e.g. by running

the model with several chains, initialized by values scattered over the parameter

space (e.g. Gelman et al., 2004; Browne and Draper, 2005). Also, it is recommended

to chose the number of updates and the number of values discarded at the beginning

of the chains much larger, than in the simulation studies here. Still the resulting

confidence intervals should be interpreted with care, since an at least slightly liberal

performance is the common result of all simulation studies in this work.

The results of this work can not be more than an initial proof of concept for de-

riving frequentist (simultaneous) confidence intervals for difficult distributional as-

sumptions from MCMC. The reasons are manifold: The models considered have

been simulated for only a very limited number of experimental designs. Especially
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for the hierarchical models, also more extreme designs concerning the number of

clusters, replications within clusters, etc. should be considered. Further, focus was

merely on factorial arrangements and subsequent multiple treatment comparisons,

a problem which is rarely discussed in the Bayesian literature and user manuals. In

real life, problems often involve combinations of factorial arrangements and numer-

ical covariates; the problems arising in such settings have not been considered here.

Moreover, the hierarchical models considered in this work are limited to rather sim-

ple structures. In the problem of clustered experimental units a possible interaction

of treatments and environments has not been included in the considered models.

Moreover, randomization structures with more than one level of nesting are fre-

quently observed in practice. For such models, the design matrices accounting for

the randomization structure will be more complex and several hyper parameters

have to be specified for the different random effects. When considering designs with

repeated measurements within experimental units, other than the compound symme-

try assumption considered here might be reasonable. Since the multivariate normal

distribution is implemented in OpenBUGS, assumptions on the variance-covariance

structure of observations might be included in models for repeated measures. How-

ever, this introduces the problem of defining prior distributions for the parameters in

variance-covariance structures. Hints for defining more complex hierarchical mod-

els can, e.g., be found in Browne and Draper (2005); Gelman (2006); Kass and

Natarajan (2006); Zhao et al. (2006).

Another limitation of the methods discussed here are the distributional assumptions.

Being based on the likelihoods following from the probabilistic model assumed for

the dependence of the observations on the parameters and hyper parameters, the

Gibbs sampler is a ’parametric’ method. Hence, the inferential results rely on these

assumptions. However, in agricultural and ecological studies, sample size is usually

too small to thoroughly assess the validity of the distributional assumptions. Fol-

lowing this uncertainty, the problem of model selection arises. Due to the simplicity

by which different models with different distributional assumptions can be defined

in BUGS, several slightly different models for the same data situations are possible.
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For example, in the above models, the means are modeled by normal distributions

on the log-link. Alternatively, they could be modeled by gamma distributions on the

original positive scale, as is done in the problem of HGLMs (Lee et al., 2006). Simi-

larly, in some of the above models, overdispersion has been modeled by the negative

binomial distribution (corresponding to a Poisson mixture with gamma-distributed

expectations) or by imposing a normal distribution on the residuals on the log-scale.

In this work, the problem how to decide among several models in practice has not

been considered. Hence, for completion of a recommendation of a statistical method,

its robustness in case of violated assumptions has to be assessed, which has not been

done in this work. Finally, a related problem is the choice of the link function: here,

the log-function has been chosen merely by convention and convenience, what is not

necessarily the best option in practice.
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Extensions and Outlook

The statistical procedures discussed above may be straightforwardly extended for

application in situations with similar experimental designs but different distribu-

tional assumptions. Most prominent example is that of constructing confidence

intervals for parameters describing the dissimilarity among binomial proportions.

For the problem of non-canonical parameters, as are the risk difference and the risk

ratio, even in the simple two-sample case a number of methods has been proposed

and is still under discussion (Newcombe, 1998; Agresti and Caffo, 2000; Brown and

Li, 2005, to name a few references). Recently, the distribution for the difference

of two proportions has been published (Nadarajah and Kotz, 2007), however, with-

out making a confidence interval method available based on these findings. Only

some approximate solutions are available for multiple comparisons among propor-

tions: while in some approaches only special cases are considered (Holford, 1989;

Piegorsch, 1991; Agresti et al., 2008; Schaarschmidt et al., accepted a), Bretz and

Hothorn (2002) and Schaarschmidt et al. (accepted b) provide a solution for a gen-

eral contrasts (on the scale of the proportion) with focus on large sample hypotheses

testing, and approximate small sample confidence intervals, respectively. However,

instead of deriving exact distributions (Nadarajah and Kotz, 2007) or using the

multivariate normal approximation (Bretz and Hothorn, 2002; Schaarschmidt et al.,

accepted b), the methods discussed in this work might be used to sample from the

distribution of interest for user-defined contrasts of proportions. The odds ratio,
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risk ratio or risk difference might be defined as parameters of interest. An approach

via the Gibbs sampler is especially appealing because, in some applications as the

assessment of carcinogenicity and toxicity of compounds, prior information on the

binomial parameter is available at least for untreated control groups (Tarone, 1982;

Tamura and Young, 1986). However, when interest is in the small sample properties

of such methods, these should be assessed for relevant parameter settings in another

simulation study.

Moreover, the method of Besag et al. (1995) to construct confidence sets based on

samples of the joint distribution of the parameters of interest might be applied to the

output of other algorithms to draw such samples in the frequentist context. Such

algorithms could be parametric or non-parametric bootstrap stratified for multi-

ple treatment comparisons (e.g. Davison and Hinkley, 1997), where the percentile

method of Besag et al. (1995) could be a competitor to the simultaneous confidence

intervals proposed by Beran (1990); Mandel and Betensky (2008).

A relevant problem related to safety assessment for non-target species is to con-

struct simultaneous confidence intervals for biodiversity indices. The motivation is

simple: the considerations of this work and the power assessment of Gerhard and

Schaarschmidt (2007) show that for the safety assessment concerning rare species,

available statistical methods do not perform acceptably and, if still applied, do not

have sufficient power in a proof of safety with commonly accepted safety margins.

Straightforward ways out are the inclusion of prior information (as suggested by

Dixon et al., 2005, for a related problem), focusing on species with sufficient abun-

dance (e.g. Rauschen et al., 2008) or the summary of species according to ecological

criteria (feeding, behavior, exposure to the potentially hazardous agent). However,

additionally to showing that the abundance of dominant species and important eco-

logical groups is not severely affected, it could be of interest to show that the multi-

tude of rare species is not severely compromised. One way to tackle this problem are

diversity indices, for examples according to Shannon or Simpson (Magurran, 1988).

The construction of marginal and simultaneous confidence intervals for differences

of these indices has been considered already (Fritsch and Hsu, 1999; Rogers and
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Hsu, 2001), though the proposed methods can not account for the overdispersion

usually observed in ecological field data. Since an analytical approach for overdis-

persed multinomial data can be expected to be difficult, a bootstrap in combination

with the approach of Besag et al. (1995) may be a viable option that includes major

sources of uncertainty.

Alternatively, the method of generalized pivotal quantities (Weerahandi, 1993) might

be used to obtain the joint distribution of parameter estimates in settings with

non-trivial distributional assumptions. For example, one could attempt to use the

methods described in Chapter 4 for extending the methods of Chen and Zhou (2006)

for ratio and difference of log normal means to the problem of multiple comparisons

in the one-way layout. However, compared to these approaches, the Gibbs sampler

appears to be more convenient and flexible when hierarchical models are of interest.
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Appendix A

Parametrization of distributions

In this Section, the distribution functions used in the text and models are are defined.

Although this is standard knowledge for statisticians, these distributions are used

with different parameterizations in Frequentist and Bayesian contexts and in the

different software packages used in the model definitions for the simulation studies.

Thence, to avoid confusion, the connections between the parameterizations are listed

below.

A.1 The uniform distribution

The uniform distribution is throughout used with the parametrization Y ∼

unif(a, b):

f(Y ) =
1

(b− a)
. (A.1)

A.2 The normal (Gaussian) distribution

The pdf of a normal distributed random variable Y , Y ∼ N (µ, σ2) is:

f (Y ) =
1

σ
√

2π
e−

(y−µ)2

2σ2 (A.2)
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In this notation it is used throughout the text. In the Bayesian context, often the

parametrization Y ∼ (µ, τ) is used instead, where τ is the precision parameter,

τ = 1/σ2. This parametrization is also used in function dnorm(mu, tau) in BUGS

models of Section .

A.3 The gamma distribution

The pdf of a random variable Y following a two-parameter gamma-distribution Y ∼

gamma (a, b) is defined:

f (Y ) =
ya−1exp (−y/b)

baΓ (a)
, (A.3)

with y ≥ 0, a > 0, b > 0. Its first and second moment are E (Y ) = ab and

V (Y ) = ab2. Further properties of the gamma distributions are described (Johnson

et al., 1994). The above definition is equivalent to Johnson et al. (1994), Equation

17.23, with a = α, and b = β. In this parametrization it will be used in the

text. The R-function uses the parametrization dgamma(x=x, shape=a, scale=b).

In the Gibbs sampler implementations WinBugs 1.4 and OpenBUGS 3.0.2 in the

function dgamma(r, mu) (Spiegelhalter et al., 2007) is defined with the parameters

r = a and mu = 1/b according to the definitions above. Therefore, E (Y ) = r/mu,

V (Y ) = r/mu2.

A.4 The Poisson distribution

For random variable Y following Poisson distribution Y ∼ Pois (µ), the probability

of observing y is

P (Y = y) =
exp (−µ)µy

y!
, (A.4)

where the expectation of Y is E (Y ) = µ and the variance of Y is V ar (Y ) = µ. In

this parametrization it is used in the text as well as in the code, where in OpenBUGS

and R, dgamma(lambda) simply use lambda=mu in the definition above.
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A.5 The negative binomial distribution

Many articles referring to overdispersion of count data assume negative binomial

distribution. In this context, the negative binomial can be shown to arise from

a mixture of Poisson distributions with means µ following a 2-parameter gamma

distribution gamma (a, b) with pdf:

f (µ) =
µa−1exp (−µ/b)

baΓ (a)
. (A.5)

The probability to observe a certain count Y = y arising from a mixture of Poissons

with means distributed according to A.5 (Johnson et al., 1993) then is:

P (Y = y) =

 a+ y − 1

a− 1

( b

b+ 1

)y (
1

b+ 1

)a
. (A.6)

In the literature the negative binomial distribution has been parameterized in many

different ways. In the following, a notation in dependence of mean and dispersion

parameter will be used, defining the probability to observe Y = y in the notation

Y ∼ NB (µ, τ) as:

P (Y = y) =

 τ + y − 1

τ − 1

( τ

µ+ τ

)τ (
µ

µ+ τ

)y
. (A.7)

Here, 1/τ is a dispersion parameter, and µ is the expectation of Y . In the negative

binomial distribution, the variance is a quadratic function of the expectation and the

dispersion parameter 1/τ : V ar (Y ) = µ + µ2

τ
. As τ → ∞, the Poisson distribution

results.

In the R-function dbinom(x=x, size=n, prob=p):

P (X = x) =
Γ (x+ n)

Γ (n)x!
pn (1− p)x , (A.8)

with a = (1− p) /p, or p = a/ (1 + a), b = n, n > 0, E (X) = n (1− p) /p, and

V (X) = n (1− p) /p2, when X follows a mixture of Poissons Pois (µ), with means

µ ∼ gamma (a, b).

The Gibbs sampler implementations WinBugs 1.4 and OpenBUGS 3.0.2 use an

equivalent definition with in the function dnegbin(p,r): r = n, p = p.
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Additionally to the first, the R functions dnbinom, rnbinom used in the simulation

study can use the alternative parameters: dnbinom(x=x, size=n, mu=mu), using

the following definitions and relations to the above parameters: E (X) = µNB,

p = n/ (n+ µNB), V (X) = µNB + 1
n
µ2
NB. The R package gamlss uses the same

definition with σ = 1/n = 1/τ .

Note: Data following the negative binomial distribution may also arise from counting

the number of Bernoulli trials n that have to be performed until a certain prespecified

number of successes y =
∑
Y is observed. Here, Y is random variable with values

(0,1), being i.i.d. Bernoulli distributed Y ∼ Bern (π), with π being the probability

to observe a success.

A.6 The multivariate normal distribution

An M -dimensional random variable Y t = (Y1, ..., YM) is denoted as M -variate nor-

mal distribution, MVN (µ,Σ), when is has a pdf

f (y1, ..., yM) =
1√

(2π)M |Σ|
exp

(
−1

2
(y − µ)t Σ−1 (y − µ)

)
, (A.9)

(Kotz et al., 2000), where µt = (µ1, ..., µM) is the vector of expected values and Σ

is the (M ×M) variance-covariance matrix, yt denotes the transposed vector, Σ−1

denotes the inversion and |Σ| is the determinant of the variance-covariance matrix.



Appendix B

Basic R functions implementing the

discussed methodology

In the following, basic R functions are presented, which implement basic, simple

methodology. They allow to calculate simultaneous confidence intervals for multiple

comparisons among elements primary parameter vector. They are sufficient to per-

form calculations leading to results as given for the examples in Sections 4.6.2 and

8.1. The functions are implemented in the R package BSagri which is available as

a beta version from the author upon request.

B.1 SCI based on a joint empirical posterior distri-

bution

The R code below implements the algorithm of Besag et al. (1995) outlined in Section

4.4 and is based on an initial version by Dilba (2006). The argument x must be an

(M×K) matrix ofK samples of theM dimensional parameter vector. The argument

conf.level must be a single numeric value specifying the intended simultaneous

confidence level, alternative must be a single character string, specifying whether

two-sided intervals, upper or lower limits are to be contructed. The argument ...

is currently not used.
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SCSnp.default <- function(x, conf.level=0.95, alternative="two.sided", ...){

alternative <- match.arg(alternative, choices=c("two.sided","less","greater"))

DataMatrix <- x

N <- nrow(DataMatrix)

k <- round(conf.level*N,0)

RankDat <- apply(DataMatrix,2,rank)

switch(alternative,

"two.sided"={

W1 <- apply(RankDat,1,max)

W2 <- N + 1 - apply(RankDat,1,min)

Wmat <- cbind(W1,W2)

w <- apply(Wmat,1,max)

tstar <- round(sort(w)[k],0)

SCI <- function(x){sortx <- sort(x)

cbind(sortx[N+1-tstar],sortx[tstar])}

SCS <- t(apply(DataMatrix,2,SCI))},

"less"={

W1 <- apply(RankDat,1,max)

tstar <- round(sort(W1)[k],0)

SCI <- function(x){sortx <- sort(x)

cbind(-Inf, sortx[tstar])}

SCS<-t(apply(DataMatrix,2,SCI))},

"greater"={

W2 <- N + 1 - apply(RankDat,1,min)

tstar <- round(sort(W2)[k],0)

SCI <- function(x){sortx <- sort(x)

cbind(sortx[N+1-tstar], Inf)}

SCS<-t(apply(DataMatrix,2,SCI))

})

estimate<-apply(DataMatrix,2, median)

colnames(SCS)<-c("lower","upper")

out<-list(

conf.int=SCS, estimate=estimate, x=x, k=k, N=N,
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conf.level=conf.level, alternative=alternative)

class(out)<-"SCSnp"

return(out)}

B.2 Joint empirical posterior of multiple contrasts

The following R code implements the functions to compute contrasts of interest

based on differences and ratios of a primary parameter vector. The argument x

must be a (K × I) matrix of K samples of the primary parameter vector, and the

argument cmat must be an (M × I) matrix. This function implements Equation

(4.21).

CCDiff.default <-function(x, cmat){

require(multcomp)

if(!is.matrix(x) & !is.data.frame(x))

{stop("Argument ’x’must be a matrix or data.frame!")}

ngroup<-ncol(x)

Nsim<-nrow(x)

chains<-x

if(!is.matrix(cmat))

{stop("’cmat’ must be a matrix, specifying the contrast coefficients")}

if(ngroup!=ncol(cmat))

{stop("ncol(cmat) must be the same as the number of means in muvec")}

cs<-apply(cmat,1,sum)

if(any(cs!=0))

{warning("Rows of cmat do not sum up to zero.

Are the contrasts appropriately defined?")}

nchains<-apply(X=chains, MARGIN=1, FUN=function(x){cmat %*% x})

if(nrow(cmat)==1)

{nchains<-matrix(nchains, nrow=1)}

rownames(nchains)<-rownames(cmat)

out<-list(

chains=t(nchains), x=x, cmat=cmat)

class(out)<-"CCDiff"
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return(out)

}

The following function implements Equation (4.22). The argument x must be a

(K × I) matrix of K samples of the primary parameter vector, and the argument

cmat must be a list with elements numC and denC both being (M × I) matrices.

CCRatio.default <- function(x, cmat){

require(mratios)

ngroup<-ncol(x)

chains<-x

if(!is.list(cmat))

{stop("cmat must be a list")}

if(is.null(cmat$numC)|is.null(cmat$denC))

{stop("cmat must be a list with elements $numC and $denC,

specifying the numerator and denominator contrast coefficients")}

if(!is.matrix(cmat$numC)|!is.matrix(cmat$denC))

{stop("elements $numC and $denC of ’cmat’ must be matrices,

specifying the numerator and denominator contrast coefficients")}

if(ngroup!=ncol(cmat$numC))

{stop("ncol(cmat$numC) must be the same as the number of means in muvec")}

if(ngroup!=ncol(cmat$denC))

{stop("ncol(cmat$denC) must be the same as the number of means in muvec")}

nchains<-apply(X=chains, MARGIN=1, FUN=function(x){(cmat$numC%*%x) / (cmat$denC%*%x)})

if(nrow(cmat$numC)==1)

{nchains<-matrix(nchains, nrow=1)}

rownames(nchains)<-rownames(cmat$numC)

out<-list(

chains=t(nchains), x=x, cmat=cmat)

class(out)<-"CCRatio"

return(out)

}



Acknowledgements

The project underlying this work was funded by Bundesministerium für Bildung

und Forschung, grant number 0313269. The responsibility for the content lies with

the author.

I thank Prof. Dr. Ludwig A. Hothorn for providing the project, statistical problems

and seminal ideas for the solutions, for his constant assistance and education, Dr.

Gemechis Dilba Djira for providing seminal ideas and approaches, as well as help-

ful comments on a related internal report, Prof. Hans-Peter Piepho for his detailed

comments and corrections on an earlier version which helped to make this work more

precise, readable and understandable, Mario Hasler for his patience in teaching me

the basics of mathematical notation and LaTeX, Mario Hasler and Daniel Gerhard

for all the lively discussions on multiple comparisons, joint distributions and gen-

eralized linear models, Stephan Rauschen and Dr. Sabine Prescher for providing

the practical problems and data sets. Further, I thank Hanne Visser and Clemens

Buczilowski for helping me to administrate my life as an employee and computer

user. Last, but not least, I thank my parents, Ruth, my brother and sisters and the

ESG Hannover for helping me to keep balance.

159


