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Zusammenfassung

Simultane Konfidenzintervalle

In kontrollierten Experimenten mit mehreren Behandlungen stellt sich oft zuerst die Frage nach all-
gemeinen Unterschieden, also, ob überhaupt irgendwelche der Behandlungen zu Unterschieden in
den gemessenen Variablen führen. Globale statistische Tests, wie z.B. der F-Test der Varianzanalyse
(ANOVA) oder der χ2-Test auf Unabhängigkeit in Kontingenztafeln erlauben es, anhand der expe-
rimentellen Daten Interpretationen abzuleiten wie ’Die Behandlungen unterscheiden sich im Mittel’,
oder die ’Häufigkeiten mehrerer Kategorien unterscheidet sich zwischen den Behandlungen’. Bei kor-
rekter Anwendung stellen diese Tests sicher, dass die so generierten Aussagen nur in einem geringen
Anteil (z.B. α = 0.05) von Anwendungen falsch positiv sind, d.h. rein zufällige Schwankungen in den
Daten dazu führen, dass man auf das Vorhandensein von signifikanten Unterschieden schließt.

In den seltensten Fällen ist das Bedürfnis nach Interpretation in Experimenten mit mehreren Be-
handlungen mit solchen allgemeinen Aussagen erschöpft. Es schließen sich Fragen an, wie: ’Welche der
Behandlungen unterscheiden sich untereinander?’, ’Für welche Behandlungen kann man erwarten, dass
sie zu höheren oder niedrigeren Werten der Variable führen, als welche der übrigen Behandlungen?’,
’Wie groß sind die Unterschiede zwischen den Behandlungen?’, ’Sind die Unterschiede nur statistisch
signifikant, oder sind sie auch praktisch relevant?’ Da manche dieser Detailinterpretationen zu den
wesentlichen Aussagen eines Experiments werden können, sollte auch für sie die Wahrscheinlichkeit
falscher Aussagen auf niedrigem Niveau (z.B. α = 0.05) kontrolliert werden. Das heißt, statistische
Verfahren werden benötigt, die die Vielzahl sich ergebender Einzelfragestellungen testen und Rich-
tung und Größe der Unterschiede so schätzen, dass daraus abgeleitete Aussagen nur mit geringer
Wahrscheinlichkeit falsch sind.

Häufig werden die einzelnen Behandlungen im Experiment untersucht, um eine Gesamtfragestel-
lung zu beantworten: Solche Situationen liegen vor, wenn in einer Vielzahl von Behandlungen bereits
einzelne gefundene Unterschiede eine wichtige Interpretation darstellen. Zum Beispiel, wenn unter ei-
ner größeren Zahl Behandlungen (ohne a priori Ordnung), einige identifiziert werden sollen, die eine
Verbesserung versprechen:

• Kann durch eine Reihe verschieden zusammengesetzter Vermehrungsmedien eine Erhöhung der
Regenerationsrate in einem in-vitro Vermehrungssystem erreicht werden? Welche unter dieser
Vermehrungsmedien führen zu einer höheren Regenerationsrate als welche anderen? Um wieviel
kann die Regenerationsrate mit dem empirisch besten Medium erhöht werden, im Vergleich zu
den übrigen Medien?

• Gibt es in einer Auswahl Genotypen Unterschiede bezüglich der Gehalte bestimmter Inhalts-
stoffe? Welche Genotypen enthalten wieviel mehr als welche anderen?

In ähnlicher Weise werden bei Untersuchungen zur Toxizität oder Karzinogenität von Substanzen in
der Regel mehrere Dosierungen über einen weiten Dosis-Bereich im Vergleich zu einer unbehandelten
Kontrollbehandlung bewertet: ’Führt mindestens eine der geprüften Dosierungen zu einem Anstieg
der Häufigkeit von Gewebs-Läsionen, Mutationen oder Tumoren im Vergleich zur unbehandelten Kon-
trolle?’, ’Um wieviel ist deren Anteil im Vergleich zur Kontrolle erhöht?’ Ähnliche Probleme ergeben
sich auch bei der Bewertung der Unbedenklichkeit von Substanzen: ’Bis zu welcher Dosis ist der Anteil
der Läsionen nicht stärker als eine vorgegebene Grenze (z.B. 125% des Werts in der Kontrolle) erhöht?’

Der Fokus der folgenden Publikationen liegt deshalb auf simultanen Konfidenzintervallen. Einfache
Konfidenzintervalle geben einen aus den Daten berechneten Bereich (Unter- und Obergrenze) an, in
dem ein wahrer zu schätzender Parameter mit hoher Wahrscheinlichkeit (z.B. 1 − α = 0.95) liegt,
d.h. in 95% der Anwendungsfälle der Methodik, bei gegebenen Vorraussetzungen. Sie erlauben damit
Hypothesentests für diesen Parameter zum Niveau α, d.h. zum Beispiel Aussagen zur Signifikanz
des Unterschieds zwischen zwei Behandlungen. Sie erlauben aber darüber hinaus Interpretationen
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zu Richtung und Größenordnung des Parameters, und damit fachliche fundierte Interpretationen zur
praktischen Relevanz von beobachteten Unterschieden.

Simultane Konfidenzintervalle sind die Erweiterung dieser Methodik auf Fälle, in denen mehrere
Parameter geschätzt werden sollen, wenn gleichzeitig die Wahrscheinlichkeit mindestens einer falschen
Aussage auf niedrigem Niveau kontrolliert werden soll. Das heißt, für jeden einzelnen zu schätzenden
Parameter wird ein Bereich so angegeben, dass die Wahrscheinlichkeit, dass alle wahren Parameter in
ihrem zugehörigen Bereich liegen, auf hohem Niveau kontrolliert wird, z.B. 1 − α = 0.95. Umgekehrt
beträgt dann die Wahrscheinlichkeit, dass mindestens ein Parameter nicht im zugehörigen Intervall
liegt, α = 0.05. Das bedeutet, dass simultane Konfidenzintervalle Interpretationen zu allen Typen der
oben gestellten Fragen erlauben: Signifikanz der Gesamtfragestellung, Detailunterschiede bezüglich
Richtung und Größenordnung der Unterschiede, sowie, bei gegebenen fachlichem Hintergrundwissen,
zur praktischen Relevanz der beobachteten Unterschiede. Im Beispiel der Auswahl aus mehreren Medi-
en zur in-vitro Vermehrung könnten simultane 95% Konfidenzintervalle für alle paarweisen Differenzen
der mittleren Vermehrungsraten der Medien berechnet werden. Wenn mindestens eins dieser Intervalle
den Wert 0 nicht enthält, kann zum Signifikanzniveau 5% geschlossen werden, dass es Unterschiede
zwischen den Medien bezüglich der mittleren Vermehrungsraten gibt. Gleichzeitig kann interpretiert
werden, welche der Medien sich im Einzelnen von welchen anderen unterscheiden (Welche Intervalle
der einzelnen paarweisen Differenzen den Wert 0 nicht enthalten). Die Grenzen der Konfidenzinter-
valle geben (unter Kontrolle der Wahrscheinlichkeit mindestens einer falschen Aussage) an, wie groß
die Unterschiede der mittleren Vermehrungsraten zwischen ausgewählten Medien sind.

Verfügbare statistische Methodik

Statistische Methoden zur Berechnung von simultanen Konfidenzintervallen sind seit langem verfügbar
für einfaktorielle Versuchsanlagen und die Annahme Gauß-verteilter Residuen mit homogenen Varian-
zen: Die Verfahren zum Tukey-Test (Tukey, 1953) erlauben auch die Berechnung simultaner Konfiden-
zintervalle für alle paarweisen Vergleiche zwischen mehreren Behandlungsmittelwerten. Der Test nach
Dunnett (Dunnett, 1955) bietet die Lösung für den wichtigen Spezialfall, dass nur die paarweisen Dif-
ferenzen mehrerer Behandlungsmittelwerte zum Mittelwert einer Kontrollgruppe von Interesse sind.
Natürlich lassen sich nicht alle wissenschaftlichen Fragestellungen in diesen beiden Spezialfällen ab-
bilden. Bretz et al. (2001, 2002) beschreiben unter den obigen Annahmen Methoden zur allgemeinen
Definition multipler Vergleiche zwischen mehreren Behandlungsmittelwerten: Die Theorie multiple
Kontrasttests erlaubt es, nur für diejenigen Differenzen von Behandlungsmittelwerten simultane Kon-
fidenzintervalle zu schätzen, die in einer bestimmten wissenschaftlicher Fragestellung tatsächlich von
Interesse sind.

Die obige Annahme Gauß-verteilter, varianzhomogener Residuen ist in praktischen Versuchen in
den Biowissenschaften selten eindeutig gegeben, für eine Reihe häufiger Datentypen aber eindeutig
nicht gegeben. Westfall et al. (1993) beschreiben Verfahren für alle paarweisen Mittelwertsdifferenzen,
die auf Resampling der Residuen basieren und daher nicht auf einer Gaußverteilungsannahme beru-
hen. Mit diesen Verfahren können auch simultane Konfidenzintervalle für ein nutzerdefiniertes Set von
Mittelwertsdifferenzen berechnet werden. Hothorn et al. (2008) beschreiben schließlich asymptotische
Verfahren für eine sehr allgemeine Klasse von statistischen Modellen, die ebenfalls die Berechnung
simultaner Konfidenzintervalle für eine nutzerdefinerte Auswahl oder Linearkombinationen der Pa-
rameter solcher Modelle erlauben. In dieser Methodik sind eine Reihe von Spezialfällen enthalten,
die eine wichtige Rolle in den Biowissenschaften spielen: Generalisierte lineare Modelle (McCullagh
and Nelder, 1989) erlauben unter anderem die Modellierung binomialer Daten oder Zähldaten, lineare
gemischte Modelle sind für die Analyse von Experimenten mit komplexer Randomisierungstruktur
notwendig, sowie Modelle für die Analyse von Überlebenszeiten.

All diese Verfahren berücksichtigen zur Berechnung der Intervallgrenzen nicht nur die Anzahl zu
schätzender Parameter, sondern auch die Korrelation der zugehörigen Teststatistiken oder Schätz-
funktionen. Im Fall einfaktorieller Versuchsanlagen mit Annahme unabhängiger, Gauß-verteilter, va-
rianzhomogener Residuen (Bretz et al., 2001) hängt die Korrelation der Teststatistiken nur von den
Stichprobenumfängen und dem Set ausgewählter Mittelwertsvergleiche ab (Bretz et al., 2001), nicht
aber von unbekannten Parametern. Die gemeinsame Verteilung der Teststatistiken ist dann die multi-
variate t-Verteilung (Bretz et al., 2001), deren Korrelation exakt bekannt, und auch die resultierenden
Konfidenzintervalle sind exakt, wenn die zugrunde liegenden Annahmen gelten. Die Verfahren von
Westfall et al. (1993) bilden die Korrelation der Teststatistiken implizit ab, indem deren gemeinsa-
me Verteilung durch Resampling der Residuen angenähert wird. In den von Hothorn et al. (2008)
betrachteten Modellen kann die Korrelation der Teststatistiken zusätzlich von den Parametern von
Interesse abhängen: Für große Stichprobenumfänge kann die aufgrund der Stichprobenschätzer eben-
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falls geschätzte Korrelation verwendet werden, um kritische Werte der multivariaten Normalverteilung
zur Berechnung simultaner Konfidenzintervalle zu verwenden. In der praktischen Anwendung schließt
sich daher die Frage an, welche Stichprobenumfänge in gegebenen Modellen groß genug sind, dass
die berechneten Intervalle tatsächlich alle Parameter von Interesse mit Wahrscheinlichkeit (1 − α)
enthalten.

Aus dieser Situationsbeschreibung ergibt sich folgender Bedarf an biostatistischer Forschung und
Darstellung der Methodik:

• Die verfügbaren statistischen Methoden sollten für die praktische Anwendung verständlich dar-
gestellt werden.

• Asymptotische Methoden sollten validiert werden: Für welche Parameterkonstellationen und
Stichprobenumfänge enthalten sie alle wahren Parameter annähernd mit der vorgegebenen Wahr-
scheinlichkeit (1 − α)? Diese simultane Überdeckungswahrscheinlichkeit (simultaneous coverage
probability) kann in Monte-Carlo Simulationen untersucht werden.

• Können für kleine Stichprobenumfänge Verfahren bereitgestellt werden, die verbesserte Eigen-
schaften im Vergleich zu den verfügbaren asymptotischen Verfahren aufweisen? Als wesentliche
Ansätze werden dazu im Folgenden Verfahren verwendet, die große Stichproben aus der gemein-
samen (d.h. multivariaten) Verteilung der Parameter von Interesse generieren, oder an diese
annähern sollen. Auf Basis dieser Stichproben können mit Hilfe der in Besag et al. (1995) und
Mandel and Betensky (2008) beschriebenen Perzentilintervalle simultane Konfidenzintervalle
berechnet werden.

Einführung in nutzerdefinierte Kontraste von Behandlungsmit-
telwerten

Multiple Kontraste (Bretz et al., 2001) erlauben es, simultane Konfidenzintervalle für eine ganz be-
stimmte Auswahl von Differenzen von Mittelwerten zu schätzen. Die zu schätzenden Parameter können
dabei auf die speziellen wissenschaftlichen Fragestellungen eines Versuches zugeschnitten werden, wenn
Standardmethoden, wie alle paarweisen Vergleiche (Tukey, 1953) oder Vergleiche zur Kontrolle (Dun-
nett, 1955) die Versuchsfragestellungen nur unzureichend abbilden. Die Arbeit von Schaarschmidt
and Vaas (2009) stellt die verfügbare Methodik unter Annahme varianz-homogener, Gauß-verteilter,
unabhängiger Residuen für eine agrarwissenschaftliche Leserschaft dar. Im besonderen wird auf die
Analyse von Versuchen eingegangen, die zwar zwei Behandlungsfaktoren mit jeweils mehreren Stufen
enthalten, aber nicht alle möglichen Kombinationen der Stufen beider Faktoren. Solche Behandlungs-
strukturen sind dann nicht mit den einfachsten Ansätzen für vollständig kreuzklassifizierte zweifak-
torielle Versuche auswertbar, Piepho et al (2006) zeigen, wie allgemeine lineare Modelle strukturiert
werden müssen, wenn solche Versuche mit F-tests der Varianzanalyse ausgewertet werden sollen. In
Schaarschmidt and Vaas (2009) wird anhand von Beispielen dargestellt, wie mehrere Mittelwerts-
vergleiche von Interesse als Matrix von Kontrastkoeffizienten definiert werden können, und durch die
Darstellung simultaner Konfidenzintervalle Detailinterpretationen zu Signifikanz und Größe der Effek-
te gemacht werden können, während gleichzeitig die family-wise error rate für diese Interpretationen
eingehalten wird.

In Kitsche and Schaarschmidt (2015) wird ein zweiter Anwendungsbereich simultaner Kon-
fidenzintervalle für multiple Kontraste dargestellt, also bereits publizierte statistische Methodik an
Beispieldatensätzen illustriert. In manchen zweifaktoriellen Versuchen ist die Interaktion beider Fak-
toren nicht störend bei der Interpretation der Haupteffekte, sondern das primäre Versuchsziel besteht
im Nachweis der Interaktion, und deren genaueren Analyse. Zum Beispiel werden in Versuchen zur
Trockenstress-toleranz einer kleineren Auswahl von Genotypen häufig Pflanzen jedes Genotyps wieder-
holt sowohl unter Kontrollbedingungen als auch mehreren Stressbehandlungen angebaut. Versuchs-
ziel ist dann nicht der Nachweis von Unterschieden zwischen den Genotypen, oder der prinzipielle
Nachweis, dass die Stressbehandlungen physiologische Veränderungen in den Pflanzen erzeugen. Ge-
samtfragestellung ist vielmehr, ob einzelne Genotypen anders oder erst bei stärkerem Stress reagieren,
als andere Genotypen. Diese Gesamtfragestellung kann im F-Test für den Interaktionsterm der zwei-
faktoriellen Varianzanalyse getestet werden. Da es sich um eine quadratische Teststatistik handelt,
kann nur die allgemeine (globale) Signifikanz des Terms angegeben werden. Der F-Test erlaubt kei-
ne Detailinterpretationen wie: ’Welche einzelnen Genotypen unterscheiden sich in ihrer Reaktion auf
welche der Stressbehandlungen von der Reaktion welcher anderen Genotypen?’ oder gerichtete Fra-
gestellungen wie ’Welche Genotypen zeigen unter Stress geringere mittlere Ertragsreduktionen im
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Vergleich zu Kontrollbedingungen als welche anderen Genotypen?’ Diese letzte Formulierung bein-
haltet alle paarweise Vergleiche zwischen den Genotypen, bezüglich deren Mittelwertsdifferenzen zwi-
schen Stress- und Kontrollbehandlungen. Die Parameter von Interesse sind also eine Teilmenge aller
möglichen Differenzen von Differenzen in beiden Faktoren. In (Kitsche and Schaarschmidt, 2015) wird
dargestellt, wie solche speziellen Teilmengen des allgemeinen Tests auf Interaktion als multiple Kon-
traste kompakt definiert werden können. Neben Verweisen auf ein Zusatzpaket zur R-Software für
die Erzeugung solcher Kontrastmatrizen enthält (Kitsche and Schaarschmidt, 2015) auch eine etwas
komplexere Auswertung für einen dreifaktoriellen Versuch.

In Versuchen mit mehreren Behandlungen von Interesse bedeutet das Vorhandensein einer Inter-
aktion mit einer numerischen Kovariable, dass die möglichen Behandlungsunterschiede nicht für alle
Werte der Kovariable vorhanden, gleich gerichtet, oder gleich groß sind. Die Behandlungsunterschiede
können dann in Abhängigkeit der Kovariablenwerte genauer untersucht werden: ’Für welche Werte-
bereiche der Kovariable sind zwischen welchen der Behandlungen Unterschiede nachweisbar, und wie
groß sind diese?’ Simultane Konfidenzbänder für Differenzen zwischen mehreren Regressionsgeraden
sind in der statistischen Literatur in einer großen Zahl von Spezialfällen beschrieben, es fehlt aber
nutzerfreundliche Software. In Schaarschmidt (submitted) wird illustriert, dass die in Software
verfügbare Methodik in Hothorn et al. (2008) verwendet werden kann, um solche Vergleiche für ein
diskretes Set von Kovariablenwerten durchzuführen, was praktisch zur gleichen Interpretation führt,
wie die Anwendung simultaner Konfidenzbänder, wenn das Set von Kovariablenwerten groß genug
ist. Neben der numerischen Verfügbarkeit hat dieser Ansatz den Vorteil, dass er sich auf Quotienten
von Regressionsgeraden, oder den linearen Prädiktor generalisierter linearer Modelle (McCullagh and
Nelder, 1989) erweitern lässt. Zur Erzeugung der sehr umfangreichen Kontrastmatrizen wird auf ein
R-Paket verwiesen.

Validierung verfügbarer Verfahren und Verbesserungen für klei-
ne Stichprobenumfänge

Dichotome Daten sind ein häufiger Datentyp in Untersuchungen zur Toxizität von Substanzen in Bio-
assays, Mortalitäten, aber auch Infektionsraten bei der Untersuchung von Pflanzenkrankheiten oder
Parasiten, oder auch Heilungsraten in klinischen Versuchen. Wenn im einfachsten Fall vollständig ran-
domisierter Versuche mit mehreren (k) Behandlungen jede Versuchseinheit in eine von zwei möglichen
Kategorien eingeordnet wird, können die Daten als (k× 2) Kontingenztafeln dargestellt werden. Ana-
log zu Tukey-Test oder Dunnett-Test und multiplen Kontrasten für Erwartungswerte Gauß-verteilter
Daten, können dann multiple Kontraste für binomiale Proportionen die detaillierten Versuchsfragen
abbilden. Bei der Übertragung der Methoden unter Gauß-Verteilungsannahme ergeben sich eine Rei-
he neuer Probleme: die Darstellung der Behandlungsunterschiede für Proportionen πi, πi′ kann als
Differenz πi − πi′ , Quotient πi/πi′ oder Oddsratio (πi/(1 − πi))/(πi′/(1 − πi′)) erfolgen. Schon für
Konfidenzintervalle zum Vergleich von zwei Proportionen werden jeweils verschiedene approximati-
ve Verfahren diskutiert (z.B. Agresti and Caffo, 2000; Brown and Li, 2005; Newcombe, 1998). Bei
multiplen Vergleichen mehrerer binomialer Proportionen, hängt die Korrelation der Teststatistiken
bzw. Schätzfunktionen nicht mehr nur von den Stichprobenumfängen und gewählten Kontrasten ab,
sondern von den einzelnen zu schätzenden Proportionen selbst (z.B. Bretz and Hothorn, 2002). Auf
dieser Grundlage wurden in Schaarschmidt, Sill and Hothorn(2008) asymptotische Intervalle
für die Differenz zweier Proportionen auf den Fall multipler Kontraste von Proportionen übertragen,
indem die geschätzte Korrelationsmatrix zur Berechnung von Quantilen der multivariaten Normalver-
teilung verwendet wurde. Um akzeptable simultane Überdeckungswahrscheinlichkeiten bei kleineren
Stichprobenumfängen zu erreichen, wurden zuvor empfohlene approximative Methoden (Agresti and
Caffo, 2000; Brown and Li, 2005) zur Berechnung der Intervallgrenzen für eine Differenz binomialer
Proportionen zusätzlich untersucht. In Monte-Carlo-Simulationen wird dann gezeigt, dass diese ap-
proximativen Methoden zumindest für Stichprobenumfänge von ni > 40 je Behandlungsgruppe eine
simultane Überdeckungswahrscheinlichkeit zwischen 0.94 und 0.96 für weite Bereiche des Parameter-
raum einhalten, und für den kritischen Fall sehr kleiner Proportionen, zu große, das heißt konservative
Überdeckungswahrscheinlichkeiten nahe 1 zeigen.

Die Verfügbarkeit von validen Verfahren zur Berechnung von Konfidenzintervallen zum Vergleich
von zwei Proportionen ist eine wichtige Vorraussetzung für die Erweiterung auf simultane Konfidenz-
intervalle, aber einfacher zu untersuchen. In (Schaarschmidt, accepted) werden diese Grundlagen zur
Analyse überdisperser Binomialdaten aus Bioassays für Quotienten von Proportionen (relative risk)
gelegt.

5



Wesentlich gravierendere Probleme bei der Validität von Verfahren für kleine Stichproben erge-
ben sich bei multiplen Vergleichen für Biodiversitätsindizes in ökologischen Fragestellungen (Scherer,
Schaarschmidt, Prescher und Priesnitz, 2013). Ausgangspunkt dieser Arbeit waren Feldversu-
che zur Sicherheitsbewertung genetisch veränderter Organismen in Bezug auf deren mögliche Wirkung
auf Nichtzielorganismen. Biodiversitätsindizes wie der Shannon-Index oder Simpson-Index (z.B. Ma-
gurran, 2004) fassen dabei relative Häufigkeiten einzelner Spezies einer Artengemeinschaft zusammen,
so dass große Werte hohen Anzahlen ähnlich häufiger Arten entsprechen. Verarmte Artengemeinschaf-
ten, in denen einzelne Spezies dominieren und viele seltene Spezies verschwunden sind, stellen sich in
niedrigen Werten dieser Indizes dar. Solche Zusammenfassungen könnten mögliche Effekte auf viele
seltene Spezies zeigen, für die separate Auswertung nur zu sehr unpräzisen Aussagen, d.h. zu sehr
weiten Konfidenzintervallen führen (Rauschen et al., 2010). Simultane Konfidenzintervalle für diese
Biodiversitätsindizes wurden bereits von Fritsch and Hsu (1999) und Rogers and Hsu (2001) beschrie-
ben. Diese Methoden gehen von der vereinfachenden Annahme multinomialer Daten für die gezählten
Spezies aus. Das primäre Ziel von Scherer et al. (2013) war es zu zeigen, dass diese Annahme in Feld-
versuchen und ökologischen Erhebungen grob verletzt sein kann: Wenn die erhobenen Speziesanzahlen
deutlich höhere Varianzen aufweisen (Überdispersion), führen auch die Verfahren von Fritsch and Hsu
(1999) und Rogers and Hsu (2001) nicht mehr zu validen Konfidenzintervallen (Scherer et al., 2013).
Alternativen ohne spezielle Verteilungsannahmen sind das Resamplingverfahren von (Westfall et al.,
1993) sowie nicht-parametrischer Bootstrap in Kombination mit simultanen Perzentilintervallen nach
Besag et al. (1995) und Mandel and Betensky (2008). In Simulationsstudien zeigt sich, dass all diese
Verfahren bei deutlicher Überdispersion den Verfahren von Fritsch and Hsu (1999) und Rogers and
Hsu (2001) vorzuziehen sind, aber bei geringen Anzahlen von Wiederholungen teilweise nur Über-
deckungswahrscheinlichkeiten von 0.8-0.9 oder darunter aufweisen, wenn 0.95 vorgegeben sind.

Im Fall positiver, kontinuierlicher, rechts-schief verteilter Daten werden die Beobachtungen nach
log-Transformation oft mit Verfahren unter der Annahme Gauß-Verteilung analysiert. Die darausfol-
genden Vergleiche für Mittelwertsdifferenzen der transformierten Variablen entsprechen Quotienten
von Medianen auf der Originalskala. Wenn Interesse hauptsächlich am Vergleich der Erwartungswerte
besteht, können simultane Konfidenzintervalle (Schaarschmidt, 2013) asymptotisch auf Grundlage
von Krishnamoorthy and Mathew (2003), Chen and Zhou (2006) sowie Hothorn et al. (2008) berech-
net werden. Alternativ können Sampling-Verfahren zur Annäherung der Verteilung der Schätzfunktion
des Erwartungswerts für einzelne Behandlungsgruppen (z.B. Chen and Zhou, 2006, generalized pivotal
quantities) verwendet werden, um die gemeinsame Verteilung multipler Kontraste darzustellen und
mit den Perzentilverfahren von Besag et al. (1995) bzw. Mandel and Betensky (2008) simultane Kon-
fidenzintervalle berechnet werden (Schaarschmidt, 2013). In Simulationsstudien lassen sich mit diesen
Verfahren deutliche Verbesserungen im Vergleich zu den asymptotischen Verfahren erzielen (Schaar-
schmidt, 2013).

Multiple Vergleiche im allgemeinen linearen Modell oder linearen gemischten Modellen werden in
der Regel für Differenzen von Modellparametern ausgedrückt. Die Bewertung der Relevanz von Unter-
schieden kann aber leichter fallen, wenn Unterschiede als Quotienten von Mittelwerten (Dilba et al.,
2006) ausgedrückt sind. In anderen Situationen ergibt sich der Parameter von Interesse als Quotient
der Modellparameter, z.B. bei der Berechnung von relative potencies (Djira, 2010). Aufbauend auf
Young et al. (1997) und Dilba et al. (2006), beschreibt Djira (2010) asymptotische simultane Konfiden-
zintervalle für solche Quotienten in linearem gemischten Modellen. Hier bestehen ähnliche Probleme
wie bei den asymptotischen Methoden zuvor: 1) wird die aus dem Modell geschätzte Kovarianzmatrix
der zu schätzenden Parameter eingesetzt, um die Standardfehler der Parameterschätzer, sowie die Kor-
relationen der Teststatistiken zu berechnen, 2) hängt die Korrelation der Teststatistiken zusätzlich von
den unbekannten Quotienten von Interesse ab, so dass zur Berechnung der Quantile der multivariaten
Normalverteilung auch hier Schätzwerte eingesetzt werden. In (Schaarschmidt and Djira, accep-
ted) werden, neben einfachen Verbesserungsvorschlägen wie der Verwendung multivariater t-Quantile,
Sampling-Verfahren aus dem Bereich der Bayes’schen Statistik untersucht: Aus der gemeinsamen Ver-
teilung der Quotienten von Interesse können mittels Markov-Chain-Monte-Carlo (MCMC) in hierar-
chischen Modellen (z.B. Gelman and Hill, 2007) große Stichproben gezogen werden, aus denen sich
simultane Perzentilintervalle (Besag et al., 1995; Mandel and Betensky, 2008) berechnen lassen. Diese
Verfahren haben den Nachteil, dass sie aufwendig in Software zu implementieren sind, die Prüfung
der Konvergenz anspruchsvoller ist und von einer Reihe technischer Parameter abhängt. Zusätzlich
müssen für eine frequentistische Interpretation der Intervalle (d.h. etwa ’Die wahren Parameter sind
in 95% der Anwendungsfälle in den Intervallen enthalten’) die prior -Verteilungen der Parameter so
gewählt werden, dass sie möglichst geringen Einfluss auf die Parameter haben. In abgebildeten Szena-
rien der Simulationsstudien in Schaarschmidt and Djira (accepted) zeigen sich für diese aufwendigen
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Methoden nur geringe Verbesserungen im Vergleich zur einfachen Bonferroni-Adjustierung, die oft
auch durch Ersatz der multivariaten Normalquantile durch entsprechende t-Quantile erreicht werden
können.

Anleihen aus der Bayes’schen Statistik werden auch in der folgenden Arbeit (Schaarschmidt, Ger-
hard and Vogel, in preparation) verwendet, um simultane Konfidenzintervalle mit verbesserten Eigen-
schaften bei kleinen Stichprobenumfängen zu erreichen. Wenn vollständig in randomisierten Versuchen
die einzelnen Versuchseinheiten nicht in zwei, sondern mehrere Kategorien eingeteilt werden, entste-
hen im einfachsten Fall multinomiale Daten. Wenn die Kategorien nicht ordinal sind, braucht man
mehrere Verhältnisse zwischen den Häufigkeiten der einzelnen Kategorien, um deren Verteilung in
der Stichprobe zu beschreiben. Welche dieser Verhältnisse (odds) bei Vergleichen zwischen mehreren
Behandlungen von praktischem Interesse sind, hängt naturgemäß von deren genauer fachlicher Be-
deutung ab. In dieser Arbeit werden deshalb Methoden beschreiben, die sowohl einer nutzerdefinierte
Auswahl der odds als auch eine nutzerdefinierte Auswahl von Vergleichen zwischen mehreren Be-
handlungsgruppen zulassen. Simultane Konfidenzintervalle können dann einerseits asymptotisch mit
Quantilen der multivariaten Normalverteilung berechnet werden. Andererseits kann man ausnutzen,
dass die Dirichlet-Verteilung als prior -Verteilung für multinomiale Proportionen auch zu einer a po-
steriori Dirichlet-Verteilung der Parameter führt (z.B. Agresti, 2013). Man kann dann leicht aus der
gemeinsamen Verteilung der Parameter von Interesse Stichproben ziehen und simultane Konfidenzin-
tervalle berechnen. Diese zeigen in Simulationsstudien insbesondere dann bessere Überdeckungswahr-
scheinlichkeiten als die asymptotischen Verfahren, wenn durch kleine Stichprobenumfänge oder relativ
seltene Kategorien die Erwartungswerte der Anzahlen zumindest für einzelne Kategorien kleiner als
10 sind (Schaarschmidt, Gerhard and Vogel, in preparation).
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Abstract. Experiments with complex treatment structures are not uncommon in
horticultural research. For example, in augmented factorial designs, one control
treatment is added to a full factorial arrangement, or an experiment might be arranged
as a two-factorial design with some groups omitted because they are practically not of
interest. Several statistical procedures have been proposed to analyze such designs.
Suitable linear models followed by F-tests provide only global inference for main effects
and their interactions. Orthogonal contrasts are demanding to formulate and cannot
always reflect all experimental questions underlying the design. Finally, simple mean
comparisons following global F-tests do not control the overall error rate of the
experiment in the strong sense. In this article, we show how multiple contrast tests can
be used as a tool to address the experimental questions underlying complex designs while
preserving the overall error rate of the conclusions. Using simultaneous confidence
intervals allows for displaying the direction, magnitude, and relevance of the mean
comparisons of interest. Along with application in statistical software, shown by two
examples, we discuss the possibilities and limitations of the proposed approach.

In agricultural and horticultural research,
controlled experiments are set up to evaluate
the effect of several treatments and their
interactions on physiological or developmen-
tal variables. If the levels of a first factor of
potential influence are combined with all
levels of a second factor, the resulting exper-
iment has a two-factorial, completely cross-
classified treatment structure. However, often
the experimental questions are manifold and,
together with the background knowledge on
the practical problem, lead to complex treat-
ment structures. Augmented factorial designs
are a common example, in which one or
several control treatments are added to a
completely crossclassified factorial design.
Then, comparisons between the control treat-
ment and the full factorial part are of interest
as well as the analysis of the factors arranged
in the full factorial part. Another reasonable
setting arises when the effect of two factors
and their interaction is investigated, but not all
combinations between the levels of the two
factors are of practical interest. Then, these
treatments are reasonably omitted from the
experiment, leading to a treatment structure
that is crossclassified with a few missing cells.

Among others, Marini (2003) discussed
different strategies for analyzing augmented
factorial designs. He considered four differ-

ent linear models followed by comparisons of
particular treatments. First, a one-way model
was performed followed by all pairwise
comparisons of the seven treatment means
using the least significant difference (LSD)
procedure. However, even when protected by
a preceding global F-test, decisions based on
LSD do not control the familywise error in the
strong sense (Hochberg and Tamhane, 1987).
Second, a two-way model was performed
with subsequent F-tests for the main effect
of formulation, the main effect of the con-
centration, and their interaction. When this
approach is used, least square means cannot
be estimated properly. Third, a pseudo one-
way model comprising all seven treatment
groups was used to compute six orthogonal
contrasts defining some hypotheses of inter-
est. The orthogonal contrasts involved the
comparison of the control group to the
average of all other treatments, two contrasts
for the comparisons of the three formulations,
one contrast for the comparison of the two
formulations, and two contrasts for certain
interaction effects. However, this approach
has severe restrictions; the number of hypoth-
eses that can be formulated is restricted to k-1
if k is the number of treatment groups (Dean
and Voss, 1999; Marini, 2003; Petersen,
1994). Often, not all hypotheses of practical
interest can be included in this type of
analysis. Moreover, the problem of multiple
comparisons is not taken into account. In a
last approach, a mixed model was performed
including the concentrations as a quantitative
variable and the formulations as a qualitative
variable, whereas the blocks were included as
random effect.

Piepho et al. (2006) propose another
strategy. The authors show how to develop
linear models by insertion of an additional
variable containing the value CON for obser-
vations in the control and the value TREAT
for observations belonging to treatments in
the complete factorial structure; thus, the new
variable represents the fragmentation of the
control group and the six treatments and one
is able to write out a nested model represent-
ing the experimental layout correctly. Note
that in this approach, the nesting of effects is
not used to represent nested random effects in
a hierarchical model. Rather, the nesting
operator is used to define an appropriate
design matrix for fixed effects. Based on this
model, least square means can be estimated
properly and an analysis of variance can be
performed that takes all existing groups into
account and provides F-tests for relevant
hypotheses in the complex treatment struc-
ture. One disadvantage of this approach is
that results of F-tests generally provide only
global information about main effects and
interaction effects, i.e., a significant result
gives evidence for a difference in means among
any of the considered treatments. Information
about the location of the difference(s), the
effect size, or comparisons of particular
interest is not available from this approach.

If the interesting experimental questions
can be expressed best as a set of comparisons
among particular treatment means, a multiple
comparison problem results. If testing an
increasing number of hypotheses with the
number of true hypotheses unknown, the
probability of at least one wrong testing
decision increases. If it is the aim of the
statistical analysis to control the probability
of at least one false rejection among all the
tested null hypotheses, procedures are needed
that control the familywise error (FWE).
Computationally simple procedures like the
Bonferroni or Scheffé adjustment (e.g., in
Nelson, 1989) are suitable for any type of
comparisons between means but are known
to be conservative because they ignore the
correlations among the comparisons. More
advanced standard approaches to control the
FWE are the tests according to Tukey (e.g., in
Hochberg and Tamhane, 1987, citing Tukey,
1953) or Dunnett (1955). However, these do
usually not reflect the experimental questions
underlying designs with complex treatment
structures. Tukey’s procedure is appropriate
for all pairwise comparisons and therefore is
often considered as conservative when test-
ing and adjusting for more hypotheses than
are actually of interest. Dunnett’s procedure
performs comparisons of several treatments
to a control. With complex treatment struc-
tures, usually more than these comparisons
are of interest. In the recent years, multiple
comparisons procedures have been made
available (Bretz et al., 2001, 2002; Hothorn
et al., 2008a; Westfall 1997; Westfall et al.,
1999), which provide the feature of control-
ling the FWE for a certain user-defined set
of comparisons formulated as multiple con-
trasts of the treatment means. The number of
comparisons as well as the correlation among
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the comparisons is taken into account specif-
ically for each user-defined set of contrasts.
Although these methods are computationally
more demanding than well-known standard
procedures, they are numerically available in
various softwares.

If multiple hypotheses are tested without
controlling the FWE rate at a, the probability
of finding at least one of the considered
differences to be significant when this differ-
ence is in fact zero can be markedly higher
than a. For motivation of multiple compari-
son procedures, we present simulated FWE
probabilities in Tables 1 and 2.

Assuming that no true effect is present in
an experiment with three, five, or 10 groups,
Table 1 shows the probabilities to find no
significant difference and one, two, or more
significant differences when all pairwise
comparisons are performed among these
treatments without multiplicity adjustment
or protection by a global F-test. When there
are only three treatments, resulting in three
tests, one will conclude for at least one
significant difference in �12 of 100 experi-
ments. If 10 treatments are compared in such
a way, �61 of 100 experiments will identify
an effect that is not reproducible in a follow-
up experiment because a relatively large
difference in means simply occurred by
chance.

Table 2 shows similar numbers for the
situation that two, four, or nine independent
two-sided t tests are performed. This is a
situation close to that of testing two, four, or
nine orthogonal (independent) contrasts with
a common residual degree of freedom (df).
With only two independent tests, the overall
chance of a Type I error is 0.0975, i.e., 1 – (1–
0.05)2, whereas when testing nine indepen-
dent hypotheses, the odds are�1:2 to observe
an effect that is not present in truth. When
overall (familywise) Type I errors of this
magnitude are not acceptable, LSD or single df
contrasts should not be used, and multiple
contrast procedures, as described in the fol-
lowing, are more appropriate.

In the following section, we introduce two
example data sets and briefly review the well-

known concept of multiple contrast tests.
Subsequently, we show the application of
multiple contrast tests to the two examples
and give an interpretation of the results.
Finally, we discuss the advantages and lim-
itations of the proposed approach.

Material and Methods

Two example data sets. Marini (2003)
describes the analysis of an experiment with
an augmented factorial treatment structure.
The effect of three formulations of gibber-
ellic acid (f1, f2, f3), each in two different
concentrations, 10 and 20 mg�L–1, on fruit set
of apple was investigated. Additional to this
two-factorial structure, a control group
(application of water) was included in the
design. The composition of the treatments is
summarized in Table 3.

The seven treatment groups were
arranged in a randomized complete block
design using six apple trees as blocks. As
the response variable, the ratio of fruits (65 d
after bloom) per 100 flower clusters was
presented (Marini, 2003). In previous analy-
ses, Marini (2003) and Piepho et al. (2006)
proposed the following experimental ques-
tions; the comparison of all treatments with
the untreated control aims to show that the
experiment was sensitive to reveal marked
effects on the fruit set. The comparison of
increasing dosages pooled over the formula-
tions aims to assess whether and until which
concentration a dose effect is present. For the
two-factorial part of the trial, interest was
also in the main effects of the formulations
and concentrations taking the possibility of
an interaction into account. By the formula-
tion of orthogonal contrasts, Marini (2003)
addressed the question for interactions more
explicitly; namely, whether the different for-
mulations affect the increase of fruit set from
dose 10 to dose 20.

As a second example, we consider a fixed-
dose combination experiment originally pub-
lished by Adeli and Varco (2002). The effects
of potassium (K) management on cotton yield
(kg�ha–1) were investigated. The objective

was ‘‘to determine potassium (K) fertilizer
rate and placement effects on cotton lint
yield’’ (Adeli and Varco, 2002). The exper-
imental setup contained two different appli-
cation methods for K: ‘‘broadcast’’ (Bc) and
‘‘banded’’ (Bn), each in four concentrations.
The factorial arrangement included 0, 68, and
136 kg�ha–1 K broadcast in all possible
combinations with 0, 34, and 68 kg�ha–1 K
banded application. Two additional treat-
ments, with 204 kg�ha–1 K broadcast with
zero banded and 102 kg�ha–1 K banded with
zero broadcast application, were included in
the design. This treatment structure can be
imagined as arisen from a complete two-
factorial structure with those cells omitted
that lead to inappropriately high total dosages
of kg�ha–1 K. Table 4 summarizes the treat-
ment combinations. The doses were chosen
carefully so that the total amount of K is the
same in four pairs of treatments (in Table 4,
members of each pair are given the same
symbol). The resulting 11 treatment groups
were assumed to be arranged in a completely
randomized design with replication number n =
12. The data used for the analysis are simulated
based on the published summary statistics.

The analysis should give information
about supposed beneficial influences of the
different placement methods and an ex-
pected diverging effect of the two methods.
Furthermore, the aim is to find treatment
combinations resulting in superior cotton
lint yield given that the total K fertilizer
application is the same. Note that regression
method, and more specifically response sur-
face regression, is a viable option to analyze
this example. Compared with the methods
discussed subsequently, regression methods
have the advantage of using fewer parameters
to describe the data, but additionally rely on
assumptions concerning the dose–response
relationship. Response surface regression is
particularly useful when the aim is to esti-
mate the optimum combination of the two
quantitative variables. For an introduction to
response surface regression, see, for exam-
ple, Montgomery (2005).

Simultaneous confidence intervals for
user-defined multiple contrasts. In this sec-
tion, we review the concept of multiple
contrast tests as, for example, described in
Bretz et al. (2001). A simple linear model to
explain the observations Yij is:

Y ij = mi + eij

with Yij denoting the jth observation of the ith
treatment group, with i = 1, ., k, and

Table 1. Probability to reject x out of M tested hypotheses when there is no difference among three, five,
and 10 treatments and all pairwise comparisons are performed using multiple t tests (comparisons wise
Type I error probability 5%) without adjustment for multiple testing or the protection of a global
F-test.z

Number of
treatments

Number of
hypotheses M

Probability to reject H0 for x hypotheses

x = 0 x = 1 x = 2 x> = 3

3 3 0.881 0.090 0.029 0.000
5 10 0.723 0.135 0.083 0.060

10 45 0.390 0.139 0.121 0.350
zThe probabilities are estimated by 10,000 simulation runs for each setting.

Table 2. Probability to reject x out of M tested hypotheses when there is no true difference in two, four, and
nine independent two-sided contrasts (comparisons wise Type I error probability 5%) without
adjustment for multiple testing.z

Number of
treatments

Number of
hypotheses M

Probability to reject H0 for x hypotheses

x = 0 x = 1 x = 2 x> = 3

3 2 0.903 0.094 0.003 —
5 4 0.819 0.164 0.016 0.002

10 9 0.644 0.284 0.063 0.009
zThe probabilities are estimated by 10,000 simulation runs for each setting.

Table 3. Experimental layout of Example 1 with
three gibberellic acid formulations (f1, f2, f3),
each in two different concentrations (10 and 20
mg�L–1), and a water control (H2O).

Formulation

Concn H20 f1 f2 f3

0 CON — — —
10 — f1(10) f2(10) f3(10)
20 — f1(20) f2(20) f3(20)
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j = 1; . . . ; ni

mi denoting the mean of the ith treatment
group; and
eij denoting the residual error for the jth
observation in the ith group.

The errors eij are assumed to be indepen-
dent, i.e., the observations are derived from a
completely randomized design and to be
Gaussian distributed with equal variances:
eij ; N (0, s2). From fitting this one-way
model, we derive estimates m̂i for the treat-
ment means and ŝ2 for the residual error. The
questions of interest can then be stated as
differences of the treatment means mi or,
more generally, as contrasts of the treatment
means mi. A contrast L is a weighted differ-
ence of the m1, m2, ., mk, where the weights ci

are chosen such that a certain difference of
interest is built: L = S cimi = c1m1 + c2m2 + . +
ckmk. For example, in a design comprising
four treatments, i = 1, 2, 3, 4, the difference
between Treatments 1 and 2, m2 – m1 can be
written as S cimi with c1 = –1, c2 = 1, c3 = 0,
c4 = 0. However, also, more complicated
differences, like for example the difference
of the first treatment’s mean to the average
mean of the three remaining treatments, (m2 +
m3 + m4)/3 – m1 can be formulated: c1 = –1,
c2 = 1/3, c3 = 1/3, c4 = 1/3.

For the choice of the cis, we impose only
the restriction that the sum of cis should be
zero, Sci = 0. This ensures that the contrast
has expectation 0 if in fact all mi are equal.
Moreover, we usually choose the ci such that
the sum of all negative coefficients is –1 and
hence the sum of all positive coefficients is 1.
Then, we can interpret the confidence inter-
vals for the contrasts as differences of
(weighted averages of) treatment means. Usu-
ally, several, say M, such contrasts are neces-
sary to represent the experimental questions of
interest. Note that there are no further restric-
tions on the choice of the ci depending on the
remaining set of contrasts. That is, there is no
necessity to define the M contrasts orthogonal
to each other, and there is no restriction on the
number of contrasts M, as in the case of
orthogonal single df contrasts. The test sta-
tistic for one contrast can be calculated from:

T =

Pk
i=1

cim̂i

ŝ

ffiffiffiffiffiffiffiffiffiPk
i=1

c2
i

ni

s :

Simultaneous confidence intervals for the M
contrasts can be calculated from

Xk

i=1

cim̂i ± qtwo�sided
1�a;M ;R ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiXk

i=1

c2
i

ni

vuut
2
4

3
5;

using qtwo�sided
1�a;M ;R as the critical value calculated

from the multivariate t-distribution with
dimension M and correlation matrix R. For
general contrasts, the correlation matrix R
has a complicated structure with elements
depending on the sample sizes ni and the
contrast coefficients ci.

For a particular contrast, the null hypoth-
esis that the difference defined by the contrast
has the value zero can be rejected if
Tj j> qtwo�sided

1�a;M ;R or if the confidence interval
does not contain the value zero. How such
critical values can be obtained is described by
Westfall et al. (1999) or Bretz et al. (2001).
The presented confidence intervals can be
obtained using the LSMESTIMATE state-
ment in the SAS PROC GLIMMIX (SAS
Institute, 2006) or the package multcomp
(Bretz et al., 2002; Hothorn et al., 2008b) in
the free statistical software R (R Develop-
ment Core Team, 2008). In the remaining
part of the article, R-2.6.2 is used with
multcomp, Version 0.993-2.

We favor the graphical display of the
simultaneous confidence intervals for report-
ing the results of a statistical analysis. From
such plots, the significance of a particular
difference at a FWE level a can be inferred if
the value zero is not included in the confi-
dence interval. Additionally, the direction
(decrease or increase), magnitude, and, pos-
sibly, relevance of an effect can be assessed.
If interpreting the relevance of the measured
effect is of interest, confidence intervals are
advantageous compared with P values because
of displaying the effect size in the scale of the
measured variable rather than in the scale of
probability. Finally, the uncertainty concerning

the estimated effect, depending on the sample
variance and the sample size, is displayed by
the width of the confidence interval.

Results

Evaluation of Example 1. From previous
discussions of Example 1 (Marini, 2003;
Piepho et al., 2006), the following experi-
mental questions can be deduced: Is the
experimental setting capable of revealing
effects on the response? Do the formulations
differ? Do the concentrations differ?

In the following, hypotheses that might be
of interest are stated as differences of treat-
ment means using the acronyms introduced
in Table 3. The contrast coefficients (ci)
leading to the stated differences are summa-
rized in Table 5. The first difference of int-
erest compares the pooled means of all
treatments versus the untreated control group:

1:mall treatments � mCON = 0:

For the detection of main effects of the
formulation, three pairwise comparisons
could be of interest, which pool over the
two concentrations:

2:mf2 � mf1 = 0;

3:mf3 � mf1 = 0;

4:mf3 � mf2 = 0:

Analogously, the comparison of the two
concentrations can be done by pooling over
the formulations:

5: mð20Þ � mð10Þ = 0:

Interactions can be detected by building
differences of differences (Petersen, 1994),
i.e., comparing the difference between con-
centrations 10 and 20 between Formulations
1 and 2, and so on, as is done in Comparisons
6 through 8 in Table 5.

6: ½mf1ð20Þ� mf1ð10Þ�� ½mf2ð20Þ� mf2ð10Þ�= 0

7: ½mf1ð20Þ� mf1ð10Þ�� ½mf3ð20Þ� mf3ð10Þ�= 0

8: ½mf2ð20Þ� mf2ð10Þ�� ½mf3ð20Þ� mf3ð10Þ�= 0

Note that the stated contrasts reflect similar
hypotheses as have been tested using four

Table 5. Contrast coefficients (ci) are summarized for the multiple contrast tests indicated in the above text.z

Treatment:

Control f1(10) f1(20) f2(10) f2(20) f3(10) f3(20)

Number Comparison Contrast coefficients:

1 All treatments-CON 1 –1/6 –1/6 –1/6 –1/6 –1/6 –1/6
2 f2 – f1 0 –1/2 –1/2 1/2 1/2 0 0
3 f3 – f1 0 –1/2 –1/2 0 0 1/2 1/2
4 f3 – f2 0 0 0 –1/2 –1/2 1/2 1/2
5 (20) – (10) 0 –1/3 1/3 –1/3 1/3 –1/3 1/3
6 Interaction f1 versus f2 0 –1 1 1 –1 0 0
7 Interaction f1 versus f3 0 –1 1 0 0 1 –1
8 Interaction f2 versus f3 0 0 0 –1 1 1 –1
zCalculated are the comparison of control versus the pooled treatments (the first contrast), the comparisons
of the formulations pooled over concentrations (Contrasts 2, 3, 4), the comparison of the concentrations
pooled over formulations (Contrast 5), and contrasts for the interactions between formulation and
concentration (Contrasts 6, 7, 8).

Table 4. Treatment structure of Example 2 (Adeli and Varco, 2002) comprising 11 combinations of
broadcast (Bc) and banded (Bn) application of different doses of potassium (K) fertilizer.z

Broadcast application

Banded application 0 kg�ha–1 K 68 kg�ha–1 K 136 kg�ha–1 K 204 kg�ha–1 K
0 kg�ha–1 K Bc0Bn0 Bc68Bn0 * Bc136Bn0 # Bc204Bn0 �
34 kg�ha–1 K Bc0Bn34 Bc68Bn34 + Bc136Bn34 —
68 kg�ha–1 K Bc0Bn68 * Bc68Bn68 # Bc136Bn68 � —
102 kg�ha–1 K Bc0Bn102 + — — —
zTreatments resulting in the same total amount of kg�ha–1 K are labeled with common symbols, * (68
kg�ha–1 K), + (102 kg�ha–1 K), # (136 kg�ha–1 K), and � (204 kg�ha–1 K).
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F-tests after a suitable model reformulation in
the analysis by Piepho et al. (2006).

Simultaneous confidence intervals for the
comparisons formally defined in Table 5 are
plotted in Figure 1. The complete analysis
has been performed in one simple procedure
with all done tests adjusted for multiplicity
inherently.

Altogether, the six gibberellin treatments
lead to a significant increase in the number of
fruits per flower cluster. Hence, the experi-
mental setting is capable of revealing effects
of the gibberellin treatments compared with
an untreated control. On average, over the six
gibberellin treatments, we can expect an
increase of at least five fruits per 100 clusters
more than in the untreated control with 95%
confidence. Practically, the mean increase in
the response is not very interesting; it is not
possible to decide which treatments mainly
contribute to the overall effect. Moreover,
controlling the FWE for all eight hypotheses,
none of the remaining tests is significant at
the 5% level. None of the differences among
the three formulations, each pooled over the
concentrations, are significantly different
from 0. Although comparing the average
effect of the three formulations at concentra-
tion 20 with their average effect at concen-
tration 10 shows a mean increase, the
observed difference is not significant when
controlling the overall Type I error probabil-
ity at 5%. Finally, none of the three interac-
tion contrasts differs significantly from zero,
although the mean increase in the response
when increasing the concentration from 10 to
20 is somewhat more pronounced in f1 and f2
compared with f3 (Comparisons 7 and 8).
That is, given the limited sample size of the
trial, we cannot conclude that there are
differences among the formulations, between
the concentrations, and cannot prove the
presence of interactions when controlling
the FWE at 5%.

The contrasts in Table 5 were constructed
to show that hypotheses similar to those of
the analysis of variance F-tests used by Piepho
et al. (2006) can be tested using a multiple
contrast approach. In practice, other compar-
isons can be more interesting and are as simple
to implement. In the following, we show an
analysis, alternative to that in Table 5.

First, it could be of interest whether any of
the six gibberellin treatments leads to a
change in the number of fruit limbs per
number of flowers. Hypotheses 1 to 6 repre-
sent these comparisons; the resulting contrast
coefficients are presented in Table 6.

1:mf1ð10Þ � mCON = 0;

2:mf1ð20Þ � mCON = 0;

3:mf2ð10Þ � mCON = 0;

4:mf2ð20Þ � mCON = 0;

5:mf3ð10Þ � mCON = 0;

6:mf3ð20Þ � mCON = 0:

Second, it might be of interest whether the
formulations differ, taking the possibility of
an interaction into account. This may result in
comparisons of the different formulations at
each of the two concentration levels:

7:mf2ð10Þ � mf1ð10Þ = 0;

8:mf3ð10Þ � mf1ð10Þ = 0;

9:mf3ð10Þ � mf2ð10Þ = 0;

10:mf2ð20Þ � mf1ð20Þ = 0;

11:mf3ð20Þ � mf1ð20Þ = 0;

12:mf3ð20Þ � mf2ð20Þ = 0:

Finally, the concentrations 10 and 20 could
be compared separately for each formulation:

13:mf1ð20Þ � mf1ð10Þ = 0;

14:mf2ð20Þ � mf2ð10Þ = 0;

15:mf3ð20Þ � mf3ð10Þ = 0:

These are 15 comparisons in total, which
could not have been performed using orthog-
onal contrasts. The correlation structure
among these 15 comparisons is not trivial;
however, it is taken into account inherently
by the statistical software.

Figure 2 shows simultaneous 95% confi-
dence intervals for the contrasts defined in
Table 6.

This evaluation results in a more infor-
mative interpretation than the first approach:
Two of the six gibberellin treatments result
in a significant increase of the number of
fruits per 100 flower clusters. With 95%
confidence, we can expect an increase in the
mean number of fruits per 100 flower clusters
of at least two when Formulation 1 with
Concentration 20 is applied. Using Formula-
tion 2 with Concentration 20, one can expect
at least 18 fruits per 100 clusters more than in
the untreated control. The remaining combi-
nations of formulation and concentration led
to a mean increase of the number of fruits
per cluster, but, controlling the FWE for all
comparisons, the observed differences are not
significant. Furthermore, the pairwise differ-
ences among the formulations are not signif-
icant when considered separately for each
concentration (Comparisons 7 through 12).
Finally, a difference between Concentrations
10 and 20 cannot be shown at the 5% level for
any of the three formulations.

Evaluation of Example 2. The experiment
presented by Adeli and Varco (2002) shows a
more complex treatment structure. First,
it could be of interest which K rate or
application method increases the yield com-
pared with control. That is, the differences of
the 10 different K treatments to the untreated
control treatment Bc0Bn0 are of primary
practical interest. Furthermore, interest is in
the magnitude of increase that can at least be
expected with high probability, i.e., in lower
confidence limits. Hypotheses 1 to 3 compare
the three treatments with only broadcast
application with the untreated control group:

1:mBc68Bn0 � mBc0Bn0 = 0;

2:mBc136Bn0 � mBc0Bn0 = 0;

3:mBc204Bn0 � mBc0Bn0 = 0:

Hypotheses 4, 5, and 6 compare the treat-
ments with only banded application with the
untreated control group:

4:mBc0Bn34 � mBc0Bn0 = 0;

5:mBc0Bn68 � mBc0Bn0 = 0;

6:mBc0Bn102 � mBc0Bn0 = 0:

Hypotheses 7 to 10 compare the treatments
with mixed application of banded and broad-
cast application with the untreated control:

Fig. 1. Simultaneous 95% confidence intervals for the eight contrasts formulated in Table 5. Dots mark the
point estimates of the differences of interest and parentheses mark the limits of the simultaneous 95%
confidence regions for these differences. Calculated are the comparison of control versus the pooled
effect of all six treatments (the first interval), the comparison of the formulations with pooled
concentrations (Contrasts 2, 3, 4), the comparison of the concentration with pooled formulations
(Contrast 5), and the interactions between the formulations (Contrasts 6, 7, 8).
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7:mBc68Bn34 � mBc0Bn0 = 0;

8:mBc68Bn68 � mBc0Bn0 = 0;

9:mBc136Bn34 � mBc0Bn0 = 0;

10: mBc136Bn68 � mBc0Bn0 = 0:

Furthermore, the aim could be to analyze
whether any treatment that combines broad-
cast with banded application leads to an
increase in yield compared with treatments
resulting in the same amount of K with only
one application method, broadcast or banded.
The corresponding comparisons are:

11:mBc68Bn34 � mBc0Bn102 = 0;

12:mBc68Bn68 � mBc136Bn0 = 0;

13:mBc136Bn68 � mBc204Bn0 = 0:

Finally, it could be of interest whether
banded application of 68 kg�ha–1 K leads to

an increase in yield compared with broadcast
application of the same amount:

14:mBc0Bn68 � mBc68Bn0 = 0:

The contrast coefficients resulting from
these 14 contrasts are presented in Table 7.

Simultaneous confidence intervals for the
contrasts defined in Table 7 are plotted in
Figure 3.

With 95% confidence, one can state that
broadcast application of K leads to a signifi-
cant increase in yield when applied with 136
kg�ha–1 or 204 kg�ha–1. For banded application
alone, no significant effect can be found. All
combinations of banded and broadcast appli-
cations lead to a significant increase of cotton
yield compared with the untreated con-
trol. Applying the combinations Bc68Bn34,
BC68Bn68, and Bc136Bn34 leads to a mean
increase in yield compared with the untreated
control of at least 30 kg�ha–1, 55 kg�ha–1, and
180 kg�ha–1, respectively. None of the treat-
ments combining broadcast and banded appli-

cation leads to a significant increase in yield
compared with treatments applying the same
amount of K with only one application
method. Finally, there is no significant differ-
ence in yield between banded and broadcast
application of 68 kg�ha–1 K.

Discussion

This article shows that simultaneous con-
fidence intervals for multiple contrasts are a
flexible method to evaluate factorial experi-
ments with nonstandard treatment structures
as, for example, augmented factorial designs
or experiments with two or more factors,
which are crossclassified with some factor
combinations omitted. The strategy can be
summarized as follows; estimators for the
treatment means and variance are derived
from a simple general linear model with all
treatments combined in a single factor (i.e., a
pseudo-one-way layout or cell means model).
Contrast coefficients are chosen by the user
such that the hypotheses of interest are
reflected as differences of (weighted aver-
ages of) treatment means. Like other proce-
dures following the general linear model
(Marini, 2003; Piepho et al., 2006), the
described procedure relies on the assump-
tions that the observations are mutually
independent and continuous with normal
distributed errors and homogeneous varian-
ces. The method is computationally available
for the R environment for statistical comput-
ing as well as in SAS.

Compared with other methods that have
been proposed for evaluation of experiments
with complex treatment structures, the
described method has a number of advan-
tages. The individual contrasts give more
specific information than the global decisions
provided by an analysis of variance F-test.
When simultaneous confidence intervals are
used, the significance, relevance, and direc-
tion (increase or decrease) of the effect of
interest as well as the uncertainty concerning
the estimates can be interpreted in a scale
close to that of the measured variable, which
is often easier than interpreting P values in
the scale of probability. Compared with
orthogonal single df contrasts, the contrasts
formulated for the method described in this
article do not need to be mutually orthogonal
and are not restricted in their number. Finally,
the overall Type I error probability is controlled
inherently for a user-defined set of contrasts.

The described method is of limited use if
experiments are analyzed that comprise
many, say more than 20, treatments. Being
still methodologically correct, it then has the
drawback that the contrast matrix becomes
huge and it is hard to control for typos in the
definition of comparisons of interest. Also,
when the number of contrasts becomes very
high, computations can be very time-con-
suming or impossible. For some scenarios,
the methods described by Piepho et al. (2006)
can then be more appropriate.

In this article, we discuss only com-
plex treatment structures and for brevity
assume a simple randomization structure

Fig. 2. Simultaneous 95% confidence intervals for the 15 contrasts defined in Table 6. Dots mark the point
estimates of the differences of interest and parentheses mark the limits of the simultaneous 95%
confidence regions for these differences. Calculated are differences of the single treatment means to
the mean of the control (Contrasts 1–6), the comparisons of the formulations separate for each
concentration (Contrasts 7–12), and the comparisons between Concentrations 10 and 20 separate for
each formulation (Contrasts 13–15).

Table 6. Contrast coefficients (ci) of 15 contrasts for the alternative evaluation of Example 1.z

Treatment

Control f1(10) f1(20) f2(10) f2(20) f3(10) f3(20)

Number Comparison Contrast coefficients

1 f1(10) – CON –1 1 0 0 0 0 0
2 f1(20) – CON –1 0 1 0 0 0 0
3 f2(10) – CON –1 0 0 1 0 0 0
4 f2(20) – CON –1 0 0 0 1 0 0
5 f3(10) – CON –1 0 0 0 0 1 0
6 f3(20) – CON –1 0 0 0 0 0 1
7 f2(10) – f1(10) 0 –1 0 1 0 0 0
8 f3(10) – f1(10) 0 –1 0 0 0 1 0
9 f3(10) – f2(10) 0 0 0 –1 0 1 0

10 f2(20) – f1(20) 0 0 –1 0 1 0 0
11 f3(20) – f1(20) 0 0 –1 0 0 0 1
12 f3(20) – f2(20) 0 0 0 0 –1 0 1
13 f1(20) – f1(10) 0 –1 1 0 0 0 0
14 f2(20) – f2(10) 0 0 0 –1 1 0 0
15 f3(20) – f3(10) 0 0 0 0 0 –1 1
zDefined are the comparisons of the six gibberellin treatments versus the control (Contrasts 1–6), the
comparisons of the formulations separate for each concentration (Contrasts 7–12), and the comparisons of
Concentrations 10 and 20 separate for each formulation.
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and homoscedastic Gaussian error distribu-
tion for the response variable. Nevertheless,
the concept of multiple contrast tests can be
extended so that situations with different
assumptions or randomization schemes are
also covered. Block effects or more complex
randomization structures may be included as
random effects in a linear mixed effects
model, whereas the complex treatment struc-
ture remains in the fixed part (for example
Piepho et al., 2003). Computationally,
approximate simultaneous confidence inter-
vals for multiple contrasts in mixed models
are covered in the SAS PROC GLIMMIX as
well as the R package multcomp. When the
assumption of the Gaussian distribution is not
adequate but counts or proportions are con-
sidered, generalized linear models (McCul-
lagh and Nelder, 1989; Piepho, 1999) are an
alternative. By default, the primary compar-
isons are then performed on the log scale for
count data and on the logit scale for binomial

proportions. Using the inverse link function
to transform back results in confidence inter-
vals for ratios of means and odds ratios when
the log and logit link is used, respectively.
Again, these cases are computationally
solved in PROC GLIMMIX and multcomp.
However, also in the general linear model
with Gaussian errors, the comparisons of
interest could be formulated in terms of ratios
rather than in differences of means (Dilba
et al., 2006). When interest is in a combina-
tion of one-sided and two-sided hypotheses,
Braat et al. (2008) provide a method related
to the methods shown in this article.
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Table 7. Contrast coefficients (ci) for the 14 comparisons among the 11 treatments of the cotton example.z

K application Treatment combinations

Bc 0 68 136 204 0 0 0 68 68 136 136
Bn 0 0 0 0 34 68 102 34 68 34 68
Total K 0 68 136 204 34 68 102 102 136 170 204

Number Comparison Contrast coefficients

1 Bc68Bn0 – Bc0Bn0 –1 1 0 0 0 0 0 0 0 0 0
2 Bc136Bn0 – Bc0Bn0 –1 0 1 0 0 0 0 0 0 0 0
3 Bc204Bn0 – Bc0Bn0 –1 0 0 1 0 0 0 0 0 0 0
4 Bc0Bn34 – Bc0Bn0 –1 0 0 0 1 0 0 0 0 0 0
5 Bc0Bn68 – Bc0Bn0 –1 0 0 0 0 1 0 0 0 0 0
6 Bc0Bn102 – Bc0Bn0 –1 0 0 0 0 0 1 0 0 0 0
7 Bc68Bn34 – Bc0Bn0 –1 0 0 0 0 0 0 1 0 0 0
8 Bc68Bn68 – Bc0Bn0 –1 0 0 0 0 0 0 0 1 0 0
9 Bc136Bn34 – Bc0Bn0 –1 0 0 0 0 0 0 0 0 1 0

10 Bc136Bn68 – Bc0Bn0 –1 0 0 0 0 0 0 0 0 0 1
11 Bc68Bn34 – Bc0Bn102 0 0 0 0 0 0 –1 1 0 0 0
12 Bc68Bn68 – Bc136Bn0 0 0 –1 0 0 0 0 0 1 0 0
13 Bc136Bn68 – Bc204Bn0 0 0 0 –1 0 0 0 0 0 0 1
14 Bc0Bn68 – Bc68Bn0 0 –1 0 0 0 1 0 0 0 0 0
zCalculated are the comparisons of the 10 different potassium (K) treatments to the untreated the control
(Contrasts 1–10) and the comparisons of groups with equal amount of K but different application methods
(Contrasts 11–14).

Fig. 3. Simultaneous 95% lower confidence limits for the 14 contrasts defined in Table 7. Dots mark the
point estimates of the differences of interest and parentheses mark the limits of the simultaneous 95%
confidence regions for these differences. Calculated are the comparison of the control versus each of
the single fertilizer combinations (1–10) and the comparisons of groups with equal amount of
potassium but different application methods (11–14).
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Appendix

The two example data sets are available at http://www.biostat.uni-hannover.de/software/.
After loading the data sets into the R workspace under the names ExFruitset (Example 1) and
ExKCotton (Example 2), the following R code reproduces the analyses of the two examples
shown in this article.

SAS program files, including the data sets and the calculation of the simultaneous intervals,
are available at http://www.biostat.uni-hannover.de/software/.

The following R code reproduces the calculation of simultaneous confidence intervals
plotted in Figure 1:

The following R code reproduces the calculation of simultaneous confidence intervals
plotted in Figure 2:
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The following R code reproduces the calculation of simultaneous confidence intervals
plotted in Figure 3:
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Abstract

Two or higher-order factorial designs are very common in agricultural and

horticultural experiments. The evaluation of such trials by analysis of vari-

ance (ANOVA) and the corresponding F-tests for the interaction effects covers

only a global decision concerning the presence of interactions. This study

presents a straightforward method, which provides a more detailed analysis

of interactions via multiple contrast tests. The presented approach takes both

the structure of each factor and the research question into account by build-

ing user-defined product-type contrasts. Simultaneous inference for these

user-specified interaction contrasts that controls the overall error rate is avail-

able. In addition to adjusted P-values, it is recommended to use simulta-

neous confidence intervals to present the magnitude, direction and the

biological relevance of the interaction effects. The proposed method is dem-

onstrated using two horticultural trials. Furthermore, the authors provide a

collection of worked examples using the R (A Language and Environment

for Statistical Computing, 2013, R Foundation for Statistical Computing,

Vienna, Austria) add-on package statint stored on github (https://github.com/

AKitsche/statint).

Introduction

Experiments that include two or more treatment factors

are frequently set up in agricultural and horticultural

research. Such factorial trials permit the experimenter to

simultaneously investigate several factors within the same

experiment. Some commonly used factors in applied biol-

ogy are as follows: i) particular varieties or cultivars of a

species, ii) different kinds of fertilizers, iii) different con-

centrations of a fertilizer, iv) different irrigation intensities

or v) different seed spacings in a row. As opposed to sin-

gle-factor experiments, two and higher-order factorial

experiments are appropriate to investigate the interaction

effects beside the main effects: How does the effect of one

factor change, if a second factor is varied? In many two

and higher-order factorial experiments, the research

hypothesis is at least partially formulated to test for inter-

actions. In some experiments, the detailed investigation of

interactions is of primary interest. As examples, see Slau-

enwhite and Qaderi (2013) who investigated the interac-

tive effects of temperature and light quality on four

canola cultivars, or Sahin et al. (2012), who examined the

chloride and bromate interaction on oxidative stress in

carrot plants.

Using the analysis of variance (ANOVA) and the corre-

sponding F-tests for the main and interaction effects covers

only an overall decision concerning the presence of an inter-

action. If a significant interaction is found in the ANOVA,

subsequent tests for simple effects are recommended by sev-

eral statistical textbooks with focus on plant, crop and agri-

cultural science (Gomez and Gomez 1984, Clewer and

Scarisbrick 2001 and Hoshmand 2006). That is, the differ-

ences in the means of one factor are tested separately on

each level of the other factor. This method of post hoc

investigation has been criticized in the statistical literature

because it does not correspond to the null hypothesis tested

by the global F-test of interaction in the ANOVA (Marascuilo

and Levin 1970). Its focus is on inference for one primary

factor, separately for the levels of a secondary factor. Such a

distinction between the two factors may not exist, and,

more severely, the interactions can be interpreted only indi-

rectly from differing test results among the different levels

of the secondary factor. Thus, erroneous conclusions

concerning the detailed interaction effects are not directly
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controlled via the significance levels of this post hoc proce-

dure. Alternatively, graphical methods such as plots of the

treatment means or interaction residuals are used for a fur-

ther descriptive interpretation of the interaction (Harwell

1998), however, lacking any error control for the detailed

interpretation of the interaction effects. Therefore, we do

not recommend these approaches, particularly if there is no

distinction between main effects of primary and secondary

interest, and for experiments, where the presence of interac-

tions is not considered as a nuisance in interpreting the

main effects, but there is explicit interest in inference on the

locations, the directions and the magnitude of interactions.

This study presents a general methodology to construct

comparisons of treatment means for an in-depth analysis

of interactions. The hypotheses are defined in terms of dif-

ferences between differences and are related to the hypothe-

sis of the ANOVA F-test for interaction. Because in such a

detailed analysis several hypotheses are tested, an adequate

multiple comparison procedure has to be used. Adjusted

P-values for the individual hypotheses are provided, such

that the significance of the detailed interpretations can be

inferred, while controlling the overall probability of an

erroneous decision. Additionally to a statement on rejec-

tion/acceptance of the corresponding null hypothesis, the

related simultaneous confidence intervals allow interpreta-

tions whether the magnitude of the observed interaction

effects is biologically relevant. In recent years, several

authors applied these methods, see, for example, Hothorn

(2003), Hothorn and Bleiholder (2006), Fr€omke and Bretz

(2004), Schaarschmidt and Vaas (2009) and Menke et al.

(2011). Nevertheless, there are several reasons why this pro-

cedure has hardly been used in practice so far: i) a general

description of the statistical methodology to obtain appro-

priate quantiles for user-defined contrasts was provided

not so long ago (Westfall and Young 1993 and Genz and

Bretz 1999), ii) the numerical availability in standard statis-

tical software like SAS (SAS Institute Inc. 2013) (LSMESTI-

MATE statement in PROC GLIMMIX available since 2009

in SAS/STAT 9.2) and R (R Core Team 2013) (add-on

package multcomp (Hothorn et al. 2008) first version pub-

lished on CRAN in 2002) was provided in recent times, iii)

the construction and labelling of the interaction contrast

matrices can be very cumbersome, and iv) no case studies

are available that convincingly present the proposed

method. To fill this gap, this manuscript provides a general

description of the methodology and its application to two

illustrative case studies.

This study is organized as follows: in Section 2, two illus-

trative examples are introduced. The statistical methodol-

ogy is presented in Section 3. Subsequently, we

demonstrate the application of the proposed method using

two examples. Section 5 provides a concluding discussion

and hints to straightforward extensions.

Illustrative Examples

Bushy and tall bush bean varieties with different row

spacing

The first example was published by Petersen (1985, p.

155). The goal of the experiment was to investigate the

effect of row spacing on the yield of different varieties of

bush beans. Due to the different growth habits of the con-

sidered varieties, it was assumed that the spacing effect

differs between the varieties. The selected four varieties

differ such that ‘NewEra’ and ‘BigGreen’ form low, bushy

plants and the two varieties ‘LittleGem’ and ‘RedLake’

form erect plants with few branches. The chosen row

spacings were of 20, 40 and 60 cm between rows. A ran-

domized complete block design with four blocks and 12

plots per block was used. The yield of dried beans in kilo-

grams per plot was determined after harvest time. Fig-

ure 1 displays the mean yield for each variety-by-spacing

combination. It is obvious that the mean yield increases

for the varieties ‘NewEra’ and ‘BigGreen’, which form lit-

tle, bushy plants, with increasing row spacing. On the

other hand, the mean yield decreases for the two varieties

‘LittleGem’ and ‘RedLake’, which form erect plants, as the

spacing increases. The results of the corresponding ANOVA

reveal that this interaction between variety and spacing is

highly significant (Table 1). The significant overall inter-

action may now be further analysed: What is the differ-

ence in yield increase for different spacings between the

bushy and tall group averages? To what extent do the

varieties with similar growth type differ in their reaction

to spacing?

Fig. 1 Interaction plot of cell means which illustrates the relationship

between row spacing and yield of four bush bean varieties that form

either little, bushy plants (New Era and Big Green) or erect plants with

few branches (Little Gem and Red Lake).
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Effect of 1-Methylcyclopropene on Pelargonium zonale

The second data set was part of an experiment conducted

at the Section of Floriculture within the Institute of Hor-

ticultural Production Systems at the Leibniz Universit€at

Hannover in 2010 (data provided by Syariful Mubarok).

The goal of the experiment was to investigate the charac-

teristics of the ethylene receptor blocker 1-methylcyclo-

propene (MCP) for improvement in post-harvest

characteristics of Pelargonium zonale hybrids. To examine

the effect of the ethylene, one group with ethylene treat-

ment and one group without ethylene treatment were

considered. To study the effect of the ethylene blocker

MCP, three different commercial products using the

active agent MCP as ethylene blocker were used. Addi-

tionally, a water-sprayed control group was used as refer-

ence group. Furthermore, an untreated control group was

used to rule out some effect of spray application. Within

this experiment, three different cultivars of Pelargonium

zonale were investigated. The trial was planned in a com-

pletely cross-classified treatment structure, laid out as a

completely randomized design with three replications for

each factorial combination. The primary response to

determine the post-harvest characteristics was the chloro-

phyll content (mg per g fresh weight) after 8 days of

treatment.

Figure 2 displays the box plots for the chlorophyll con-

tent after 8 days based on each ethylene-by-treatment-by-

cultivar combination. From Fig. 2, a remarkable ethylene

effect on the chlorophyll content is obvious in the control

groups over all cultivars. This ethylene effect is reduced

for those treatment groups whose products include the

ethylene blocker MCP, whereas this reduction in the ethyl-

ene effect is considerably larger for cultivar 3 in contrast

to cultivar 1 and cultivar 2. The corresponding three-way

ANOVA (Table 2) shows a significant interaction between

the factors ethylene, treatment and cultivar. This indicates

a different response of the ethylene effect through the

treatment groups between the three cultivars under

investigation.

In particular, the researcher was interested in investigat-

ing a potentially different ethylene response between the

control groups and the treatment groups including the eth-

ylene blocker. Furthermore, interest was in the comparison

of the ethylene effect between the three products including

the ethylene blocker. Note that the research interest was

not on a potentially different response of the ethylene effect

caused by the different MCP blocking treatments between

the three cultivars under investigation. However, to present

the flexibility of the proposed approach, the authors pro-

vide a detailed analysis of this three-way interaction. More-

over, this analysis is in line with the significant three-way

interaction term in Table 2.

Methods

The model

For the sake of simplicity, we assume a completely random-

ized design with two factors, afterwards denoted as A and

B, and their interaction AB. Nevertheless, the presented

approach can be extended to designs with more than two

factors (see example 2) or with a more complex randomi-

zation structure (see section: Interaction contrasts for fixed

effects in mixed models). The primary response is a contin-

uous and normally distributed outcome measure. Further-

more, we let I be the number of levels of factor A (with

index i = 1,. . .,I) and J be the number of levels of factor B

(with index j = 1,. . .,J). The number of experimental units

Table 1 Two-way ANOVA table of the bush beans data set

d.f. Sum Sq Mean Sq F value Pr(>F)

Block 3 341.90 113.97 8.78 <0.001

Variety 3 1332.56 444.19 34.22 <0.001

Spacing 2 72.67 36.33 2.80 0.075

Variety:Spacing 6 871.00 145.17 11.18 <0.001

Residuals 33 428.35 12.98

Fig. 2 Box plots of the chlorophyll content

after 8 days based on each ethylene-by-treat-

ment-by-cultivar combination.
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is permitted to vary between the factor combinations and is

denoted by nij. The corresponding two-way ANOVA model

with an interaction term is given by:

Yijk ¼ lþ ai þ bj þ ðabÞij þ eijk; ð1Þ

where the parameter l denotes the overall mean, ai is the
treatment effect for the ith level of factor A, bj the treat-

ment effect for the jth level of factor B, and (ab)ij denotes
the joint effect of the ith level of factor A and the jth level

of factor B. Furthermore, it is assumed that the error asso-

ciated with the kth observation for the ijth treatment, with

k = 1,. . .,N, is normally distributed with common variance,

ɛijk ~ N(0, r2).
For the purpose of our method, we reformulate the clas-

sical ANOVA model as the cell means model as follows:

Yijk ¼ lij þ eijk; ð2Þ

where the parameter lij denotes the cell mean of the ith

level of factor A and the jth level of factor B. Within this

study, the dot notation is used to represent the averaging

over the respective factor levels, for example li. means the

average over the levels of factor B.

Note that it is common practice in agricultural and hor-

ticultural research to display the means from a two-way

layout in a I 9 J table (see e.g. Table 3). Each cell in

Table 3 corresponds to a sample mean of a factor combina-

tion, which is an unbiased estimator for the parameters lij
in the cell means model. The lower and right margins in

Table 3 represent the marginal means averaged over the

levels of the other factor.

Hypotheses for interactions

In this section, we present suitable comparisons for the

analysis of interactions, formulated in terms of the cell

means model. The null hypotheses for the main effects of A

and B test the equality of their marginal means,

HA
0 : l1: ¼ l2: ¼ . . . ¼ lI: and HB

0 : l:1 ¼ l:2 ¼ . . . ¼ l:J .

As mentioned in Section 1, it is common practice to ana-

lyse the single effect of the primary factor after an F-test for

interaction. This hypothesis can be formulated using the

terms in Eq. (1) as:

H
Að12ÞBð2Þ
0 : l12 � l22 ¼ ðlþ a1 þ b2 þ ðabÞ12Þ

� ðlþ a2 þ b2 þ ðabÞ22Þ
¼ ða1 � a2Þ þ ððabÞ12
� ðabÞ22Þ ¼ 0;

ð3Þ

for i = 1,2 and j = 2. Obviously, the main effect for factor

A and the interaction effect are confounded with one and

another, so a clear interpretation concerning the interac-

tion is not possible (as shown in Marascuilo and Levin

1970).

The global null hypothesis for the interaction effect tests

the equality of all cell means to the expected additive effect

of the two main effects. Expressed in terms of the cell

means and marginal means, this can be written as:

HAB
0 : ðlij � l::

z}|{overallmean

Þ � ðli: � l::
zfflfflfflffl}|fflfflfflffl{maineffectA

Þ � ðl:j � l::
zfflfflfflffl}|fflfflfflffl{maineffectB

Þ
¼ lij � li: � l:j þ l:: ¼ 0 for all i and j: ð4Þ

The interaction effects are therefore also termed as

interaction residuals or corrected cell means (Boik 1993).

If the main effects are purely additive and there is no

interaction, all pairwise differences between the levels of

one factor are the same across all levels of the other factor.

Thus, the null hypothesis of no interaction may alterna-

tively be expressed as in terms of the cell means alone:

HAB
0 : lij � lij0

� �
� li0j � li0j0
� �

¼ lij � li0 j � lij0 þ li0j0

¼ 0 for all i; i0f g and j; j0f g;
ð5Þ

where i 6¼ i0 and j 6¼ j0 (Kirk 1995). For illustrative pur-

poses, consider the first and third levels of factor A and the

first and third levels of factor B (grey-marked cells in

Table 3 Table of cell means for two factorial designs, where factor A

has i = 1,2,3, . . .,I levels and factor B has j = 1,2,3, . . .,J levels. Grey-

marked cells define the tetradic contrasts of cell means l11 - l13 - l31 +

l33

B1 B2 B3 Bj BJ Means

A1 l11 l12 l13 . . . l1J l1.
A2 l21 l22 l23 . . . l2J l2.
A3 l31 l32 l33 . . . l3J l3.
Ai

..

. ..
. ..

. . .
. ..

. ..
.

AI lI1 lI2 lI3 . . . lIJ lI.
Means l.1 l.2 l.3 . . . l.J l..

Table 2 Three-way ANOVA table of the ethylene blocking data set

d.f.

Sum

Sq

Mean

Sq F value Pr(>F)

Cultivar 2 53.22 26.61 15.99 <0.001

Ethylene 1 98.85 98.85 59.43 <0.001

Treatment 4 156.05 39.01 23.46 <0.001

Cultivar:Ethylene 2 0.37 0.19 0.11 0.894

Cultivar:Treatment 8 3.05 0.38 0.23 0.984

Ethylene:Treatment 4 35.65 8.91 5.36 <0.001

Cultivar:Ethylene:

Treatment

8 28.73 3.59 2.16 0.044

Residuals 60 99.79 1.66
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Table 3). The corresponding local hypothesis to test the

interaction effect compares the difference between B1 and

B3 at A1 to the difference between B1 and B3 at A3:

H
Að13ÞBð13Þ
0 : ðl11 � l13Þ � ðl31 � l33Þ

¼ l11 � l13 � l31 þ l33 ¼ 0

for i ¼ f1; 3g and j ¼ f1; 3g
ð6Þ

Conversely, this can be interpreted as comparing (A1–A3)

at B1 to (A1–A3) at B3. These comparisons are also known

as tetradic contrasts (Bradu and Gabriel 1974), as each

compares a set of four cell means. Nevertheless, interest

might be only in a subset of these tetradic contrasts. In

some experiments, not all pairwise comparisons between

the levels of a factor may be of interest, but only compari-

sons to a control group. Other research hypotheses may

require considering a specific set of comparisons, or may

consider differences between pooled factor levels, depend-

ing on the particular treatment structure. Such user-defined

comparisons may be defined in terms of contrasts. Recall

that a contrast or comparison among means is a linear

combination of means that have a priori known weights or

coefficients (see e.g. Kirk 1995). The sum of the coefficients

in a given contrast should be equal to zero to be interpret-

able as a difference. Several contrasts can be combined in a

contrast matrix, where we will assume here that each row of

such a matrix corresponds to one comparison of interest.

For the construction of user-defined interaction con-

trasts, we assume that the differences of interest with respect

to the i = 1,. . ., I levels of factor A are defined in the con-

trast matrix CA with I columns, whereas the differences of

interest among the j = 1,. . .,J levels of factor B are defined

in the contrast matrix CB with J columns. The Kronecker

product, denoted by ⊗, can be used to define the corre-

sponding interaction contrasts. Recall that the Kronecker

product of two matrices multiplies each element of the first

matrix with the second matrix. Thus, CA � CB leads to a

matrix CAB that defines the M comparisons of interest with

each column corresponding to one of the ij = 11,21,. . ., IJ

cell means. Gabriel et al. (1973) presented this general

approach to construct comparisons of cell means, which

they denoted as (Kronecker) product-type interaction con-

trasts, to build simultaneous confidence intervals for inter-

actions. All tetradic contrasts in Eq. (5) can be constructed

in CAB ¼ CA � CB when all pairwise comparisons (Tukey-

type contrasts) among the I levels of factor A and among

the J levels of factor B are defined in CA and CB, respectively.

However, if only a subset of these is of interest a priori, sta-

tistical inference and corrections for multiple comparisons

should be restricted to only this subset in order to avoid too

conservative adjustments for multiple testing.

As an example, consider the ethylene blocker data set

introduced in Section 2.2. The first factor ethylene consists

of two levels, an untreated group and an ethylene-treated

group. To investigate the effect of ethylene on the chloro-

phyll content, the difference between the two groups is

investigated. This difference is further formulated in terms

of a contrast in the matrix: CA =(1 �1). The second factor,

MCP treatment, includes an untreated control group, a

water-sprayed control group and three different MCP

blocking groups. The objective of including this factor is to

estimate the effect of the MCP product in contrast to the

control groups on the chlorophyll content. Further interest

is in comparing the three different commercial products

that include the ethylene blocker MCP. The corresponding

contrast matrix CB that translates these research hypotheses

in terms of contrasts is given in Table 4. To investigate a

potential different ethylene effect according to the second

factor, a detailed analysis of this ethylene-by-treatment

interaction is conducted using the pre-defined contrast

matrices CA and CB. The resulting interaction contrast

matrix CAB ¼ CB � CA is given in Table 5. The first row in

CAB compares the ethylene effect between the two control

groups and the MCP-treated groups. The remaining three

rows compare the ethylene effect between the three

different MCP products.

Statistical inference

The objective is now to simultaneously test the M hypothe-

ses represented by the M rows of a given matrix of interac-

tion contrasts CAB. The test statistic for one contrast is

given by

T ¼ c11l̂11 þ c12l̂12 þ c13l̂13 þ . . .þ cIJ l̂IJ

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c211
n11

þ c212
n12

þ c213
n13

þ . . .þ c2IJ
nIJ

q

¼
PI

i¼1

PJ
j¼1cijl̂ij

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1

PJ
j¼1

c2
ij

nij

r ;

where s is the square root of the pooled sample variance

and l̂ij are the estimators for the cell means. To adjust for

Table 4 Matrix of contrasts for the treatment factor for the second

example in Section 2. The first row compares the control groups against

the ethylene blocking groups. The following three rows conduct all pair-

wise differences of the ethylene blocking groups

Comparison

Untreated

control

Water

control Prod1 Prod2 Prod3

Control –

Product

0.5 0.5 �0.33 �0.33 �0.33

Prod1 – Prod2 0 0 1 �1 0

Prod1 – Prod3 0 0 1 0 �1

Prod2 – Prod3 0 0 0 1 �1
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multiple comparisons and therefore control the family-wise

error rate for the family of M contrasts, we use the frame-

work of multiple contrast tests as described by Hothorn

et al. (2008) and Bretz et al. (2010). The null hypothesis for

a particular interaction contrast m is rejected if the corre-

sponding jTj[ q1�a;M;R;g where q1�a;M;R;g is the two-sided

critical value from a multivariate t-distribution with dimen-

sion M, a pre-specified significance level a, degree of free-

dom g ¼ PI
i�1

PJ
j�1ðnij � 1Þ and a correlation matrix R

that depends on the sample sizes nij and the contrast coeffi-

cients cij (for computational details see Bretz et al. (2001)).

Corresponding simultaneous two-sided confidence inter-

vals for each of theM interaction contrasts are given by

XI

i¼1

XJ

j¼1
cijl̂ij � q1�a;M;R;g�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

XJ

j¼1

c2ij

nij

s
;

and allow to interpret the magnitude, the direction and the

biological relevance of the inferred differences as well as test

decisions (if zero is not included in one of the intervals, the

contrast is not significantly different from zero). The criti-

cal value chosen according to the above methodology

accounts for the number of multiple comparisons, M, as

well as for the correlations among the M-test statistics

under the related null hypothesis that results from repeat-

edly involving the same cell means in several of the M con-

trasts. The test decisions provided by this method are thus

not conservative in contrast to commonly known adjust-

ments for multiple comparisons, as the Scheff�e or Bonfer-

roni method (Nelson 1989). The computational methods

are freely available for the software R (R Core Team 2013)

using the add-on package multcomp (Hothorn et al.

2008). For users of the SAS software (SAS Institute Inc.

2013), a related method with different computational

details is available in the LSMESTIMATE statement of the

GLIMMIX procedure (Westfall et al. 2011).

Interaction contrasts for fixed effects in mixed models

Agricultural experiments usually involve randomization

structures, for example, are performed as randomized com-

plete block, split plot or more complicated designs. A gen-

eral way to analyse such data is linear mixed models, where

the main effects and their interaction are modelled in the

fixed effects part, and various randomization structures

may be accounted for in the random effects part (Piepho

et al. 2003). Consider the following model:

y ¼ Xbþ Zuþ e; ð7Þ

where X is the design matrix of fixed effects, here contain-

ing the dummy-coded treatment levels of the cell means

model in Eq. (2), and b is the corresponding parameter

vector. Z and u are the design matrix and the vector for the

random effects, driven by the corresponding experimental

design. The vector of residuals, e, may assumed to be inde-

pendent or may model dependencies among observations

imposed by repeated measurements. Note that X may con-

tain further fixed effects like covariates, or a block effect

treated as fixed effect. In this situation, parameters corre-

sponding to the ordered vector of cell means introduced

above can be obtained by linear combinations of b, for
example, by computing the IJ treatment means pooled over

the blocks or by computing treatment means at the average

covariate value; see the bush beans example.

For this situation, simultaneous inference is described in

Hothorn et al. (2008). Their methods are briefly described

in the following: fitting the model yields an estimate of the

parameter vector b̂ and a corresponding covariance matrixP̂
. The vector of the M contrast estimates results from

d̂ ¼ CABb̂, with elements d̂m, the corresponding covariance

matrix V̂ ¼ CAB

P̂
CT
AB, with the vector of its M diagonal

elements denoted v̂, and standardizing V̂ by its diagonal

elements yields the correlation matrix R̂ (Hothorn et al.

2008). The test statistic of the mth contrast is given by

Tm ¼ d̂m=
ffiffiffiffiffi
v̂m

p
, and simultaneous confidence intervals for

the interaction contrasts can then be obtained by

d̂m � q
ffiffiffiffiffi
v̂m

p
; ð8Þ

where the appropriate quantile q may be computed from

the multivariate normal distribution, q ¼ Z1�a;M;R̂, to yield

Table 5 Interaction contrast matrix obtained from the direct Kronecker product of the matrices CA = (1–1) and CB from Table 4. The first row com-

pares the ethylene effect between the control groups and the MCP-treated groups. The remaining rows compare the ethylene effect between the

three different MCP products

Comparison

Eth.no

untr.

control

Eth.yes

untr.

control

Eth.no

water

control

Eth.yes

water

control

Eth.no

Prod1

Eth.yes

Prod1

Eth.no

Prod2

Eth.yes

Prod2

Eth.no

Prod3

Eth.yes

Prod3

Ethylene (Control –

Product)

0.5 �0.5 0.5 �0.5 �0.33 0.33 �0.33 0.33 �0.33 0.33

Ethylene (Prod1 – Prod2) 0 0 0 0 1 �1 �1 1 0 0

Ethylene (Prod1 – Prod3) 0 0 0 0 1 �1 0 0 �1 1

Ethylene (Prod2 – Prod3) 0 0 0 0 0 0 1 �1 �1 1
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asymptotic intervals (Hothorn et al. 2008). This procedure

will be on the liberal side in small samples, because error

degree of freedom is set to infinity. Alternatively, exact con-

fidence intervals can be obtained, when using quantiles of

the multivariate t-distribution, q ¼ q1�a;M;R̂;ĝ, where ĝ is an

approximate denominator degree of freedom (e.g. Pinheiro

and Bates 2000, p.91) of the related ANOVA F-test for the

fixed effect corresponding to the cell means.

Analysis of the examples

In this section, the above presented examples are analysed

using the previously presented methods.

Bush beans example analysed

To construct the product-type interaction contrast matrix,

we first specify the contrast matrices for the main effects

for the factors spacing and variety. For the factor spacing,

we use all pairwise comparisons between the three row

spacings (Table 6). For the factor variety, we first want to

compare the average of the two tall varieties with that of

the two bushy varieties (see first row in Table 7). Further-

more, we compare the varieties within each of the two

growth types, see rows 2 and 3 from Table 7. To get the

product-type interaction contrasts, we build the direct Kro-

necker product of these matrices, which results in the

matrix listed in Table 8.

Figure 3 displays the two-sided simultaneous confidence

intervals for the user-defined interaction contrasts in

Table 8. The null hypothesis that a single interaction con-

trast is zero is rejected if the confidence interval does not

include the value zero. From the top three confidence inter-

vals in Fig. 3, it is obvious that the spacing effect is differ-

ent between the two growth types. Considering the second

confidence interval in Fig. 3, we conclude that the mean

yield of the bushy varieties is at least about 12 kg per plot

higher than that of the tall varieties if the row spacing

increases from 20 to 60 cm. Furthermore, we can conclude

that the difference between the two growth habits increases

with increasing row spacings. In contrast to the comparison

of the different spacing effects between the two growth hab-

its, the spacing effect is not different between the varieties

of the same growth habit.

For the special case of this example, there are two alter-

native procedures for the evaluation: The first alternative

approach takes the hierarchical structure between the

growth type and the varieties within the growth type into

account. The data may then be analysed by a three-factorial

ANOVA with factors growth type and spacing crossed, and

the third factor variety nested in growth type (see Table 9).

The significant Type:Spacing effect indicates that the two

growth types, bushy and tall, differ in their mean response

when spacing is increased. However, the two varieties

within each growth type show no significantly different reac-

tion with increasing spacing (Type:Spacing:Variety P =
0.073). These test results coincide with those from the inter-

action contrast test approach. But, using the simultaneous

Table 6 Contrast matrix that compares all pairwise differences of the

spacing factor for the first example in Section 2

Comparison 20 cm 40 cm 60 cm

20–40 1 �1 0

20–60 1 0 �1

40–60 0 1 �1

Table 7 User-defined contrasts that compare the different varieties

from the first example in Section 2

Comparison BigGreen NewEra LittleGem RedLake

Bushy – Tall 0.5 0.5 �0.5 �0.5

BigGreen – NewEra 1 �1 0 0

LittleGem – RedLake 0 0 1 �1

Table 8 Interaction contrast matrix obtained from the direct Kronecker product of the matrices CA and CB from Tables 6 and 7

Comparison

BigGreen NewEra LittleGem RedLake

20 40 60 20 40 60 20 40 60 20 40 60

(Bushy – Tall)20 – (Bushy – Tall)40 0.5 �0.5 0 0.5 �0.5 0 �0.5 0.5 0 �0.5 0.5 0

(Bushy – Tall)20 – (Bushy – Tall)60 0.5 0 �0.5 0.5 0 �0.5 �0.5 0 0.5 �0.5 0 0.5

(Bushy – Tall)40 – (Bushy – Tall)60 0 0.5 �0.5 0 0.5 �0.5 0 �0.5 0.5 0 �0.5 0.5

(BigGreen – NewEra)20 – (BigGreen – NewEra)40 1 �1 0 �1 1 0 0 0 0 0 0 0

(BigGreen – NewEra)20 – (BigGreen – NewEra)60 1 0 �1 �1 0 1 0 0 0 0 0 0

(BigGreen – NewEra)40 – (BigGreen – NewEra)60 0 1 �1 0 �1 1 0 0 0 0 0 0

(LittleGem – RedLake)20 – (LittleGem – RedLake)40 0 0 0 0 0 0 1 �1 0 �1 1 0

(LittleGem – RedLake)20 – (LittleGem – RedLake)60 0 0 0 0 0 0 1 0 �1 �1 0 1

(LittleGem – RedLake)40 – (LittleGem – RedLake)60 0 0 0 0 0 0 0 1 �1 0 �1 1
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confidence intervals of the interaction contrast approach

allows the determination of the magnitude and the direc-

tion of the interaction effect as described above which is

not possible with the ANOVA approach.

The second alternative procedure considers the spacing

factor as quantitative. The corresponding general linear

model is given by yijk = ai + cj + bjxijk + eijk, where ai are the

block effects, cj are the intercepts of the four varieties and bj
are the variety-specific slopes in regression on spacing, xijk.

In this sparser model, multiple comparisons (Hothorn

et al. 2008) among the regression slopes bj provide a mean-

ingful interpretation of the variety-by-spacing interaction.

Table 7 shows user-defined contrasts among the four

variety-specific regression slopes that compare the averaged

slope of the bushy and tall growth type, as well as the differ-

ence of slopes within each growth type. The resulting

estimates, multiplicity-adjusted P-values and simultaneous

confidence intervals for the differences of regression slopes

are shown in Table 10. Again, a significant variety-by-

spacing interaction is determined based on the different

average slopes between the two growth types. Additionally,

a marginally significant variety-by-spacing interaction (P =
0.044) is detected for the comparison of the low, bushy

varieties BigGreen and NewEra: the increase in mean yield

when increasing spacing is at least slightly bigger for

BigGreen than for NewEra.

Ethylene blocking example analysed

For a detailed analysis of the two-way ethylene-by-treat-

ment interaction, the user-defined interaction contrasts

derived in Section 3 and displayed in Table 5 are used.

These interaction contrasts compare the differences of the

ethylene effect between the control groups and the MCP-

treated groups, and between all pairs of the MCP-treated

groups. Applying the method presented in Section 3, we

get the multiplicity-adjusted P-values and simultaneous

confidence intervals for the four interaction contrasts of

interest in Table 11. The comparison of the ethylene effect

between the control groups and the MCP-treated groups

results in a significant effect of this interaction term

(P < 0.05). The corresponding confidence interval addi-

tionally provides the information that the ethylene effect is

significantly greater for the control groups (lower bound

greater than zero). Furthermore, the confidence interval

provides some information on the magnitude of the inter-

action effect: the mean decrease in chlorophyll content is at

least 1.11 mg g�1 greater in the control groups than in the

MCP-treated groups. The scientist can now decide whether

the magnitude of this statistically significant interaction

Fig. 3 Simultaneous 95 % confidence inter-

vals for user-defined interaction contrasts as

specified in Table 8. Dots denote the estimates

for the comparison of interest, and vertical

bars the lower and upper limit of the two-

sided confidence intervals.

Table 9 ANOVA table of the bush beans data set that takes the hierarchi-

cal structure between the growth type and the varieties within the

growth type into account

d.f. Sum Sq Mean Sq F value Pr(>F)

Block 3 341.90 113.97 8.78 <0.001

Type 1 105.02 105.02 8.09 0.008

Spacing 2 72.67 36.33 2.8 0.075

Type:Spacing 2 748.17 374.08 28.82 <0.001

Type:Variety 2 1227.54 613.77 47.28 <0.001

Type:Spacing:Variety 4 122.83 30.71 2.37 0.073

Residuals 33 428.35 12.98

Table 10 Results for the bush beans data set analysed with user-

defined contrasts of slopes for the linear regression on spacing. Esti-

mate denotes the estimate for the comparison of interest, the adjusted

P-value, Lower and Upper the lower and upper bound of the two-sided

95 % simultaneous confidence interval

Comparison Estimate P-Value Lower Upper

Bushy – Tall 0.48 <0.001 0.329 0.633

BigGreen – NewEra 0.22 0.044 0.004 0.433

LittleGem – RedLake �0.17 0.159 �0.383 0.046
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term (1.11 mg g�1) is also of biological relevance, for

example, to improve post-harvest cutting quality of Pelar-

gonium zonale. From Table 11, we can further conclude

that the ethylene effect is not significantly different between

the three different MCP-treated groups.

For illustrative purposes, the analysis of the three-way

ethylene-by-treatment-by-cultivar interaction is also pre-

sented here. For this purpose, we formulate the appropriate

contrasts for the factor cultivar in Table 12, which per-

forms all pairwise comparisons between the three cultivars.

The Kronecker product CABC ¼ Cc � CAB results in an

interaction contrast matrix for the analysis of the three-way

interaction. The first four rows in CABC compare the two-

way interaction contrasts defined by CAB (Table 5) between

cultivar 1 and cultivar 2, while rows five to eight compare

the same two-way contrasts between cultivar 1 and cultivar

3 and so on. Within each of these blocks, the first row

compares the differences of the ethylene effect between the

control groups and the MCP-treated groups between two

cultivars. The second row compares this differing ethylene

effect, based on the difference between product 1 and

product 2, between two cultivars, and so on.

Using the method presented in Section 3, we get the

multiplicity-adjusted P-values and simultaneous confi-

dence intervals for the twelve interaction contrasts of inter-

est defined by CABC in Table 13. The comparison of the

differing ethylene effect, which is based on the difference of

the control groups and the MCP-treated groups, between

cultivar 2 and cultivar 3 results in a significant effect of this

interaction term (P < 0.05). From the corresponding

confidence interval, we conclude that the difference of the

ethylene effect between the control groups and the MCP-

treated groups is smaller in cultivar 2 than in cultivar 3

(upper bound smaller than zero). Additionally, the

magnitude of the interaction effect is determined by the

confidence interval: the influence of the MCP products on

the ethylene effect in contrast to the influence of the con-

trol groups on the ethylene effect is at least 1.09 mg g�1

(chlorophyll per fresh weight) smaller in cultivar 2 than in

cultivar 3. Furthermore, it is concluded that the potentially

different influence between the various MCP products on

the ethylene effect is not significantly different between the

three cultivars (see Table 13).

The R Code (R Core Team 2013) for all proposed

approaches to evaluate the example data sets is given in the

Supporting Information.

Discussion

We have presented an approach for the evaluation of a sig-

nificant interaction effect in factorial designs. Although this

study primarily considers the analysis of interactions in two

factorial designs, the method is also applicable to higher

factorial designs. In those cases, the user has to define

appropriate contrast matrices for each factor under consid-

eration and subsequently has to build the Kronecker

product of these matrices.

Table 11 Results for the two-way interaction analysis of the ethylene

blocking data set. Estimate denotes the estimate for the comparison of

interest, the adjusted P-value, Lower and Upper the lower and upper

bound of the two-sided 95 % simultaneous confidence interval

Comparison Estimate P-value Lower Upper

Ethylene (control – Product) 2.52 <0.001 1.11 3.92

Ethylene (Prod1 – Prod2) �0.44 0.948 �2.61 1.74

Ethylene (Prod1 – Prod3) 0.29 0.983 �1.88 2.47

Ethylene (Prod2 – Prod3) 0.73 0.802 �1.45 2.91

Table 12 Contrast matrix that compares all pairwise differences of the

cultivar factor for the second example in Section 2

Comparison Cultivar 1 Cultivar 2 Cultivar 3

Cultivar 1 – Cultivar 2 1 �1 0

Cultivar 1 – Cultivar 3 1 0 �1

Cultivar 2 – Cultivar 3 0 1 �1

Table 13 Results for the three-way interaction analysis of the ethylene

blocking data set. Estimate denotes the estimate for the comparison of

interest, the adjusted P-value, Lower and Upper the lower and upper

bound of the two-sided 95 % simultaneous confidence interval

Comparison Estimate P-value Lower Upper

Ethylene (control – Product)

Cult1-Cult2

1.62 0.861 �2.33 5.57

Ethylene (Prod1 – Prod2)

Cult1-Cult2

�2.78 0.794 �8.91 3.34

Ethylene (Prod1 – Prod3)

Cult1-Cult2

�0.04 1.000 �6.16 6.08

Ethylene (Prod2 – Prod3)

Cult1-Cult2

2.75 0.804 �3.38 8.87

Ethylene (control - Product)

Cult1-Cult3

�3.42 0.130 �7.37 0.53

Ethylene (Prod1 – Prod2)

Cult1-Cult3

�0.66 1.000 �6.78 5.46

Ethylene (Prod1 – Prod3)

Cult1-Cult3

�0.45 1.000 �6.58 5.67

Ethylene (Prod2 – Prod3)

Cult1-Cult3

0.21 1.000 �5.91 6.33

Ethylene (control – Product)

Cult2-Cult3

�5.04 <0.001 �8.99 �1.09

Ethylene (Prod1 – Prod2)

Cult2-Cult3

2.12 0.932 �4.00 8.24

Ethylene (Prod1 – Prod3)

Cult2-Cult3

�0.42 1.000 �6.54 5.71

Ethylene (Prod2 – Prod3)

Cult2-Cult3

�2.54 0.855 �8.65 3.59
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The proposed approach allows the formulation of user-

specified comparisons of means that are of main interest in

the experiment under consideration. In addition to multi-

plicity-adjusted P-values, the authors recommend the

calculation of simultaneous confidence intervals for the

interaction effects. Using these confidence intervals, it is

possible to evaluate the amount of the interaction effects.

Besides a statement on the statistical significance, this also

provides a statement on the biological relevance of the

interaction effects.

The presented procedure is easily applicable using the

add-on package multcomp (Hothorn et al. 2008) within the

statistical software R (R Core Team 2013). In addition, the

authors provide the add-on package statint stored on github

(https://github.com/AKitsche/statint) with commented R

code to reproduce the analysis of the presented examples. To

install directly from github, the package devtools is needed:

install.packages(‘devtools’)

library(devtools)

install_github(username=’AKitsche’, repo=’statint’)

library(statint)

The vignette of this package is also given in the online

Supporting Information.

In this article, we considered the situation of indepen-

dently and normally distributed error terms with a com-

mon variance. If the assumption of homogeneous variances

is not fulfilled, the procedure presented by Hasler and

Hothorn (2008) may be used instead. For cases in which

the data are not considered to be normally distributed, the

ANOVA model can be replaced by a generalized linear model

(Hothorn et al. 2008) or the rank-based multiple test pro-

cedures presented by Konietschke et al. (2012) can be used.
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1 Introduction

In linear models, the effects of a classification variable, e.g., the indicator for
two or several treatments, can be modeled together with that of covariates.
The presence of a significant overall treatment-covariate interaction compli-
cates the interpretation of treatment effects: the significance, magnitude or
even direction of the treatment effects depends on the value of the covariate.
Nevertheless, the primary objective can be the comparison of the treatments.
Often not all possible comparisons but only a special subset of treatment
comparisons are of interest. A simplistic approach is to perform these multiple
treatment comparisons for one fixed value of the covariate, e.g., the overall
mean of the covariate. A more detailed comparison of treatments is provided
by methods that yield confidence bands for differences between the treatment-
specific regression lines. However, the practical application of such methods
is complicated by the fact that they are described as many separate special
cases. The focus of this work is on a flexible and user-friendly alternative that
is computationally available in free software: simultaneous confidence intervals
for multiple contrasts among treatments for a set of pre-specified values of the
covariate.

A multitude of publications consider the construction of simultaneous con-
fidence bands for (multiple) differences of regression lines, and it is difficult to
review all methodological special cases completely. The methods differ in the
number of treatments and the set of contrasts between treatments that can be
handled; they differ in whether restrictions are imposed on the treatment spe-
cific subsets of the design matrix, the number of covariates and the considered
range of the covariate. Most methods have in common that they are based on
the assumptions of the general linear model. The very general and easily ap-
plicable method by Scheffe (1959) can be used to construct exact simultaneous
confidence intervals for all possible contrasts. However, in many applications a
restricted set of contrasts among the treatments and a restricted range of the
covariates is of interest a priori, for example, all pairwise comparisons, com-
parisons to a control, special user-defined contrasts or one-sided comparisons.
Then, the Scheffe method yields unnecessarily conservative confidence bands.
Alternative solutions are provided for all contrasts but a restricted range of
covariates (Spurrier 1999; Lu and Chen 2009; Jamshidian et al. 2010). Confi-
dence bands for all pairwise differences and differences to control among several
treatments have been proposed (Spurrier, 2002; Bhargava and Spurrier, 2004),
however, under restrictive assumptions concerning the equality of the treat-
ment specific design matrices. In a paper addressing various problems (Liu et
al. 2004), a number of numerical approaches is described for all pairwise differ-
ences and differences to control with three or more treatment groups, several
covariates, and, importantly, without severe restrictions on the design matri-
ces. In a recent book (Liu 2010), a number of these approaches is described
again. However, all these previous publications concerning exact simultaneous
confidence bands have two practical problems: the computational methods
are split up in a number of special cases, described in special publications
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or book chapters, and, more severely, putting the computation of the critical
values into practice usually requires the additional programming of the de-
scribed algorithms or relies on non-standard or proprietary software packages
(Jamshidian et al. 2005).

Alternatively, one may define a set of covariate values and construct si-
multaneous confidence intervals (SCI) for multiple comparisons among the
treatments for this set of values. This approach leads to a more detailed in-
terpretation of the treatment effects in case of an interaction, and treatments
can be compared in terms of multiple contrasts which are tailored for the
particular experimental question (Bretz et al. 2001). Standard problems as
all pairwise comparisons and comparisons to control are contained as special
cases. Asymptotically, this approach can be used in generalized linear models
(Hothorn et al. 2008), or, treatment effects may be expressed as ratios instead
of differences, using approaches of Young et al. (1997) and Dilba et al. (2006).
The computational methods to obtain adequate quantiles of multivariate t
and multivariate normal distributions are available in the package mvtnorm

(Genz et al. 2011) in the R software. For the special case of comparing two
treatments, this approach has been applied recently by Bretz et al. (2010,
p.111-114) and, with different computational details by Westfall et al. (2011).

This manuscript recapitulates the methods to construct simultaneous con-
fidence intervals for multiple contrasts among the treatments for a pre-specified
set of covariate values. Approximate extensions to generalized linear models
multiple ratios are described. A simulation study is presented to assess the
validity of the methods for differences and ratios in the general linear model.
Three examples illustrate the application, including all pairwise differences,
comparisons to a control in terms of ratios in a model including an interaction
to the quadratic term, as well as all pairwise comparisons in log logistic model
assuming a binomial response.

2 Material and methods

Consider the general linear model

y = Xθ + e, (1)

where y is an (N×1) vector of observations, X is an (N×P ) design matrix,
θ is a (P×1) parameter vector with index p = 1, ..., P , and e an (N×1) vector
of residuals. The residuals are assumed to be identically Gaussian distributed,
en ∼ N(0, σ2), independently for n = 1, ..., N . Fitting the model yields the

estimate θ̂ and the corresponding (P × P ) covariance matrix Σ̂.

2.1 SCI for linear combination of parameters

Under the assumption of an independent, homogeneous Gaussian error distri-
bution, the estimates θ̂ follow a multivariate normal distribution. The predic-
tions ŷ = Xθ̂, linear combinations thereof, or other linear combinations of the
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model parameters follow a multivariate normal distribution as well. Simultane-
ous confidence intervals for M linear combinations of the P model parameters
can be constructed using quantiles of the multivariate t distribution with de-
gree of freedom N−P , or, asymptotically, using multivariate normal quantiles
(Genz et al. 2001; Hothorn et al. 2008). The general methodology according
to Hothorn et al. (2008) is:

Let C be a (M ×P ) matrix with elements cmp, m = 1, ...,M , which define
M linear combinations of the P model parameters, δ = Cθ. An estimate
for δ is δ̂ = Cθ̂. The (M × M) covariance matrix of δ̂ can be estimated

by V̂ = CΣ̂CT , where T denotes a transposed matrix. Denote the diagonal
elements of V̂ by v̂ = (v̂11, v̂22, ..., v̂MM ). Standardizing the covariance matrix

V̂ by its diagonal elements yields the correlation matrix R̂ with elements rmm′ ,

i.e., rmm′ = v̂mm′ v̂
−1/2
mm v̂

−1/2
m′m′ .

The lower and upper limits, δ̂
(l)
m , δ̂

(u)
m , of simultaneous 95% confidence in-

tervals for the M linear combinations can be constructed by

[
δ̂(l)m , δ̂(u)m

]
=

[
δ̂m ± t0.95,R̂,df=N−P v̂

−1/2
mm

]
,

where δ̂m is the mth element of δ̂ and t0.95,R̂,df=N−P is an appropriate two-
sided 0.95 quantile of the multivariate t distribution as is computable using the

R–package mvtnorm (Genz et al. 2011): P
(
|tm| < t0.95,R̂,df=N−P , ∀m = 1, ...,M

)
=

0.95, where t = (t1, ...tM )
T
is a central M -variate t random vector with degree

of freedom N − P and correlation R̂. When interest is in one-sided intervals,
a quantile t0.95,R̂,df=N−P has to be chosen such that

P
(
tm < t0.95,R̂,df=N−P , ∀m = 1, ...,M

)
= 0.95.

The methods implemented in mvtnorm can deal with complicated struc-
tures of R̂, including the case that R̂ has not full rank. This case is important
for the following applications, where confidence sets are constructed for sub-
stantially more linear combinations than there are elements in the parameter
vector, that is P < M . Note thatM is bounded at 1000 in this implementation.
For the computational details, see Genz and Bretz (2009). An implementation
of the complete method relying on a fitted model object and a corresponding
contrast matrix C, is available in the R–package multcomp (Hothorn et al.
2008).

These intervals are simultaneous 95% confidence intervals, i.e., the proba-
bility that at least one of the M true parameters δ is not included, is smaller

than 5%, P (δ̂
(l)
m ≤ δm ≤ δ̂

(u)
m , ∀m = 1, ...,M) = 0.95. Corresponding hy-

potheses tests for a hypothetical parameter δm0, H0 : ∩M
m=1δm = δm0 vs.

H1 : ∪M
m=1δm 6= δm0 can be rejected if at least one of the hypothesized param-

eters is excluded by the corresponding lower or upper bounds, δ̂
(l)
m > δm0 or

δm0 > δ̂
(u)
m for at least onem. For such tests, the familywise error rate (FWER)

is controlled in the strong sense (Hothorn et al., 2008), that is, the probability
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Multiple treatment comparisons in analysis of covariance with interaction 5

of erroneously excluding at least one of the true hypothesized parameters is
= 0.05, irrespective of which of the remaining δm0 are true.

2.2 Differences on the link scale of generalized linear models

Asymptotically, the above methodology can be applied to the scale of the
linear predictor in generalized linear models. Consider the systematic part of
a generalized linear model,

g(µ) = η = Xθ, (2)

where θ is parameterized as above, and g() is the link function. Relying on

the asymptotic normality of θ̂ (McCulloch and Searle 2001; Hothorn et al.
2008), the methods described in Section 2.1 can be applied as well with the
exception that a quantile zM,0.95,R̂ will be taken from the multivariate normal

distribution with dimension M , correlation matrix R̂. The resulting intervals
are constructed for differences on the scale of the linear predictor, η.

2.3 Multiple ratios in the general linear model

In the general linear model in equation (1), treatment effects may be expressed
in terms of ratios instead of differences (Zerbe 1978; Young et al. 1997; Djira
2010). Their methods are briefly reviewed in the following: The parameters of
interest are M ratios γm = (cmθ) / (dmθ), m = 1, ...,M . The known coeffi-
cients in the vectors cm = (cm1, ..., cmP ) and dm = (dm1, ..., dmP ) define which
linear combinations of θ are to be compared in the mth ratio. They are sum-
marized in the two (M × P ) matrices C and D, with elements cmp and dmp,
respectively. To construct simultaneous confidence intervals for γ1, ..., γM , con-
sider Wm = (cm − γmdm) θ̂. The joint distribution of Wm is M -variate normal
with covariance matrix U, with elements umm′ given in equation (3):

umm′ = Cov (Wm,Wm′) = (cm − γmdm)Σ (cm′ − γm′dm′)
T
. (3)

U depends on the unknown ratios, an estimate, Û, can be obtained by
evaluating equation (3) at the estimates γ̂m = cmθ̂/dmθ̂ and Σ̂ (Dilba et al.,

2006; Djira, 2010). The corresponding correlation matrix R̂ can be obtained by

standardizing Û by its diagonal elements. That is, the elements ρ̂mm′ of R̂ are

then: ρ̂mm′ = ûmm′ û
−1/2
mm û

−1/2
m′m′ . Approximate simultaneous 95% Fieller-type

confidence intervals can be obtained by solving the corresponding inequalities

[
(cm − γmdm) θ̂

]2

(cm − γmdm) Σ̂ (cm − γmdm)
T

≤ t2
0.95,M,df=N−P,R̂

(4)
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6 Frank Schaarschmidt

for γm (Djira, 2010). Note, that the resulting intervals may be unbounded, that
is, there might be no solution, or solutions that are not easily interpretable.
The method is approximate because the critical value for inverting the test in
equation (4), t2

0.95,M,df=N−P,R̂
depends on the unknown parameters of inter-

est via the plug-in of the estimates γ̂m to obtain the correlation matrix, R̂.
These methods are implemented in the function gsci.ratio in the R–package
mratios (Djira et al. 2011).

2.4 Simultaneous confidence bands over a grid of covariate values: multiple
differences between treatments

The above methods can be applied to compare multiple treatments over a
grid of covariate values. What remains is to formulate C for a given model
parameter θ such that δ defines the comparison of model predictions between
treatments for a number of different values of the covariate x. This involves to
consider how treatment and treatment-covariate interaction are parameterized
in θ, the definition of a set of covariate values, and the definition of the type
of treatment comparisons of interest. As a simple introduction, denote the
index of I treatments with i = 1, ..., I, and denote j = 1, .., Ji as the index
of replications of treatment i, such that an experimental unit is identified by
ij. The observed values of the covariate and dependent variable in unit ij
are denoted xij and yij , respectively, and the model (Equation 5) involves
treatment specific intercepts αi and slopes βi,

yij = αi + βixij + eij , eij ∼ N(0, σ2), (5)

where the parameter vector first contains the I intercepts followed by the I
slopes, θ = (α1, ..., αI , β1, ..., βI)

T
. Denote by Q the number of positions of x

for which the treatment specific regression lines should be compared, and the
actual values by x̃ = (x̃1, ..., x̃Q), with index q = 1, ..., Q. Lastly, let A define a
(K×I) matrix where the rows k = 1, ...,K define theK comparisons of interest
between the I treatments. If the parameters in δ should be interpretable as
differences of (weighted arithmetic means) of the treatment specific regression
lines for the covariate positions x̃, the coefficients aki should be defined under
the constraints

∑I
i=1 aki = 0 and

∑
i:aki>0 aki = 1 for each row k = 1, ...,K.

The M = QK comparisons of interest can then shortly be written as

C =
(
1Q x̃

)
⊗A, (6)

where ⊗ denotes the Kronecker product and 1Q denotes a column vector of 1s
of length Q. As an illustration, consider a case with Q = 4 covariate values of
interest, x̃ = (5, 10, 15, 20)

T
and the K = 2 comparisons to the control group

(i = 1) when there are I = 3 treatment groups:
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C =




1 5
1 10
1 15
1 20


⊗

(
-1 1 0
-1 0 1

)
=




-1 1 0 -5 5 0
-1 0 1 -5 0 5
...
...
...

...
...

...
-1 1 0 -20 20 0
-1 0 1 -20 0 20




. (7)

2.5 Multiple ratios and odds ratios in generalized linear models

In the important case of dichotomous observations, modeled in a generalized
linear model with the binomial distribution (or related assumptions) and the
canonical logit link, the resulting confidence bounds can be transformed by
the exp function and can then be interpreted as intervals for odds ratios be-
tween the predicted treatment specific odds at x̃1, ..., x̃Q. Similarly, for count
data modeled with the Poisson distribution or related assumptions and the
canonical log link, the exp transformation of the confidence bounds leads to
confidence bounds for ratios of means between the treatments at x̃1, ..., x̃Q.

2.6 Multiple ratios of model predictions in the general linear model

The matrices of coefficients for the numerator and denominator, C and D can
be defined in a similar way as described for the difference in Section 2.4. For the
model in equation (5) with the parameterization θ = (α1, ..., αI , β1, ..., βI)

T
,

the K ratios among the I treatments can be defined in two (K × I) matrices
A and B, for the numerator and the denominator, respectively. The M = QK
ratios of interest for Q positions of x can then shortly be written as

C =
(
1Q x̃

)
⊗A, and D =

(
1Q x̃

)
⊗B. (8)

An illustration for a slightly more complicated model is given in Example 4.2.

2.7 Simulation study

Clearly, the above methods will ensure a simultaneous coverage probability
only for the pre-specified values (x̃1, ..., x̃Q) (Figure 1 left panel). For interpola-
tions between adjacent confidence limits of adjacent discrete values (x̃1, ..., x̃Q)
and subsequent interpretations for any possible value of x in the given range,
a simultaneous coverage probability of the nominal level 0.95 is not generally
ensured. Also, in practice, the number and position of the covariate values
may not be clear a priori, raising the question, which and how many values
x̃1, ..., x̃Q to consider. In many practical cases, this problem is no severe re-
striction, because the number of values Q can be chosen so large, that adding
more values within a given range of x does not lead to further increase of the
quantile of the multivariate distribution and hence has no effect on the width
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Fig. 1 Point wise interpretation at Q = 6 grid points, linear interpolation between adjacent
confidence limits in the covariate range [0; 10] and construction of a confidence band over
that fixed range, by using the approximate quantile for only six points. Black lines and
symbols show the true difference between two predicted lines, gray shows model estimates
and corresponding confidence limits

of the confidence limits. For simplicity, consider equidistant values (x̃1, ..., x̃Q)
bounded in a pre-specified range: Increasing the number Q adds estimators
for parameters which are highly correlated to estimators already in the set.
Adding such values to the set does not change the magnitude of the quan-
tile anymore and the interpretation at many discrete values is very close to
an interpretation for any possible value of x in a given range. However, if
the number of contrasts between treatments, K, is large, such an approach
is limited by the computational limitation KQ = M < 1000 in the package
mvtnorm.

It is therefore tempting to perform the computations for a limited num-
ber of covariate values, Q, and then construct simultaneous confidence bands
for the whole line in a pre-specified range of a covariate: First, adjacent con-
fidence limits for a given between-treatment comparisons may be joined by
lines (Figure 1, middle), this will be referred to as linear interpolation. Sec-
ond, one may use the quantile of the multivariate t or normal distribution
that has been computed for a limited number (Q) of covariate values that
span the pre-specified covariate range of interest. This ’approximated’ quan-
tile can be used for computing a smooth confidence band over the range of
interest (Figure 1, right) this will be referred to as quantile approximation.
If the true functions of interest are linear (e.g. differences between treatment
specific regression lines in model Equation (5) or example 4.1), it is clear from
Figure 1, that the linear interpolation will be a simultaneous confidence band
which has slightly too much content and might be slightly conservative, if too
few covariate values are used. If one uses the quantile approximation to con-
struct a confidence band over the pre-specified range of the covariate, using
too few covariate values when computing the quantile will yield a liberal confi-
dence band. However, for many grid points, Q, that the simultaneous coverage
probability of both approaches should be close to the nominal simultaneous
confidence, as suggested for discrete confidence bands for the difference of two
treatments (Bretz et al., 2010).
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Multiple treatment comparisons in analysis of covariance with interaction 9

A simulation study has been performed to illustrate that with increas-
ing Q, practically valid simultaneous confidence bands can be constructed:
The model in Equation (5), has been used to simulate data with xij sampled
from the uniform distribution, with number of treatment groups I = 3 or 6,
sample sizes of ni = 5, 10, 20 or 100 per treatment group, and parameter con-
figurations involving intercepts and slopes equal, either slopes or intercepts
differing between treatments or both intercepts and slope differing between
treatments. For each simulated data sets, the methods described above haven
been applied for comparisons to control (referred to as Dunnett), all pairwise
comparisons (referred to as Tukey) and comparisons of each treatment to the
average of treatments (referred to as GrandMean), combined with a set of
Q = 3, 6, 10, or 20 equidistant grid points spanning the pre-specified covari-
ate range. For each combination of parameter setting and each method, 5 000
data sets have been simulated such that the estimated simultaneous coverage
probability for an exact 0.95 simultaneous confidence set can be expected to
fall within [0.944; 0.956] with a probability 0.95.

More complications arise if the treatment difference of interest is not a
linear function depending on the covariate, for example, when the model in-
volves a treatment-interaction with a quadratic term, as in Example 4.2. In
this situation, the point wise interpretation of between treatment differences
is still exact, whereas it is obviously unwise to use the linear interpolation
with only few covariate values. In this case, the quantile approximation can be
supposed to be the better choice to approximate confidence bands. Yet more
complications arise when using the ratio approach described in section 2.3:
Even for the point wise interpretation, the small sample performance is not
clear because the method involves the plug-in of an estimated correlation ma-
trix that depends on the estimated ratios of interest. For this reason, the ratio
approach has been simulated for model (5) and the parameter and sample size
settings described above. Moreover, a model involving treatment-specific in-
tercepts, slopes, and quadratic terms, yij = αi+β1ixij +β2ix

2
ij + eij has been

simulated for the sample size settings described above. The parameter settings
involved cases without any treatment effect, as well as treatment interactions
w.r.t to the linear and/or the quadratic term. For Q = 3, 6, 10, and 20, ratios
(middle row of Figure 3) and differences (lower row of Figure 3) between model
predictions over a covariate grid have been considered. The full details of the
simulation settings are provided as supplementary material, part A, which is
also available from the GitHub repository.

2.8 Software

The methods can be applied in R (R Core Team, 2014) with a few lines of code
using basic functionality of R and the add-on packages mvtnorm (Genz et al.
2011), multcomp (Hothorn et al. 2008) and mratios (Djira et al. 2011). The
code for applying the above methods will involve the model fit, the definition
of the treatment contrasts of interest and the grid of covariate values, their
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10 Frank Schaarschmidt

combination by the Kronecker product, and the computation of simultane-
ous confidence intervals. For the figures, the R package ggplot2 (Wickham
2009) has been used. The R code for the examples shown below is provided as
supplementary material part B.

For even simpler application, the R package statintcov is provided on
the GitHub repository: The special case of a linear model with one treatment
factor and interaction to one covariate (Equation 5) is covered in the functions
scitreatcov, sciratiotreatcov, for differences and ratios, respectively. For
slightly more general cases, involving generalized linear models, more than
one covariate or interactions with quadratic terms as exemplified in Section
4.2, the functions cmiacov and cmratioiacov can be used to supply linear
combinations of the parameters of a fitted model that are suitable for further
use in the function glht of package multcomp or in function gsci.ratio of
package mratios. The R code for the analysis of the examples using this
package is provided as supplementary material part C.

3 Results

For the simple model involving only treatment specific intercepts and slopes
and inference in terms of differences, simulated simultaneous coverage prob-
abilities are shown in Figure 2: the linear interpolation provides confidence
bands with adequate coverage probabilities already for small numbers of co-
variate values, such as Q = 3 or 6, irrespective of the type of treatment con-
trast, the number of treatment groups or the sample size settings. When using
the multivariate t quantile computed for only Q = 3 or 6 equidistant values
in the covariate range, constructed confidence bands (’quantile approxima-
tion’) based on that quantile have too low simultaneous coverage probability.
However, the simulation settings used here suggest that already multivariate t
quantiles computed for Q = 10 or 20 covariate values, lead to confidence bands
with actual simultaneous coverage probability very close to the nominal.

The comparison of treatment-specific regression lines in terms of ratios
(Figure 3, upper row) shows that, the point wise interpretation for a given
set of covariate values yields correct simultaneous coverage probability unless
being an approximative approach. The attempt to construct confidence bands
using only Q = 3 or 6 covariate values with either of the two approaches may
yield liberal confidence bands, whereas Q = 20 covariate values lead to correct
confidence bands in all cases considered here. Note, that for small sample
sizes and some simulation settings, up to 13% of the simulated data sets yield
unbounded confidence sets and thus the methods appears conservative due to
the fact that it yields uninformative confidence bands.

In the quadratic model (with three parameters estimated for each treat-
ment group), the point wise interpretation of differences between treatment-
specific model predictions has observed simultaneous coverage close to the
nominal level for all settings considered (Figure 3, lower row, left panel). For
either approach to construct confidence bands using only Q = 3, 6 or 10 lead
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Fig. 2 Simulated simultaneous coverage probabilities (5000 data sets per parameter set-
ting) for the given set of discrete covariate values, confidence bands constructed by linear
interpolation, or quantile approximation using a multivariate-t-quantile for approximation
using Q = 3, 6, 10, 20 equidistant covariate values. Dotted lines show the range in which 95%
of the simulation results can be expected for an exact 95% method
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Fig. 4 Observed post-weight and pre-weight, predicted post-weight and confidence intervals
for predicted post-weight in three treatments of anorexia and pre-weight six values in the
range [70; 95]

to severely, or at least slightly too low coverage probabilities. When using
the approximate Fieller-type intervals for ratios to compare treatment-specific
predictions in the quadratic model with sample sizes as low as 5 or 10 per
treatment group, the coverage probabilities appear systematically too high.
This is due to the fact that for up to 50% of simulated data sets there was no
finite solution for Equation (4).

4 Examples

4.1 All pairwise comparisons with baseline as a covariate

The first data set contains weights (in lbs) of young girls before (’preweight’)
and after (’postweight’) treatment for anorexia (Hand et al., 1994). The first
treatment group of 26 girls is the untreated control, the second and third
treatment group received a cognitive behavioral treatment (CBT) and fam-
ily therapy (FT), consisting of 29 and 17 girls, respectively. Analyzing the
post-weight in dependency of the treatments, including pre-weight as a possi-
bly interacting covariate, leads to significant main effects for pre-weight and
treatment (p=0.0011 and p=0.0004, respectively), as well as to a significant
interaction between pre-weight and treatment (p=0.0067) in ANOVA.

Because at least the magnitude of treatment effects depends on the pre-
weight value, one may now ask, for which values of pre-weight the treatments
differ significantly in post-weight, and if so, by what magnitude. Therefore,
the model with is fitted, parametrized as in equation (5), and all pairwise
comparisons are specified in the (3× 3) matrix A in equation (9), and Q = 6
equidistant pre-weight values are chosen to cover [70; 95]. The simultaneous
95% confidence intervals for the resulting M = 18 are shown in Figure 5.
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Fig. 5 Simultaneous 95% confidence intervals for all pairwise comparisons between the
three anorexia treatment groups at six equidistant values of pre-weight

C =




-1 1 0 -70 70 0
-1 0 1 -70 0 70
...

...
...

...
...

...
-1 0 1 -95 0 95
0 -1 1 0 -95 95




=




1 70
1 75
...

...
1 95


⊗




-1 1 0
-1 0 1
0 -1 1


 . (9)

As can be presumed from Figure 4, the significant interaction between
pre-weight and treatment is due to the significant difference in post-weight
between the CBT and control as well as FT and control, when pre-weights are
85, 90 and 95 lbs. For none of the six pre-weight values, there is significant
difference in expected post-weights between the two treatment groups CBT
and FT.

The above intervals are constructed only for interpretations at the cho-
sen Q = 6 discrete values of the covariate, x̃ = (70, 75, 80, 85, 90, 95). Figure 6
illustrates the effect of increasing the number of covariate values on the correla-
tion structure (6a), and consequently on the multivariate t-quantiles (6b): The
above all pairwise comparison problem is considered for Q = 3, 6, 12, 24, 50, 100
equidistant points in [70; 95], resulting in total numbers of parameters of
M = 9, 18, 36, 72, 150, 300. As a reference point for the critical value, the case
Q = 1, for all pairwise comparisons at the overall mean of the covariate,
x̃ = x̄ = 82.4 is added.

With Q = 3, the correlations between linear combinations with adjacent
covariate values for the same treatment contrast, are below 0.5. For Q = 6,
such linear combinations have already correlations greater than 0.95, when the
covariate values are close to the limits of [70; 95], but correlations of 0.5–0.9
for covariate values in the center of the covariate range. Doubling Q from 12
to 24 yields correlations that are always higher than 0.95 for directly adjacent
values of x within the same contrast. Figure 6b) shows the quantiles of the
multivariate t distribution with df = 72 − 6 in dependence of Q, and M . For
Q = 24, 50 and 100 the quantiles approach 2.88, where the slight changes in
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Fig. 6 Correlation matrices (a) and corresponding multivariate t quantiles (b) for an in-
creasing number Q of equidistant values x̃ in the range [70; 95]. The rows and columns of
the correlation matrices are ordered primarily by the between-treatment-comparisons, and
within each between-treatment-comparison by increasing values of x̃. The entries of the
correlation matrices are represented by a gray scale

the values are mainly due to the Monte Carlo error in the computation of the
quantiles. For Q = 6 the critical value (2.84) is still slightly smaller.

4.2 Treatment interaction with a quadratic regression term

In an experiment discussed by Milliken and Johnson (2002), the yield yij of a
process in dependency of the amount of a substance, xij , was investigated. The
effect of two additives (S1, S2) on that yield is compared to a control group
without any additive. Among the I = 3 treatment groups, i = 1 denotes
the control group. (Milliken and Johnson, 2002) assume treatment specific
intercepts αi, an overall linear increase β1 depending on the substance xij ,
as well as treatment specific parameters β2i for the quadratic terms x2

ij in a
general linear model:

yij = αi + β1xij + β2ix
2
ij + eij . (10)

The predicted values for the yield y according to the fitted model, as well as
the corresponding simultaneous 95% confidence intervals for Q = 11 values
x̃ = (0, 1, 2, ..., 10)

T
as are shown in Figure 7 along with the observations.

The parameter vector is ordered θ = (α1, α2, α3, β1, β21, β22, β23)
T , similar

as in equation (1). Interest is in estimating the gain in expected yield when
using one of the two additives compared to running the process without any of
the additives (K = 2 comparisons to control). Because the yields in the control
group are clearly positive (except when substance x is close to 0) one could
express the effect of the additives in terms of ratios. That is, expressing the
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Fig. 7 Observed yield and substance x, predicted yields and confidence intervals for the
predicted yield for the process data set (example 4.2)

increase in yield when using additive S1 or S2 as fold–change relative to the
yield in the control treatment. Relying on Section 4.3, the matrix C defines
the expected yield of additive S1 and S2 for x̃, and D defines the yields in the
control group for Q = 9 values of substance x, x̃ = (1, 2, ..., 9).

A =

(
0 1 0
0 0 1

)
,B =

(
1 0 0
1 0 0

)
, (11)

C =




0 1 0 1 0 1 0
0 0 1 1 0 0 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.

0 1 0 9 0 81 0
0 0 1 9 0 0 81


 =

(
1Q×1 ⊗A, x̃⊗ 12×1, x̃2 ⊗A

)
, (12)

D =




1 0 0 1 1 0 0
1 0 0 1 1 0 0
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

1 0 0 9 81 0 0
1 0 0 9 81 0 0


 =

(
1Q×1 ⊗B, x̃⊗ 12×1, x̃2 ⊗B

)
. (13)

Figure 8 shows that with low concentrations of substance x, the yield is
significantly increased with both additives, 1 and 2. For larger concentrations
of substance x, the effect of the additives decreases and is not significantly
different (at a 5% familywise error rate) for x = 8, 9 with additive 1 and x = 9
with additive 2. With approximately 95% confidence it can be stated that the
mean yield with x = 1, 2, 3 using additive S1 is more than 1.96, 1.56, 1.39 times
the mean yield in the control. For additive S2 and x = 1, 2, 3, the mean yield
is at least 2.96, 2.21, 1.89 times that of the control. Increasing the number of
points in x̃ from Q = 10 (t0.95,M=20,df=N−P=29,R̂ = 2.8125) has only small
effects on the resulting quantile: for Q = 20, 40, 80 equidistant values in the
range [1; 9], the corresponding quantiles are 2.8157, 2.8192, 2.8181, respectively.
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Fig. 8 Simultaneous 95% confidence intervals for the ratios of expected yields between
additive S1 and the control as well as additive S2 and the control

4.3 All pairwise comparisons in a binomial generalized linear model

An experiment investigating the mortality of flies exposed to different concen-
trations of four different compounds containing Selenium is reported in Jeske
et al. (2009). In the original publication, the data are analyzed by a generalized
linear model assuming the binomial distribution, a probit link with a correc-
tion for baseline mortality, and compound specific intercepts and slopes in
dependence on the log–concentrations. The data with non-zero concentrations
are analyzed here with a simple logit link instead,

yij ∼ Bin(nij , πij),
log [πij/ (1− πij)] = ηij ,

ηij = αi + βixij ,
(14)

where yij denotes the observed number of dead flies out of nij flies un-
der observation in the ith compound and dose level j, j = 1, ..., Ji. The
corresponding unknown mortality is denoted πij , the linear predictor ηij is
modeled with αi and βi being the compound specific intercepts and slopes
on the logit scale, where xij are the log10 of the concentrations. Fitting this
model and ordering the parameter vector as in Section 2.2, allows to construct
asymptotic 95% confidence intervals for the predicted odds at log10-dose levels

x̃ = (0.7, 0.9, 1.1, ..., 2.9)
T
, i.e., Q = 12. For this purpose, a (48 × 8) matrix

C can be constructed by (1Q, x̃) ⊗ A, where A is a (4 × 4) identity matrix.
The confidence intervals for Cθ are on the scale of the linear predictor and ap-
plying the inverse link exp(η)/[1 + exp(η)] on the resulting confidence bounds
yields confidence bounds for the predicted mortalities shown in Figure 9. All
pairwise comparisons among the four compounds can be performed using the
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Fig. 9 Observed mortality for the four compounds and asymptotic simultaneous 95% con-
fidence intervals for the predicted mortality based on the fitted model corresponding to
equation (14)

matrix C as defined in equation (15),

C =




1 0.7
1 0.9
1 1.1
...

...
1 2.9




⊗




-1 1 0 0
-1 0 1 0
-1 0 0 1
0 -1 1 0
0 -1 0 1
0 0 -1 1




. (15)

Asymptotic confidence limits for ratios among the I compounds with re-
spect to the odds of the probability to die relative to the probability to survive,

π|i,x̃q

(1−π|i,x̃q)

π|i′,x̃q

(1−π|i′,x̃q)

, for q = 1, ..., Q, and all pairs {i, i′} : i 6= i′, (16)

can be constructed by applying the exp function to the confidence limits for the
differences on the scale of the linear predictor defined by Cθ. These intervals
are shown in Figure 10.

Figure 9 reveals a number of problems concerning pairwise comparisons
among the compounds: the range of concentrations differs among the four
compounds, in particular between Selenite and Selenate on the one side and
Selenocysteine on the other side, with ranges only overlapping in concentra-
tion 100. If one believes in model (14), Figure 10 may lead to the following
conclusions: Selenite leads to odds(die/survive) that are roughly 80% that of
Selenate for the considered high concentrations (x̃ > 300). Selenomethionine
leads to increased odds (die/survive) compared to both Selenite and Selenate,
for the considered high concentration values (x̃ > 100). Most striking is the 5-
to 10-fold increase of this odd in Selenomethionine relative to that in Selenite
for the considered high concentrations (x̃ > 300). Selenocysteine shows an
about 2-fold increased odds (die/survive) compared to Selenite for the consid-
ered high concentrations (x̃ > 300) and also compared to Selenomethionine
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Fig. 10 Asymptotic simultaneous 95% confidence intervals for all pairwise oddsratios
among the four Selenium compounds for Q = 12 concentration values

but then for the low concentration values (x̃ < 10). The two-sided 95% multi-
variate normal quantiles corresponding to Q = 6, 12, 24, 48 and 96 equidistant
points in {0.7, 2.9} for the given data are 2.9389, 2.9839, 2.9977, 2.9987 and
2.9975. That is, the intervals on the logit scale would increase in width by
about 0.5% if 96 instead of the given 12 values in x̃ would be considered.

5 Discussion

This paper shows how a detailed interpretation of treatment-covariate inter-
actions is possible with standard methods based on simultaneous confidence
intervals for user-defined multiple contrast tests in freely available software.
Different types of multiple comparisons among several treatments can be in-
terpreted for a pre-specified set of covariate values. The case studies illustrate
how to set the methods into practice for a variety of models and experimental
questions.

In a strict sense, the simultaneous interpretation is valid only for the pre-
specified set of covariate values which have been used for computing the quan-
tile, and not as simultaneous confidence bands, i.e., for any covariate value
over the pre-specified range of the covariate. Previously, it has been argued
(Bretz et al. 2010; Westfall et al. 2011) that for a sufficiently large set of points
that spans a pre-specified range of the covariate, the approach approximates
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the corresponding confidence bands. The informal assessment of the correla-
tion structure and the results of simulation studies presented in this paper
suggest that already a grid of 20 equidistant points in a given covariate range
can be used to construct confidence bands with simultaneous coverage proba-
bilities very close to the nominal level. However, the simulation settings used
here are restricted to the general linear model and a well-behaved sampling
scheme with the covariate values sampled from the uniform distribution. If
model complexity increases, covariates have a skewed distribution or include
extreme observations, or the covariate range differs between treatments, the
recommendations for the number of covariate values may need further assess-
ment. Also, for the application to generalized linear models an assessment of
the small sample performance is needed.
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Summary

Simultaneous confidence intervals for contrasts of means in a one-way layout with several independent
samples are well established for Gaussian distributed data. Procedures addressing different hypotheses
are available, such as all pairwise comparisons or comparisons to control, comparison with average, or
different tests for order-restricted alternatives. However, if the distribution of the response is not Gaus-
sian, corresponding methods are usually not available or not implemented in software. For the case of
comparisons among several binomial proportions, we extended recently proposed confidence interval
methods for the difference of two proportions or single contrasts to multiple contrasts by using quan-
tiles of the multivariate normal distribution, taking the correlation into account. The small sample per-
formance of the proposed methods was investigated in simulation studies. The simple adjustment of
adding 2 pseudo-observations to each sample estimate leads to reasonable coverage probabilities. The
methods are illustrated by the evaluation of real data examples of a clinical trial and a toxicological
study. The proposed methods and examples are available in the R package MCPAN.

Key words: Multiple inference; Multivariate normal; Simple adjustment; Small sample.

1 Introduction

Multiple comparison procedures are well established for Gaussian distributed data. In this situation,
solutions for a variety of settings are available, e.g., all pairwise comparisons according to Tukey
(1953), comparisons to a control group according to Dunnett (1955), and various approaches to test
for order-restricted alternatives using multiple contrast tests as described in Bretz (1999, 2006). More-
over, in many practical situations, research questions might be so special that none of these methods
appropriately covers the hypotheses of interest. In these cases the estimation of only those particular
comparisons which are of interest is more appropriate.

However, for binomial data, only special cases out of this variety of settings are described in the
literature. Holford, Walter and Dunnett (1989) describe the construction of large sample simultaneous
confidence intervals for comparisons to control for odds-ratios. Piegorsch (1991) describes all pairwise
comparisons and comparisons to control for the difference of proportions. In his work, a large sample
approximation as well as a method for moderate sample sizes is described and characterized for a num-
ber of settings. Bretz and Hothorn (2002) consider trend tests for ordered binomial proportions based on
multiple contrast tests with special respect to power calculation, using a large sample approximation.

Often, interest is not in testing the null-hypothesis of zero difference, but in assessing non-inferior-
ity or testing for relevant superiority, or merely in the quantification of an observed treatment effect.

* Corresponding author: e-mail: schaarschmidt@biostat.uni-hannover.de, Phone: +49 511 762 5821, Fax: +49 511 762 4966
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For this reason, this paper will focus on confidence intervals, serving as a tool for inference in all
these situations.

Additionally, sample size is limited in many practical situations; thus, applicability of large sample
approximations for binomial proportions is questionable. Exact methods would be the appropriate
alternative. However, exact methods are available only for simple cases, as the construction of confi-
dence intervals for a single proportion or the difference of two proportions. These methods are still
under controversial discussion because of their conservative performance (Agresti and Coull, 1998;
Agresti and Min, 2001), and because of computational problems (R�hmel, 2005).

In contrast, a number of approximate methods for confidence intervals of binomials has been pro-
posed, aiming to have coverage probability close to the nominal level and to be computationally
feasible. For the difference of two proportions, Newcombe (1998) provides a comparative simulation
study including a newly proposed method. Agresti and Caffo (2000) propose a simple and well per-
forming method by adding one pseudo observation to each cell of the 2� 2 table. The use of such
simple adjustments is motivated by Agresti and Coull (1998), who simplify, for educational purposes,
the confidence interval proposed by Wilson (1927) for a single binomial proportion by adding two
pseudo successes and two pseudo failures. The good coverage probabilities of these methods for small
and unbalanced sample sizes is shown by Agresti and Coull (1998) and Agresti and Caffo (2000).
Brown and Li (2005) compare more recent proposals in a simulation study, recommending Agresti
and Caffos approach among two other methods. Finally, Price and Bonett (2004) extend Agresti and
Caffos method for estimation of a single linear combination of more than two proportions. They
compare two versions of adjustment and provide simulation results for selected settings, but do not
provide methods for multiplicity adjustment.

This paper describes the construction of approximate simultaneous confidence intervals for multiple
contrasts of binomial proportions. The results of a simulation study for change point contrasts are
summarized. Linked to the paper is the add-on package MCPAN for use in the R statistical computing
environment (R Development Core Team, 2007).

2 Examples

Eisenberg et al. (2004) investigate the efficacy of Palonosetron application to reduce emesis during
chemotherapy. The study comprised five dose groups, 0.3–1.0 mg/kg, 3 mg/kg, 10 mg/kg, 30 mg/kg,
90 mg/kg with moderate sample sizes between 24 and 46. The number of patients with complete
response, defined as absence of emesis in the study period, is shown in Table 1.

Eisenberg et al. (2004) treated the lowest dose group as a control, and presented confidence inter-
vals for the difference to this group. However, establishing the presence of a dose-response relation-
ship could be of primary interest. The dose levels are unequally spaced and cover a wide range. The
shape of this dose-response relationship for the chosen dose levels is not clear a priori. Hence, it
could be suboptimal in terms of power to use methods which are power optimal only in the presence
of linear trends, as is the Cochran-Armitage test (Bretz and Hothorn, 2002). Multiple contrasts for
order-restricted alternatives according to Bretz and Hothorn (2002) are a powerful option for different
shapes of dose-response relationships. When, additionally to a test decision, effect size should be
estimated, simultaneous confidence intervals are needed. The approach of Hirotsu and Marumo (2002)

Biometrical Journal 50 (2008) 5 783

Table 1 Rate and proportion of patients with complete response.

0.3–1.0 mg/kg 3 mg/kg 10 mg/kg 30 mg/kg 90 mg/kg

Sample size 29 24 25 24 46
Patients with complete response 7 11 10 12 21
Estimated proportion 0.24 0.46 0.40 0.50 0.46

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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to apply change point contrasts for the detection of dose-response relationship is shortly described in
Section 3; its application to the data in Table 1 is shown in Section 5.

Cohen et al. (1991) present data of a two-factorial trial, investigating the effect of fiber and fat
content in the diet of rats on the development of chemically induced tumors. Table 2 shows the
number of rats with tumors in the four treatment groups.

Price and Bonett (2004) estimate confidence intervals for the main effects of fiber and fat, and their
interaction separately by three linear combinations of the proportions. However, one could be inter-
ested in estimating the three linear combinations simultaneously to preserve the family wise error rate
at the 5% level for the complete analysis.

3 Simultaneous Confidence Intervals for Multiple Contrasts

We consider a completely randomized one-way layout with I groups, i ¼ 1; � � � ; I, where ni denotes
the number of Bernoulli trials in the i-th group, and Yi is the number of successes among the ni trials.
The counts Yi are assumed to be independent binomial random variables Yi � Bin ðni;piÞ, with point
estimators pi ¼ Yi=ni. The parameters of interest are M linear combinations of the unknown propor-
tions of success pi:

Lm ¼
PI
i¼1

cimpi ;

m ¼ 1; . . . ;M, where the coefficients cim are known constants, chosen by the user. We call a vector of
coefficients Cm ¼ ðc1m; � � � ; cImÞ a contrast if the constraint

PI
i¼1 cim ¼ 0 is fulfilled. Moreover, we

will usually define Cm such that
P

i:ci>0 ci ¼
P

i:ci<0 jcij ¼ 1. Then, we can interpret Lm as difference
of weighted averages of the pi. The point estimator for Lm is L̂Lm ¼

PI
i¼1 cimpi and two-sided ð1� aÞ-

Wald-type intervals for the contrasts can be estimated using Eq. (1):

½L̂Ll
m; L̂L

u
m� ¼

PI
i¼1

cimpi � z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPI
i¼1

c2
imV̂VðpiÞ

s" #
ð1Þ

with V̂VðpiÞ ¼ pið1� piÞ=ni, and z is an appropriate critical value. For the univariate problem of estimat-
ing a single contrast (M ¼ 1), Price and Bonett (2004) use z ¼ z1�a=2, based on normal approximation.

Wald intervals for a single linear contrast of binomial proportions are known to keep the ð1� aÞ
coverage only for large sample sizes, see, e.g. Price and Bonett (2004). However, limited sample sizes
as small as ni ¼ 20 are frequently observed in practice. A simple adjustment can be performed by
replacing ~ppi ¼ ðYi þ 1Þ=ðni þ 2Þ for pi and ~VVðpiÞ ¼ ~ppið1� ~ppiÞ=ðni þ 2Þ for V̂VðpiÞ in Eq. (1). For a
two-sample comparison, this interval is the one proposed by Agresti and Caffo (2000), and will be
denoted Add-2 in the following. A less conservative adjustment is achieved by
~ppi ¼ ðYi þ 0:5Þ=ðni þ 1Þ and ~VVðpiÞ ¼ ~ppið1� ~ppiÞ=ðni þ 1Þ, in the following denoted as Add-1.

The proposed adjustments to improve small sample performance are not motivated by statistical
theory but are determined on a rather heuristic basis. Agresti and Coull (1998) simplified, for educa-

784 F. Schaarschmidt, M. Sill and L. A. Hothorn: Multiple Contrasts of Binomial Proportions

Table 2 Rate and proportion of rats with cancer as presented in Price and
Bonett (2004).

Fiber No Fiber

High Fat Low Fat High Fat Low Fat

Sample size 30 30 30 30
Rats showing cancer 20 14 27 19
Estimated proportion 0.67 0.47 0.90 0.63

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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tional purposes, the formula of the score interval (Wilson, 1927) for one binomial proportion. Its
simplicity and its good empirical performance motivated a similar adjustment for the difference of
two proportions (Agresti and Caffo, 2000). Here, the number of pseudo observations added to each
cell of the 2� 2 table was found by choosing the one leading to the best coverage probability. Price
and Bonett (2004) compared two extensions of these approaches to the estimation of a linear combina-
tion of several proportions: Additional to the Add-2 approach they propose replacing
~ppi ¼ ðYi þ 2=kÞ=ðni þ 4=kÞ for pi and ~VVðpiÞ ¼ ~ppið1� ~ppiÞ=ðni þ 4=kÞ for V̂VðpiÞ, where k is the number
of non-zero coefficients cim in the linear combination of interest. Based on simulation studies for
various types of linear combinations, the authors recommend the latter approach, where results are
shown for the most common case I ¼ 3; 4. However, in simulation studies not shown in this article,
we found that the approach favored by Price and Bonett (2004) is more liberal than the Add-2 ap-
proach when k becomes large, e.g. k ¼ 6; 10. Therefore, their approach is not considered here.

Since our objective is to estimate approximate simultaneous confidence intervals for M contrasts,
we have to adjust for multiplicity. I.e., we want to ensure that PðLm 2 ½L̂L

l
m; L̂L

u
m�;

8m ¼ 1; . . . ;MÞ ffi 1� a. The adjustment is achieved by using the two-sided equicoordinate critical
value z ¼ ztwo�sided

M;R;1�a of an M-variate standard normal distribution such that PðjZj 	 ztwo�sided
M;R;1�a Þ ¼ 1� a,

where Z is an M-variate standard normal random vector with ðM �MÞ correlation matrix R. One-
sided intervals can be obtained by using the critical value z ¼ zone�sided

M;R;1�a such that
PðZ 	 zone�sided

M;R;1�a Þ ¼ 1� a. Numerically, such quantiles can be obtained from the R-function qmvnorm
in the add-on package mvtnorm, introduced by Hothorn, Bretz and Genz (2001). This adjustment
takes the number of estimated parameters M as well as the correlation R between them into account.
The correlation matrix R depends on the known constants cim and ni, but additionally on the unknown
parameters pi. Bretz and Hothorn (2002) give the correlation matrix R for the purpose of power
calculation explicitly. Elements rmm0 of R, specifying the correlation between two contrasts m and m0,
m 6¼ m0 can be computed:

rmm0 ¼
PI

i¼1 cimcim0VðpiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
PI

i¼1 c2
imVðpiÞÞ ð

PI
i¼1 c2

im0VðpiÞÞ
q ð2Þ

where VðpiÞ ¼ pið1� piÞ=ni. In practical situations, where pi and therefore VðpiÞ are unknown, we
use appropriate sample estimates V̂VðpiÞ to estimate the correlation. Piegorsch (1991) uses the same
approach for the special case of comparisons to control.

The contrast coefficients cim are chosen such that they reflect experimental questions. In many
cases, standard multiple comparison procedures as all pairwise comparisons or comparisons to a con-
trol group achieve this appropriately. For tests on a monotone dose-response relationship one can
formulate the global alternative hypothesis: HA : p1 	 p2 	 . . . 	 pI , with at least one inequality
strict. Different contrast types have been proposed (Hirotsu and Marumo, 2002; Bretz, 2006). Such
tests combine several contrasts, sensitive for different monotone dose-response patterns, in an union-
intersection test, taking the correlation between the contrasts into account. The contrast coefficients
cim in the different approaches have in common to compare weighted averages of group means be-
tween groups of lower order to groups of higher order. One can conclude for the presence of a dose-
response relationship, if at least one of the contrasts is significantly larger than zero. For the compar-
ison of I ordered dose groups, change point contrasts according to Hirotsu and Marumo (2002) use
M ¼ I � 1 contrasts, one for each of the consecutive dose steps. The cim of the mth contrast can be
formally defined as cim ¼ � niP

i	m ni
for i 	 m and cim ¼ niP

i>m ni
for i > m. For the simple case of a

balanced design with I ¼ 4 groups, the contrasts are shown in Table 3.
The application of the change point contrasts to the Palonosetron example is presented in Table 7.

However, many other experimental questions may occur in practice that can be expressed as multiple
contrasts but are not covered by any standard procedure. A simple example is shown in Table 9.

Biometrical Journal 50 (2008) 5 785
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4 Simulation Study

We performed a number of simulation studies to characterize the above proposed confidence intervals
for nominal confidence levels of 0:95. We consider the simultaneous coverage probability, defined as
PðLm 2 ½L̂L

l
m; L̂L

u
m t�, 8m ¼ 1; . . . ;MÞ, to be the main criterion for recommendation. However, for bino-

mial proportions the coverage probability oscillates in dependence on ni and pi (Agresti and Coull,
1998; Agresti and Caffo, 2000; Brown, Cai and DasGupta, 2001; Brown and Li, 2005). Hence, con-
sideration of only a restricted set of parameters can not lead to a general recommendation of a meth-
od. Therefore, the simulation studies are divided in two parts.

First, we show results of estimated simultaneous coverage probability, based on 10 000 simulations,
for a restricted number of practically reasonable parameter settings (Table 4, 5 and 6). In these tables,
we additionally show the simultaneous coverage probability, when no multiplicity adjustment is used
but simple quantiles of the univariate standard normal distribution are applied.

In a second step, we performed a more extensive simulation study to explore the dependency of the
coverage probability of ni and pi with the change point contrast serving as an example. In order to
characterize the performance for the whole parameter space, we draw 10 000 samples of p ¼ ðp1; . . . ;pIÞ
from independent uniform distributions Uð0; 1Þ for the pis. For each of these settings, the simultaneous
coverage probability was estimated based on 10 000 samples drawn independently from binomial distri-
butions Bin ðni;piÞ. To enable computation in a feasible time, we used the true values of p to calculate the
correlation, instead of the sample estimates. Hence, these results do not include the variability that is
introduced into the methods by using sample estimates for calculation of the quantiles. However, the error
that is introduced into the methods by using a multivariate normal approximation for the construction of
confidence limits for binomials is still revealed. Sample sizes considered for this part were varied between
ni ¼ 10 and ni ¼ 100 in balanced designs with I ¼ 3; 4; 6 and 10 groups. Following the philosophy of
Agresti and Coull (1998), and Agresti and Caffo (2000), we consider intervals as appropriate which have
coverage probability close to the nominal confidence level, but not necessarily equal or above the nominal
level for all parameter settings. The results of the second part are summarized in Section 4.2, detailed
tables are available from the first author upon request.

Our final recommendation favors the method, which shows highest proportions of settings with
coverage probability between 0:94 and 0:96 and a mean coverage close to the nominal level.

4.1 Results for selected parameter settings

Tables 4 and 5 show simultaneous coverage probabilities for lower and upper 95% confidence limits
for change point contrasts of I ¼ 4 groups and balanced sample size of ni ¼ 40. Table 6 shows results
for two-sided 95% confidence intervals for the main effects and interactions in a balanced 2� 2
layout with ni ¼ 20. The methods for construction of simultaneous confidence intervals using multi-
variate normal quantiles, as proposed insection 3, are compared to marginal confidence intervals, i.e.,
intervals which are not adjusted for multiple comparisons and are constructed using univariate normal
quantiles.
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Table 3 Contrast coefficients cim for change point contrasts
in a balanced design with I ¼ 4 ordered groups.

Comparison i ¼ 1 i ¼ 2 i ¼ 3 i ¼ 4

m ¼ 1 �1 1=3 1=3 1=3
m ¼ 2 �1=2 �1=2 1=2 1=2
m ¼ 3 �1=3 �1=3 �1=3 1
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When all the proportions are close to 0 (or close to 1), both the Add-1 and Add-2 result in conser-
vative intervals, while the Wald limits perform severely liberal for some settings. When proportions
become closer to 0.5, all methods have coverage probability closer to the nominal level. The Add-2
method is more conservative, while the Wald interval is liberal for nearly all settings considered.
When intervals are not adjusted for multiplicity but use simple standard normal quantiles, the prob-
ability to exclude at least one of the true parameters increases severely. Then, the simultaneous cover-
age probability varies between 0.55 and 0.94 for the Wald, 0.88 and 0.99 for the Add-1 and Add-2
intervals for the considered settings. For situations with M > 3 and contrasts with low correlation, the
liberality of unadjusted methods becomes more severe (results not shown).
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Table 4 Estimated simultaneous coverage probability (based on 10 000 simulations) of lower 95%
confidence limits with balanced sample size ni ¼ 40 for change point contrasts of four groups.

proportions simultaneous intervals marginal intervals

p1 p2 p3 p4 Add-2 Add-1 Wald Add-2 Add-1 Wald

0.01 0.01 0.01 0.01 1.000 1.000 0.789 0.999 0.994 0.721
0.01 0.01 0.05 0.05 0.997 0.993 0.980 0.981 0.977 0.938
0.01 0.01 0.05 0.10 0.994 0.989 0.975 0.980 0.961 0.943
0.01 0.05 0.10 0.20 0.985 0.979 0.962 0.960 0.936 0.911

0.20 0.20 0.20 0.20 0.954 0.944 0.939 0.887 0.883 0.867
0.20 0.20 0.30 0.30 0.957 0.948 0.937 0.893 0.880 0.868
0.20 0.20 0.30 0.40 0.955 0.946 0.933 0.898 0.883 0.868
0.20 0.30 0.40 0.50 0.957 0.947 0.934 0.898 0.875 0.858

0.50 0.50 0.50 0.50 0.951 0.946 0.942 0.887 0.878 0.875
0.50 0.50 0.60 0.60 0.953 0.943 0.938 0.887 0.880 0.868
0.50 0.50 0.60 0.80 0.957 0.945 0.930 0.897 0.875 0.854
0.50 0.90 0.90 0.90 0.963 0.943 0.921 0.916 0.890 0.857

Table 5 Estimated simultaneous coverage probability (based on 10 000 simulations) of upper 95%
confidence limits with balanced sample size ni ¼ 40 for change point contrasts of four groups.

proportions simultaneous intervals marginal intervals

p1 p2 p3 p4 Add-2 Add-1 Wald Add-2 Add-1 Wald

0.05 0.05 0.05 0.05 0.986 0.959 0.889 0.924 0.896 0.820
0.05 0.05 0.01 0.01 0.998 0.994 0.981 0.981 0.977 0.939
0.05 0.05 0.02 0.01 0.998 0.995 0.978 0.984 0.965 0.930
0.05 0.04 0.03 0.02 0.997 0.990 0.957 0.978 0.960 0.885

0.20 0.20 0.20 0.20 0.954 0.946 0.939 0.887 0.883 0.868
0.20 0.20 0.10 0.10 0.963 0.952 0.934 0.914 0.893 0.870
0.20 0.20 0.10 0.05 0.977 0.963 0.940 0.932 0.910 0.867
0.20 0.15 0.10 0.05 0.976 0.964 0.940 0.932 0.906 0.873

0.50 0.50 0.50 0.50 0.953 0.948 0.943 0.887 0.878 0.876
0.50 0.50 0.40 0.40 0.955 0.947 0.940 0.891 0.881 0.868
0.50 0.50 0.40 0.20 0.958 0.946 0.932 0.902 0.879 0.856
0.50 0.40 0.30 0.20 0.957 0.948 0.933 0.903 0.876 0.859
0.50 0.10 0.10 0.10 0.964 0.946 0.924 0.920 0.895 0.857
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4.2 Simulations for the whole parameters space

The results of the second part of the simulation study, performed for samples of p from the parameter
space, can be summarized as follows: The Add-2 interval can be recommended as a mostly conserva-
tive choice for moderate sample sizes, such as ni > 40 and two-sided problems. When sample sizes
are as small as ni ¼ 10 or 20, for only 30–40% of the settings an acceptable coverage probability is
achieved, with average coverage probabilities between 0.955 and 0.96. For a small number of settings
comparing intermediate to extreme proportions we observed liberal performance in two-sided applica-
tion. In one-sided application with small sample sizes and some proportions close to 0 and others
close to 1, the lower and upper bound can be severely asymmetric in the probability to exclude the
true parameter. Then, the upper bounds are liberal when differences pi � pi0 close to 1 are involved
and are conservative when differences pi � pi0 close to �1 are involved. For lower bounds the situa-
tion is inverse.

If applied as a one-sided confidence limit, the Add-1 interval is closer to the nominal level than the
Add-2 approach for the price of showing liberal performance for a number of settings with sample
sizes ni ¼ 10; 20. For samples sizes ni ¼ 40; 60; 100, the Add-1 method attains high proportions of
acceptable coverage probabilities faster than the Add-2 method does. Similar to the Add-2 interval, in
one-sided application with small sample sizes the lower and upper bound can be asymmetric in the
probability to exclude the true parameter. The pattern is the same as for the Add-2 interval. As ex-
pected, the Wald interval is severely liberal for small sample sizes and is still liberal for sample sizes
as large as ni ¼ 100 per group. For small sample sizes ni ¼ 10; 20 the coverage probability is in the
range [0.94; 0.96] for hardly any parameter combination, and mean coverage probability ranges be-
tween 0.81 and 0.93. All methods in common perform slightly worse when many groups are com-
pared, i.e., I ¼ 6; 10. This effect is most pronounced for the Wald method.

5 Evaluation of Examples

In the Palonosetron example in Table 1, establishing a dose-response relationship could be of primary
interest. Since no negative control exists, and the dose-response shape is not known a priori, we apply
change point contrasts. The resulting coefficients cim for the M ¼ 4 contrasts are shown in Table 7. In
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Table 6 Estimated simultaneous coverage probability (based on 10 000 simulations) of two-sided
95% confidence intervals for main effects and their interaction in a 2� 2 design with balanced sample
size ni ¼ 20.

proportions simultaneous intervals marginal intervals

p1 p2 p3 p4 Add-2 Add-1 Wald Add-2 Add-1 Wald

0.01 0.01 0.01 0.01 1.000 1.000 0.550 1.000 1.000 0.547
0.01 0.01 0.10 0.10 0.997 0.977 0.891 0.970 0.952 0.845
0.01 0.10 0.01 0.10 0.998 0.978 0.892 0.973 0.953 0.843
0.01 0.10 0.10 0.10 0.991 0.979 0.909 0.954 0.907 0.825

0.10 0.10 0.10 0.10 0.989 0.976 0.939 0.949 0.910 0.831
0.10 0.10 0.20 0.20 0.974 0.957 0.931 0.912 0.883 0.833
0.10 0.20 0.10 0.20 0.975 0.960 0.935 0.914 0.885 0.834
0.10 0.20 0.20 0.20 0.970 0.956 0.930 0.899 0.874 0.831

0.50 0.50 0.50 0.50 0.944 0.944 0.939 0.838 0.838 0.838
0.50 0.50 0.40 0.40 0.948 0.946 0.933 0.850 0.844 0.840
0.50 0.60 0.50 0.60 0.945 0.943 0.928 0.848 0.840 0.838
0.50 0.40 0.60 0.40 0.950 0.946 0.929 0.861 0.849 0.842
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Table 8, 95% lower Add-2, Add-1 and Wald confidence limits are shown. The Add-1 and Wald con-
fidence limits are slightly narrower than the Add-2 method. Due to the small sample size, we prefer
the conservative Add-2 confidence limits for interpretation.

Based on the Add-2 limits one can conclude with error probability 0:05 that the average proportion
of patients with complete response in the dose groups 3 mg, 10 mg, 30 mg, 90 mg is larger than that in
the lowest dose group. With 95% confidence, the average proportion in the four higher dose groups is
at least 0.006 above that in the lowest dose group. Although we can not infer this with error probabil-
ity 0.05, the observed pattern of proportions suggests an increase of efficacy when dosage is increased
from 0.3–1.0 mg/kg to 3 mg/kg and a plateau for higher doses.

For the second Example in Table 2 we apply the same contrasts as used by Price and Bonett
(2004). The 2� 2 design is treated as a pseudo one way layout comprising four treatments. The
first and second contrasts are differences in average proportions between Fiber and No Fiber, and
High Fat and Low Fat treatments, respectively. The third contrast is intended to explore interaction,
and can be interpreted as the difference of two differences: (pHighFat;Fiber � pLowFat;Fiber) �
(pHighFat;NoFiber � pLowFat;NoFiber). One can conclude for the presence of an interaction if the differ-
ence between fat levels differs significantly depending on fiber level. Table 10 shows two-sided
95% Add-2 confidence intervals for the three effects. For comparison, univariate Wald intervals are
shown which use the critical values of the standard normal distribution. These intervals are much
more narrow. However, the simulation results in Section 4 indicate that conclusions based on the
univariate Wald intervals might be overoptimistic.

Based on the Add-2 confidence interval in Table 10, we can not conclude for an interaction which
is significant at the 5% level. However, the presence of a relevant interaction between fat and fiber in
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Table 7 Contrast coefficients for change point contrasts in the Palonosetron example (Table 1).

Comparison m 0.3–1.0 mg/kg 3 mg/kg 10 mg/kg 30 mg/kg 90 mg/kg

(2, 3, 4, 5) � 1 1 �1.00 0.20 0.21 0.20 0.39
(3, 4, 5) � (1,2) 2 �0.55 �0.45 0.26 0.25 0.48
(4, 5) � (1, 2, 3) 3 �0.37 �0.31 �0.32 0.34 0.66
(5) � (1, 2, 3, 4) 4 �0.28 �0.24 �0.25 �0.24 1.00

Table 8 Simultaneous lower 95% Add-2, Add-1 and Wald confidence limits
for the contrasts in Table 7 and the data in Table 1.

Comparison Estimate Add-2 Add-1 Wald

(2, 3, 4, 5) � 1 0.212 0.006 0.011 0.017
(3, 4, 5) � (1,2) 0.113 �0.064 �0.062 �0.061
(4, 5) � (1, 2, 3) 0.113 �0.062 �0.060 �0.058
(5) � (1, 2, 3, 4) 0.064 �0.123 �0.123 �0.122

Table 9 Contrast coefficients for example 2.

Comparison m High Fat, Fiber Low Fat, Fiber High Fat, No Fiber Low Fat, No Fiber

Fiber � No Fiber 1 0.5 0.5 �0.5 �0.5
Low Fat � High Fat 2 �0.5 0.5 �0.5 0.5
Interaction Fat: Fiber 3 1.0 �1.0 �1.0 1.0
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the diet can not be ruled out: the confidence interval ranges from �0.44 to 0.32. Further, with 95%
confidence we can state that the average proportion of tumor bearing animals in the two fiber treat-
ments could be up to 0.38 below that of the treatments without fiber, but, as indicated by the upper
bound, it can not be ruled out that the proportions are about equal and that there is no effect of fiber
in the diet. The average proportion of tumor bearing animals in the two treatments with high fat diet
differs from that in the low fat treatments. With 95% confidence one can state that the high fat diets in
average lead to an increase of the proportion of tumor bearing animals of at least 0.028. Summarizing,
when controlling the family wise error rate is objective of the statistical analysis, a significant effect
can only be shown for fat. However, the wide confidence intervals illustrate the notable uncertainty of
the estimated effects which is due to the fairly low sample size. Alternatively, if the hypotheses corre-
sponding to the three contrasts can be stated in an a priori order, stepwise approaches might be
applied instead of simultaneous testing in a single step.

6 Discussion

In this paper, we show the availability of approximate simultaneous confidence intervals for multiple
contrasts of binomial proportions, based on the multivariate normal distribution. The formulation of
hypotheses in terms of multiple contrasts permits all pairwise comparisons, comparisons to control
(Schaarschmidt, Biesheuvel and Hothorn, accepted) or user defined comparisons, as well as tests for
monotone trends among ordered proportions to be performed.

Appropriate adjustments, being extensions of methods proposed for two-sample comparisons, result
in acceptable properties for moderate sample sizes. The small sample adjustments are heuristic, moti-
vated rather by their empirical performance than by statistical theory. Hence, there is potential for
improvement. When a method is known to perform better for small samples in univariate situations
and can be expressed as an adjustment of the Wald formula, a multiplicity adjustment can be intro-
duced by straightforward extension of the formulas above. In practical application of the methods
described here, it should be noted that for group wise sample sizes smaller than 40, the proposed
methods can still be problematic due to conservative or liberal performance. The described methods
are implemented in the R-package MCPAN, providing a number of preformatted contrast types as
well as the possibility to estimate user-defined contrasts.

The methods above might be extended to other problems, if experimental questions can be appro-
priately expressed as contrasts of the group wise parameters. However, for each case it should be
investigated for which sample sizes and parameter settings the approximation performs acceptably. For
example, in the evaluation of long-term carcinogenicity studies based on poly-k-adjusted tumor rates
(Bailer and Portier, 1988) interest can be in comparing mortality-adjusted tumor rates of the dose
groups to that of the untreated control or, to test for an increasing trend among such tumor rates
(Bieler and Williams, 1993; Peddada, Dinse and Haseman, 2005), where the shape of the dose-re-
sponse relationship is not known a priori. Schaarschmidt, Sill and Hothorn (submitted) propose the
use of multiple contrast tests and simultaneous confidence intervals for such rates, and show accepta-
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Table 10 Two-sided simultaneous 95% Add-2 and univariate Wald confidence
intervals for the contrasts in Table 9 and the data set in Table 2.

Comparison Estimate Simultaneous Add-2 Univariate Wald

Lower Upper Lower Upper

Fiber � No Fiber �0.200 �0.378 0.003 �0.359 �0.041
Low Fat � High Fat �0.233 �0.409 �0.028 �0.393 �0.074
Interaction Fat: Fiber �0.067 �0.444 0.319 �0.385 0.252
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ble performance for moderate sample sizes such as ni ¼ 50. Recently, Hothorn et al. (2008) described
methods for asymptotic simultaneous inference in general parametric models. Their approach covers
simultaneous confidence intervals for odds ratios of proportions when applied in generalized linear
models (McCulloch and Searle, 2001) with the logit link.
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Diversity indices might be used to assess the impact of treatments on the relative abundance patterns in
species communities. When several treatments are to be compared, simultaneous confidence intervals
for the differences of diversity indices between treatments may be used. The simultaneous confidence
interval methods described until now are either constructed or validated under the assumption of the
multinomial distribution for the abundance counts. Motivated by four example data sets with back-
ground in agricultural and marine ecology, we focus on the situation when available replications show
that the count data exhibit extra-multinomial variability. Based on simulated overdispersed count data,
we compare previously proposed methods assuming multinomial distribution, a method assuming nor-
mal distribution for the replicated observations of the diversity indices and three different bootstrap
methods to construct simultaneous confidence intervals for multiple differences of Simpson and Shan-
non diversity indices. The focus of the simulation study is on comparisons to a control group. The
severe failure of asymptotic multinomial methods in overdispersed settings is illustrated. Among the
bootstrap methods, the widely known Westfall–Young method performs best for the Simpson index,
while for the Shannon index, two methods based on stratified bootstrap and summed count data are
preferable. The methods application is illustrated for an example.

Keywords: Bootstrap; Extra-multinomial variability; Overdispersion; Shannon index;
Simpson index; Simultaneous coverage probability.

� Additional supporting information may be found in the online version of this article
at the publisher’s web-site

1 Introduction

When assessing the environmental risk associated with human intervention in ecosystems, the impact
on biodiversity can be of interest. Here, we consider the case where individuals of multiple species
are counted. A number of indices have been proposed for measuring biodiversity by summarizing the
number of species as well as the proportions of single species in a given community. We focus on two of
these indices: Frequently used and controversially discussed is the Shannon index (Magurran, 2004),
which is a special case of a family of measures for entropy (Renyi, 1961). The Simpson index (Simpson,
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1949), derived from the probability that two randomly chosen individuals are from the same species,
gives higher weight to species with high relative abundance, and therefore is also called the dominance
index (Magurran, 2004).

Studies may involve more than two interventions, e.g., more than two different treatments in an
agricultural field trial. These treatments may be genetically modified plants, near-isogenic plants
treated with pesticides and untreated near-isogenic plants as shown in our example data set A. As a
consequence, the simultaneous estimation of more than one difference between the treatments can be
of interest. The example data sets discussed later on in detail could invoke the following questions: Is
there at least one treatment that differs in biodiversity compared to the control treatment? And if so, by
what magnitude? Is a single novel treatment noninferior to at least one of several standard treatments?
Motivated by such questions, we focus on the construction of simultaneous confidence intervals for
multiple differences against a control treatment, while the methods discussed can be easily generalized
to other types of comparisons between more than two treatments.

A number of methods for the construction of (simultaneous) confidence intervals for diversity indices
have been published: In discussion are asymptotic methods that rely on the multinomial assumption
of the data for the estimation of variance parameters (Hutcheson, 1970; Pardo et al., 1997; Fritsch and
Hsu, 1999; Rogers and Hsu, 2001; From, 2003; Salicru et al., 2005) or bootstrap methods (Fritsch and
Hsu, 1999; Rogers and Hsu, 2001; Pla, 2004). The inferential problems discussed until now include:
calculating confidence intervals or testing hypotheses for the diversity index of a single sample (Pardo
et al., 1997; Fritsch and Hsu, 1999; Rogers and Hsu, 2001; Pla, 2004), for the difference of two
samples (Hutcheson, 1970; Fritsch and Hsu, 1999; Rogers and Hsu, 2001) or testing the equality of
diversity among several samples by omnibus tests (Pardo et al., 1997; Salicru et al., 2005). Finally, the
estimation of simultaneous confidence intervals for pairwise comparisons among several samples has
also been considered (Fritsch and Hsu, 1999; Rogers and Hsu, 2001; Salicru et al., 2005). The common
assumption in the latter three publications is, tacitly or explicitly, that the counts follow a multinomial
distribution, either for the purpose of deriving variance estimators or for the purpose of validating
the proposed methods in simulation studies. However, this is a very strict assumption which might be
inappropriate for ecological data sets in many practical applications.

For counts of individuals of a single species, it is well accepted that overdispersion (extra-Poisson
variability) is a frequent feature of observed count data. That is, the observed variability of species
counts is considerably higher than would be expected under the basic assumption of a Poisson distri-
bution. Alternative statistical distributions have been extensively discussed to deal with overdispersed
count data on the single species level (e.g., Anscombe, 1949; Bliss and Fisher, 1953; Sileshi, 2006, to
name a few).

Whatever the reasons for overdispersed counts may be, the overdispersion can often not be suffi-
ciently explained by the measured covariates at hand. Here, we consider count data of multiple species
with the aim to estimate biodiversity indices. That is, in each experimental unit (trap, field plot, meso-
cosm, etc.), animals of not only one but several species are counted, leading to a vector of counts. It is
natural to expect that overdispersion is also present for these vectors of counts, such that the counts do
not follow a multinomial distribution, but show higher variability. Additionally, ecological sampling
in agricultural field trials is usually not even multinomial sampling: the total number of individuals in
each trap is by no means fixed, but is a random variable itself (compare Pla, 2004). Hence, our focus is
to compare different options for calculating simultaneous confidence intervals for biodiversity indices
in the case of count data with extra-multinomial variability. One possible distribution for such data is
the Dirichlet-multinomial distribution (Johnson et al., 1997). The four example data sets are analyzed
to motivate that overdispersion may be a relevant problem in practical application.

The remainder of the paper is organized as follows: Section 2 introduces four data sets. Section 3
reviews the properties of the Shannon and Simpson indices and methods for the construction of simul-
taneous confidence intervals, namely the asymptotic methods based on the multinomial assumption,
the Dunnett procedure, and three different approaches to construct simultaneous bootstrap confidence
intervals. In Section 4, the data sets are analyzed with respect to plausible distributional assumptions,
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Figure 1 Mosaic plots of the four example data sets. The width of the columns is proportional to
the number of individuals caught in each sample and the height of the boxes within each column is
proportional to the number of individuals of each species within each sample. Dashed lines indicate
species missing in a certain sample. (A) Counts of taxonomic groups of insects from an agricultural field
trial; interest is in comparing the genetically modified maize variety, GM, against a conventional variety
under two different treatments, Iso and Ins. (B) Counts of insect species from a field trial, with interest
in comparing a GM variety to three conventional varieties, S1–S3. The counts of species inhabiting
kelp holdfasts are plotted in subfigure (C). An experimental question may be the comparison of
biodiversity between exposed and sheltered sites. (D) A mesocosm experiment concerning nematodes
in marine sediments with interest in comparing two treatments of enrichment with organic matter
(low, high) to an untreated control treatment.

and simultaneous confidence interval methods are applied to one example from marine ecology. The
results of the simulation study are shown to illustrate the properties of the simultaneous confidence
interval methods for different overdispersion scenarios. Section 5 briefly discusses these results.

2 Data sets

In the following, we give a brief introduction to four publicly available data sets which contain count
data of multiple species of some defined habitat or species community. They all include two or more
experimental conditions or treatments, with replicated observations available for each of them. Figure 1
gives an impression of the within-treatment variability of the observed counts of a given species, the
variability of the total number of individuals, the proportion of rare species and zero counts (dashed
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lines in Fig. 1). Moreover, examples A, B, and D motivate the necessity for multiple comparisons to
a control group. In Section 4.1, we show results of analyzing some distributional properties of these
data sets, including the observed mean-variance dependency of the counts, in order to motivate the
simulation of overdispersed count data in Section 3.5.

(A) Saprophagous Diptera in genetically modified maize: A field trial was performed in one location
in Germany, 2002, and was arranged as a randomized complete block design with six blocks and three
varieties: a genetically modified maize variety (GM), the near-isogenic line (Iso), and the near-isogenic
line with a pyrethroid treatment (Ins). Diptera with saprophagous larvae were caught using emergence
traps situated in each of the 18 plots. In total 25,308 individuals were captured and classified at the
species level. In total 25 species with relatively high abundance are considered, while exceptionally rare
species are not contained in the data set. One experimental question in the analysis of these data was
whether the biodiversity in the GM variety differs from that in the Iso or Ins treatment.

(B) Predatory community in genetically modified maize: A field trial was performed in 2005 at one
location in Germany, arranged as a randomized complete block design with eight blocks and four
varieties: a genetically modified line (GM), and three conventional varieties (S1, S2, S3). A trap was
situated on each of the 32 plots. In total, 3660 individuals were sampled and classified at the species
level, leading to 33 observed species. One experimental question was whether the biodiversity in the
GM variety differs from that in the three conventional varieties. Examples A and B are available in the
R package simboot (Scherer, 2012).

(C) Kelp holdfasts in sheltered and wave-exposed environments: Anderson et al. (2005) investigated
the biodiversity of the fauna inhabiting kelp holdfasts with respect to different spatial and taxonomic
scales. The related published data set in the R package untb (Hankin, 2007) contains counts of 176
taxonomic units from 40 samples and comprises a total of 8419 individuals. The samples originate
from four sheltered and four wave-exposed sites along the New Zealand coast line, i.e., the data
contains some clustering of observational units, which is not documented in the published data set.
The experimental question for the given data set is whether biodiversity differs between the exposed
and sheltered sites.

(D) Marine nematodes under pollution with organic matter: In a mesocosm experiment in marine
sediments (Gee et al., 1985) concerning the effects of pollution with organic matter, 12 samples have
been subject to three different treatments: a control group, a low and a high enrichment with organic
matter, each treatment with four replications. The published data set in the R package mvabund (Wang
et al., 2011) contains counts of 53 species of marine nematodes. The experimental question is whether
the enrichment of organic matter (mimicking environmental pollution) does change the diversity
indices compared to the control group.

3 Methods

3.1 Notation

Assume that the objective of a study is to compare I treatments or conditions, with index i = 1, . . . , I .
The main focus is on multiple comparisons to a control. For simplicity, the last treatment, i = I , denotes
the control treatment. Each treatment i is randomly assigned to several experimental units (e.g., to
several field plots in examples A and B or to several mesocosms in example D). These replications have
index j = 1, . . . , Ji within each i, such that i j identifies the experimental unit. In each experimental
unit i j, a vector of counts yij = (yij1, . . . , yijS) is obtained, where yi js is the observed number of animals
of the s-th species (or taxonomic entity), and the species have index s = 1, . . . , S. The total number
of animals per experimental unit is denoted ni j = ∑S

s=1 yi js, the total number of animals observed

in all observational units of the i-th treatment is denoted by ni = ∑Ji
j=1 ni j . The unknown expected

proportions of the S species in treatment i is denoted πi = (πi1, . . . , πiS), which we will refer to as the
relative abundance.
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3.2 Multiple differences of Shannon and Simpson indices

The relative abundances πi might be summarized by indices φi = f (πi). Here, we consider the Shannon
index φ

(H )
i and the Simpson index φ

(D)
i , given in Eqs. (1) and (2), respectively.

φ(H )
i = −

S∑
s=1

πis log
(
πis

)
, (1)

φ(D)
i =

S∑
s=1

π2
is. (2)

A straightforward estimate for the elements of πi is to sum up species-wise over all observations
within treatment i

yi·s =
Ji∑

j=1

yi js (3)

and dividing by the total number of individuals observed in treatment i, ni: π̂is = yi·s/ni. Replacing
the relative abundances πis in Eq. (2) by point estimators π̂is yields the estimator φ̂

(D)
i of the Simpson

index. However, the simple plug-in of point estimates of the relative abundances in Eq. (1) for those
species present in the sample leads to a biased estimator of the Shannon index, see, e.g., Hutcheson
(1970), Lande (1996), Magurran (2004). In the following, we use the estimator in Eq. (4), correcting for
the bias by subtracting the three bias terms of the series given in, e.g., Hutcheson (1970) or Magurran
(2004),

φ̃(HC)
i = −

∑
s:yi.s>0

π̂islog
(
π̂is

) + Oi − 1
2ni

−
1 − ∑

s:yi.s>0 π̂−1
is

12n2
i

−
∑

s:yi.s>0

(
π̂−1

is − π̂−2
is

)
12n3

i
, (4)

where Oi denotes the number of species observed with at least one individual in community i. Though
Eq. (4) attempts to correct the bias, preliminary simulations by the authors (available in Supporting
Information) as well as previous publications (e.g., Lande, 1996; Fritsch and Hsu, 1999) have shown
that such bias corrections do not remove the bias completely and an unbiased estimator for Shannon
diversity does not exist (Lande, 1996).

Given that the sums yi.s follow a multinomial distribution with parameters ni and πi, the variance
of an estimate φ̂i merely depends on πi and ni. For the Shannon index, Fritsch and Hsu (1999) give
Eq. (5) as the variance of the estimator according to the Delta method, where πi = (

πi1, . . . , πiS

)′
and

π′
i is the transposition of πi.

Var(φ̂(H )
i ) = log(πi)

′ [diag(πi) − πiπ
′
i

]
log(πi)

ni
. (5)

Rogers and Hsu (2001) give the variance of the estimator of the Simpson index as

Var(φ̂(D)
i ) = 2

ni

(
ni − 1

)
⎡⎣ S∑

s=1

π2
is + 2

(
ni − 2

) S∑
s=1

π3
is + (

3 − 2ni

) (
S∑

s=1

π2
is

)2
⎤⎦ . (6)

The sample estimates V̂ar(φ̂(H )
i ) and V̂ar(φ̂(D)

i ) of the variances are obtained by replacing πis by π̂is
in Eqs. (5) and 6. However, if the variance of the observed counts yi js is higher than can be expected
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from samples of a multinomial distribution, these variance estimators may severely underestimate the
variance of the estimated Shannon and Simpson indices.

Our focus is on the M = I − 1 differences against the control group,

δm = φm − φI , with m = 1, . . . , I − 1. (7)

We are particularly interested in constructing simultaneous confidence intervals[
δ(L)

m , δ(U )
m

]
, m = 1, . . . , M (8)

in which all true differences, δ1, . . . , δM , are included with high confidence (1 − α), e.g., α = 0.05.

3.3 Previously proposed methods for simultaneous confidence intervals

Confidence intervals for diversity indices were constructed by Fritsch and Hsu (1999) and Rogers
and Hsu (2001), denoted as FH99 and RH01 in the following, for the special case of multinomial
distributed counts. While FH99 constructed unadjusted confidence intervals in an equivalence setting,
RH01 presented simultaneous confidence intervals for the comparison of diversity indices between
multiple treatments. In contrast to our motivating examples, FH99 and RH01 use a data set without
replicates, that is, Ji = 1 for all i. Asymptotic simultaneous confidence intervals can then be constructed
based on the point estimates given in Section 3.2 and denoted as method AM in the following.

[
δ(L)

m , δ(U )
m

] =
[
φ̂m − φ̂I ± q

√
V̂ar(φ̂)m + V̂ar(φ̂)I

]
. (9)

RH01 is used for these quantiles of the M-variate normal distribution with correlation matrix R
depending on the corresponding variance estimates. We apply the same approach for the Shannon
index, because the problem is a special case of the methods described in Hothorn et al. (2008). In the
two-sided case, this quantile is the value q = q2−sided

M,R,1−α
, such that P(|zm| < q,∀m = 1, . . . , M) = 1 − α,

where (z1, . . . , zM ) is an M-variate normal random vector with expectation 0 and correlation matrix
R. In the one-sided case, the quantile is q = q1−sided

M,R,1−α
, such that P(zm < q,∀m = 1, . . . , M) = 1 − α.

Here, we follow the recommendation of RH01 and compute the intervals defined in Eq. (9) with
quantiles of the multivariate normal distribution after summing up over the replications Ji within each
treatment i and computing point and variance estimates based on yi.s (Eq. (3)). Quantiles qM,R,1−α are
computed using the R package mvtnorm (Genz et al., 2009).

When replications are available, a technically simple and probably commonly applied approach
for analyzing diversity indices is to compute the diversity index of interest for each observation
i j, i = 1, . . . , I , j = 1, . . . , Ji in the data set, resulting in a new variable of interest φ̂i j = f (π̂i js),

π̂i js = yi js/
∑S

s=1 yi js. One may assume approximately Gaussian error distribution for these data (see,
e.g., Magurran, 2004) and consequently use the well-known Dunnett test (Dunnett, 1955) to construct
simultaneous confidence intervals for differences between treatments and the control. Let φ̄i denote
the estimator for the i-th group mean that results from fitting a linear model (assuming indepen-
dent homoscedastic Gaussian errors). Subtracting φ̄i from the corresponding φ̂i j are the residuals ε̂i j
(Eq. (10))

ε̂i j = φ̂i j − φ̄i, (10)

and to an estimate for the residual variance, σ̂ 2 = (
∑I

i=1

∑Ji
j=1(ε̂i j − ε̄i)

2)/(
∑I

i=1 Ji − I ). Using appro-
priate two-sided (1 − α) quantiles of an M-variate t distribution (details in Dunnett, 1955; Hothorn
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et al., 2008) and the residual degree of freedom ν, approximate simultaneous confidence intervals are
constructed as given in Eq. (11) and denoted as method AG in the following:

[
δL

m; δU
m

] =
[
φ̄m − φ̄I ± t1−α,M,R,ν=∑I

i=1 Ji−I σ̂

√
1

Jm
+ 1

JI

]
. (11)

3.4 Bootstrap methods

The method of Westfall and Young (1993) is a straightforward alternative to construct simultaneous
confidence intervals for differences of biodiversity indices and makes use of the treatment means φ̄i,
the residuals ε̂i j (Eq. (10)), and the estimator of a common residual variance as defined in the previous
section. The procedure of Westfall and Young (1993), denoted as method WY in the following, then
is:

(1) Draw a random sample ε̂∗
i j with replacement from the residuals ε̂i j (without stratification).

(2) Compute the sample means ε̄∗
i = (

∑J
j=1 ε̂∗

i j )/(Ji), i = 1, . . . , I , as well as the common residual

variance σ̂ 2∗ = (
∑I

i=1

∑Ji
j=1(ε̂

∗
i j − ε̄∗

i )2)/
∑I

i=1 Ji − I ) from the bootstrap data.
(3) Compute the statistics

t∗
m = ε̄∗

m − ε̄∗
I

σ̂ ∗
√

1
Jm

+ 1
JI

, m = 1, . . . , I − 1. (12)

(4) Compute t∗
max = max(| t∗

m |).
(5) Repeat steps 1–4 B times and store t∗

max for every bootstrap step, b = 1, . . . , B.
(6) q1−α is the 1 − α quantile of the empirical distribution of the B values t∗

max.

Simultaneous confidence intervals are then computed using Eq. (13):

[
δL

m; δU
m

] =
[
φ̄m − φ̄I ± q1−α σ̂

√
1

Jm
+ 1

JI

]
. (13)

Appropriate one-sided intervals may be obtained by using a 1 − α quantile of t∗
max = max(t∗

m) or an
α quantile of t∗

min = min(t∗
m) for upper and lower limits, respectively.

In an alternative bootstrap method, denoted as method TS in the following, we use sums yi.s and
ni and Oi to compute the corresponding point and variance estimates φ̂i and V̂ar(φ̂i) given in Section
3.2. As with the WY method, simultaneous confidence intervals may be constructed by bootstrapping
the maximum of M test statistics:

(1) Perform a nonparametric bootstrap of the observational units i j, stratified by the i treatments,
resulting in bootstrap data y∗

i js. That is, draw I samples of size Ji with replacement from the
I sets of indices i j, (11, 12, . . . , 1J1), (21, 22, . . . , 2J2), . . . , (I1, I2, . . . , IJI ), respectively, and
build a new data set y∗

i js containing those vectors (yi j1, . . . , yi jS) for which i j has been sampled.
(2) Build the species-wise sums over all Ji observations within each treatment i, y∗

i·s, and the
corresponding terms n∗

i , O∗
i , as well as φ̂∗

i , and V̂ar(φ̂)∗i by using Eqs. (4), (5) or (2), (6).
(3) Compute

t∗
m = (φ̂∗

m − φ̂∗
I ) − (φ̂m − φ̂I )√

V̂ar(φ̂m)∗ + V̂ar(φ̂I )
∗
. (14)
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(4) Compute t∗
max = max(| t∗

m |).
(5) Repeat steps 1–4 B times and store t∗

max for every bootstrap step, b = 1, . . . , B.
(6) q1−α is the 1 − α quantile of the empirical distribution of the B values t∗

max

Simultaneous confidence intervals are then computed as in Eq. (15):[
δL

m; δU
m

] =
[
φ̂m − φ̂I ± q1−α

√
V̂ar(φ̂)m + V̂ar(φ̂)I

]
. (15)

One-sided intervals may be calculated by using the equivalent one-sided quantiles as described for
the WY method above. Note that if the data yi js follow a multinomial distribution, the statistic t∗

m is a
centered and pivotal statistic and follows the rules described by Westfall and Young (1993). If the data
are overdispersed, the statistic is not pivotal any more.

Besag et al. (1995) described the construction of simultaneous intervals, directly based on an empiri-
cal joint distribution of the parameters of interest. Based on a nonparametric bootstrap of the original
observations i j, stratified by the treatments i, simultaneous percentile intervals for multiple differences
of diversity indices can be calculated just using the raw estimates.

(1) Resample yi js stratified by i, as described for the TS method, leading to y∗
i js and compute φ̂∗

i

based on y∗
i.s, n∗

i and if necessary, O∗
i as above, as well as the differences of interest δ̂∗

m = φ̂∗
m − φ̂∗

I ,
m = 1, . . . I − 1.

(2) Repeat step 1 B times and store the δ̂∗
m in a (B × M) matrix � with elements δ̂bm, b = 1, . . . , B.

(3) Order and rank each of the M columns of � separately. Results are the order statistics z[b]
m , and

the ranks ubm.

(4) For each b = 1, . . . , B, calculate u(maxmin)

b = max
(

B + 1 − min
m

(
ubm

)
, max

m

(
ubm

))
.

(5) Order u(maxmin)

b resulting in the order statistics u[b].
(6) Let b∗ denote the closest integer to B(1 − α) and u∗ = u[b∗], i.e., the b∗-th value in the ordered

vector of u(maxmin)

b .

The bounds of the simultaneous confidence region for the M differences of interest, denoted as
method PE in the following, are then[

δL
m; δU

m

] = [
z[B+1−u∗]

m ; z[u∗]
m

]
. (16)

3.5 Simulation settings

We performed a Monte Carlo simulation study to compare the simultaneous confidence interval
methods when applied to count data with extra-multinomial variance. Different patterns of relative
abundances πis, satisfying

∑S
s=1 πis = 1, were taken from the geometric series (compare Rogers and

Hsu, 2001).

πs = k (1 − k)
s−1

1 − (1 − k)
s , s = 1, . . . , S, 0 < k ≤ 1, (17)

where k approaching 0 results in relative abundance patterns with high evenness and k = 1 indicates
absence of all species except one. In the simulations shown here, S = 30 is used throughout, while
the number of species that are actually present in the data depends on k and ni. For comparing
four treatments, i = 1, 2, 3, 4, where i = 4 denotes the control group, the eight parameter settings in
Table 1 were investigated.

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com

68



254 R. Scherer et al.: Simultaneous comparisons of diversity indices

Table 1 Settings of relative abundance patterns in four groups to be compared, defined by the group-
wise parameters ki of the geometric series, the corresponding group-wise Shannon and Simpson
indices, and their acronyms used later on.

Acronym k1 k2 k3 k4 φ
(H )

1 φ
(H )

2 φ
(H )

3 φ
(H )

4 φ
(D)

1 φ
(D)

2 φ
(D)

3 φ
(D)

4

k1 0.1 0.1 0.1 0.1 3.07 3.07 3.07 3.07 0.943 0.943 0.943 0.943
k2 0.2 0.2 0.2 0.2 2.49 2.49 2.49 2.49 0.889 0.889 0.889 0.889
k3 0.3 0.3 0.3 0.3 2.04 2.04 2.04 2.04 0.824 0.824 0.824 0.824
k4 0.4 0.4 0.4 0.4 1.68 1.68 1.68 1.68 0.750 0.750 0.750 0.750

k12 0.2 0.2 0.2 0.1 2.49 2.49 2.49 3.07 0.889 0.889 0.889 0.943
k21 0.1 0.1 0.1 0.2 3.07 3.07 3.07 2.49 0.943 0.943 0.943 0.889
k34 0.3 0.3 0.4 0.3 2.04 2.04 1.68 2.04 0.824 0.824 0.750 0.824
k43 0.4 0.4 0.3 0.4 1.68 1.68 2.04 1.68 0.750 0.750 0.824 0.750

Table 2 Values of c chosen for the simulations to depend on sample size ni j such that 1.01-, 2-, 5-,
and 10-fold overdispersion is achieved.

Overdispersion 1.01 2 5 10

ni j = 100 9899.00 98.00 23.75 10.00
ni j = 1000 99,899.00 998.00 248.75 110.00

We used a Dirichlet-mixture of multinomial distributions (Johnson et al., 1997) to simulate overdis-
persed count data. The group-wise parameters of the Dirichlet distribution, ais, s = 1, . . . , S, were
chosen as ais = πisc for the settings of πis in Table 2. Using this distribution to simulate overdispersed
multinomial counts, the actual overdispersion decreases with increasing c and additionally depends
on the number of animals per observation ni j . For the simulations, c has been chosen as a function of
ni j , such that the variance of the data is 1.01, 2, 5 and 10 times that of the corresponding multinomial
data with parameters ni j and πis (details in Table 2). In order to assess the effects of different numbers
of replications Ji and different numbers of animals per replication ni j , four combinations of Ji and ni j
are investigated: Ji = 5, ni j = 100; Ji = 5, ni j = 1000; Ji = 20, ni j = 100; Ji = 20, ni j = 1000.

All combinations of the eight settings of group-wise relative abundance, πis listed in Table 1, the
four settings of overdispersion, and the four settings of sample sizes (Table 2) have been built. For each
of these settings, 1000 data sets have been drawn and nominal 95% simultaneous confidence intervals
for comparisons to control have been calculated to assess the simultaneous coverage probability of
the intervals. Throughout, the bootstrap methods have been applied with B = 2000 bootstraps. Ran-
dom number generation, calculation of simultaneous confidence intervals, and subsequent graphical
representations have been performed in R-2.9.2 (R Development Core Team, 2009), partially relying
on the add-on packages boot (Canty and Ripley, 2009), MCMCpack (Martin et al., 2009, for Dirichlet
random numbers), and mvtnorm (Genz et al., 2009). R-functions implementing the methods discussed
in this paper as well as the example data sets A and B are available in our R package simboot (Scherer,
2012).

4 Results

To motivate the practical relevance of the simulation study, we first assess the four example data sets
in Section 4.1 with respect to distributional properties which are important for the methods AM
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and AG. In particular, we address three questions: Do the counts show overdispersion relative to the
multinomial distribution? Is the observed variation of biodiversity indices between experimental units
in line with those obtained under the multinomial assumption? Do the biodiversity indices calculated
for the single experimental units markedly contradict the assumption of a Gaussian error distribution?
Section 4.2 illustrates the application of the five methods to example D. Finally, the results of the
simulation study are shown.

4.1 Distributional properties of the example data sets

First, we investigate whether the multinomial assumption is a suitable assumption for the count data in
the four data sets, after correcting for all recorded covariates. As a first approach, we thus fitted baseline
logit models with the multinomial assumption (function multinom in R package nnet, Venables and
Ripley, 2002) to all four data sets. These models included the effects of interest as well as additional
variables recorded, such as dummy coded variables for the block effects in examples A and B. Based
on these fitted models, we computed the observed variance of the species counts with respect to the
predictions of the models. Additionally, the expected variance under the multinomial assumption was
calculated based on the overall proportions and mean sample size. Figure 2 shows the observed residual
variation of the counts (y-axes), versus the expected variance under the multinomial assumption as
defined above (x-axis). Note that the underlying logit models tend to over-fit the data, particularly for
the rare species in models with many parameters compared to the number of observational units (e.g.,
example B). Figure 2 therefore depicts species with expected value per observational unit less than 1 in
gray, and species occurring only once in the whole data set in light gray. Due to the possible over-fitting
when calculating the residual variance, the current approach should underestimate the magnitude of
overdispersion.

Overdispersion compared to the multinomial assumption is most evident in examples A and C.
In example B, only the few most abundant species show clear overdispersion. In all examples, the
counts of the most abundant species show more than twice the variance expected under multino-
mial distribution, but is found to be far higher than ten times the expected variance in A and C.
Thus, the assumption of multinomial distribution appears inappropriate for all examples. Conse-
quently, the methods of Fritsch and Hsu (1999) and Rogers and Hsu (2001) can be expected to be
inappropriate.

A second question is: How does the overdispersion of the counts carry over to the variance esti-
mates for the group-wise biodiversity indices, which mainly influence the width of the simultaneous
confidence intervals for the group-wise differences among them? To illustrate this, we calculated the
observed Shannon and Simpson index for each vector of observations, φ̂

(H )
i j and φ̂

(D)
i j . These values

are fitted by general linear models (homoscedastic Gaussian residuals assumed) accounting for pos-
sible treatment and block effects in examples A and B, and for the exposure and treatment effects in
examples C and D, respectively. The residuals of those models have been used to compute the empir-
ical variance of the treatment means σ̂ 2

i = (Ji/(Ji − 1))
∑Ji

j=1(φ̂i j − φ̄i j )
2. These can be compared to

the variance estimates V̂ar(φ̂(H )
i ) and V̂ar(φ̂(D)

i ) provided by the methods in Fritsch and Hsu (1999)
and Rogers and Hsu (2001) after treatment-wise summation of the counts and assuming multinomial
counts. Table 3 shows the minimal and maximal ratios V̂ar(φ̂(H )

i )/σ̂ 2
i for each of the four examples.

This illustrates the extent of underestimating the variance when relying on the multinomial assumption
for between-group inference concerning diversity indices (as recommended by Fritsch and Hsu, 1999;
and Rogers and Hsu, 2001. In this second step, we find that there is also evidence for the inappro-
priateness of the multinomial assumption on the scale of biodiversity indices. For all groups in the
four examples, the variance estimates according to Fritsch and Hsu (1999) and Rogers and Hsu (2001)
are smaller than the empirical variance of the treatment means. The ratio is between 0.01 and 0.1 for
examples A and C and it ranges between 0.13 and 0.32 in example B (empirically showing the lowest
overdispersion).
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Figure 2 Observed variance of the species counts (after fitting log-linear models with multinomial
assumption) plotted versus expected variance under multinomial assumption, with logarithmic scaling
for both axes. Rare species (overall expected value per observational unit < 1) are shown in gray, very
rare species (occurring only once in the data set) are shown in light gray. The solid line indicates that
observed variance equals the expected variance, dotted lines indicate 2-, 5-, and 10-fold overdispersion
in the species counts.
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Table 3 Minima and maxima of the treatment-wise ratios of variance estimates under multinomial
assumption to empirical variance estimate for φ(H ) and φ(D) in the four example data sets are given
in columns 1–4. Columns 5 and 6 show the p-values of the Shapiro–Wilk test on normality applied to
the residuals of linear model fits for φ

(H )
i j and φ

(D)
i j , respectively.

V̂ar(φ̂(H )
i )/σ̂ 2

i (φ̂
(H )
i j ) V̂ar(φ̂(D)

i )/σ̂ 2
i (φ̂

(D)
i j ) p-value (Shapiro–Wilk)

Example Min Max Min Max φ̂
(H )
i j φ̂

(D)
i j

A 0.033 0.105 0.012 0.111 0.4259 0.4939
B 0.131 0.279 0.189 0.328 0.3985 0.2146
C 0.010 0.027 0.006 0.033 <0.0001 <0.0001
D 0.128 0.815 0.094 0.197 0.7489 0.3285

Finally, the residuals of these linear models can be analyzed with respect to the appropriateness
of assuming the normal distribution for the observed biodiversity indices φ̂

(H )
i j and φ̂

(D)
i j . While the

residuals in examples A, B, and D provide no evidence against normality in a Shapiro–Wilk test
(Table 3), the residuals in example C clearly deviate from normality, where the Simpson index is left-
skewed and the Shannon index is right-skewed in the corresponding Q-Q plots (not shown). In the
plots, the residuals of the examples A and B also show similar patterns of deviation from normality,
which are, however, not significant at the 5% level. Thus, applying classical multiple comparison
procedures (assuming homoscedastic Gaussian residuals) could be appropriate in some cases, but may
not in others, e.g., in example C.

4.2 Comparing diversity in example D

In example D, we are interested in comparing the low and high dose of enrichment with organic
matter to the untreated control group. In Fig. 3, simultaneous confidence intervals for these two
differences from a common control are shown for the Shannon and Simpson indices, based on the
four methods under consideration. With respect to the practical question at hand, we find no sig-
nificant difference in Shannon or Simpson diversity between the low enrichment and control and
the high enrichment and control (a difference of zero is included in the intervals for all three com-
parisons). Finding no significant effect here may be due to the true absence of the effect or due to
the high residual variation and very small sample size, such that potential small effects can not be
detected as significant. The asymptotic method relying on the assumption of multinomial distributed
counts (AM) leads to the narrowest confidence intervals, due to underestimating the uncertainty of
the diversity estimates in overdispersed count data. All three bootstrap methods yield wider inter-
vals than the AM method. The AG, WY, TS, and AM methods are symmetric around the point
estimate by construction, while the intervals yielded by the PE method are slightly asymmetric, tak-
ing the skewness of the distribution of the Shannon and particularly the Simpson estimator into
account.

4.3 Results of the simulation study

Figures 4 and 5 show the observed simultaneous coverage probabilities of nominal 95% simultaneous
confidence intervals for differences to control of Shannon indices and Simpson indices, respectively.
The coverage probabilities vary over a wide range between the methods. To show this wide range but
still use a common plot range for comparing the five methods, providing a high resolution for coverage
probabilities between 0.8 and 1, we use a clog scale in the graphics depicting simulated coverage
probabilities. The asymptotic method assuming a multinomial distribution (AM) works well for those
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Figure 3 Simultaneous 95% confidence intervals for differences of Shannon and Simpson diversity
indices between the low and high dose to the untreated control. Horizontal bars indicate the confidence
region, while points indicate the estimates. Different values of gray distinguish intervals computed by
the five different methods, AM (asymptotic multinomial), AG (asymptotic Gaussian), WY (Westfall–
Young), TS (Bootstrap-t based on sumed counts), and PE (percentile method). The vertical line
indicates the null hypothesis of no difference in diversity indices.

settings where the simulated counts are nearly multinomial distributed (1.01-fold overdispersion), while
the resulting simultaneous confidence intervals are severely too narrow for all considered cases with
clear overdispersion. If one would use this method for a test decision and claim a significant change in
diversity if 0 is excluded by one interval, this claim would be erroneous in about 20%, 60%, or 80% of
the cases, where the method is applied to data with 2-, 5-, or 10-fold overdispersion, respectively. The
WY and the AG methods have very similar coverage probabilities for all simulated parameter settings.
When applied with the Shannon index, they show very low coverage probabilities for situations with
high but differing diversity in combination with the smaller total number of counts per observational
unit ni j . For the Simpson index, WY and AG have very good properties for the situations considered,
except for the two situations with relatively high diversity that differs between groups (see settings k21,
k12 in Table 1 and Fig. 5): The distribution of the group-wise Simpson indices (close to its bound 1)
is then skewed differently in the different groups. The observed coverage probability may be higher
or lower than the prespecified level. The observed coverage probabilities of the TS and PE methods
based on summed counts do not differ clearly between situations with equal (k1, k2, k3, k4) and
unequal (k12, k21, k34, k43) group-wise Shannon indices. Possibly, they are less affected by the bias
of the Shannon index. Both methods have (at least slightly) too low coverage probabilities in most
situations considered. In particular, the PE method has too low coverage probability if there are only
Ji = 5 replications per group (first and second row in Figs. 4 and 5).

For a subset of the settings described in Section 3.5, we additionally simulated the performance of the
methods for all pairwise comparisons, i.e., Tukey-type multiple comparisons (results not shown). The
results support the findings for comparisons to control, whereas the minimal coverage probabilities
for situations with a small number of replications and a small total sample size are even somewhat
lower. Detailed tables and additional graphics of all simulations are available from the corresponding
author upon request. Graphics presenting additional simulation results are available in Supporting
Information.
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Figure 4 Simultaneous coverage probabilities of nominal 95% simultaneous confidence intervals for
Shannon indices. The nominal simultaneous confidence level is represented by the vertical solid line.
The coverage probabilities are presented on a clog scale. In the five columns, results for the five methods
under consideration (asymptotic multinomial: AM, approximate Gaussian: AG, Westfall–Young: WY,
Bootstrap-t based on summed counts: TS, and percentile intervals based on summed counts: PE) are
shown. The four rows display results for different numbers of replications (Ji) and different number of
total counts per trap (ni j), horizontal lines in subgraphs show results for the different diversity patterns
introduced in Table 1. Lighter gray indicates higher overdispersion.

5 Discussion

Motivated by four data sets with background in agricultural or marine ecology, we investigated the
performance of simultaneous confidence intervals for differences of diversity indices. The analysis of
the example data shows that overdispersion of count data can be of substantial extent, making the
assumption of the multinomial distribution for the data implausible. Previously published methods
to compute simultaneous confidence intervals based on the multinomial assumption are compared
to different bootstrap approaches which do not rely on this assumption and can take overdispersion
into account. In a simulation study, drawing overdispersed count data from Dirichlet-multinomial
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Figure 5 Simultaneous coverage probabilities of nominal 95% simultaneous confidence intervals for
Simpson indices. The nominal simultaneous confidence level is represented by the vertical solid line.
The coverage probabilities are presented on a clog scale. In the five columns, results for the five methods
under consideration (asymptotic multinomial: AM, approximate Gaussian: AG, Westfall–Young: WY,
Bootstrap-t based on summed counts: TS, and percentile intervals based on summed counts: PE) are
shown. The four rows display results for different numbers of replications (Ji) and different number of
total counts per trap (ni j), horizontal lines in subgraphs show results for the different diversity patterns
introduced in Table 1. Lighter gray indicates higher overdispersion.

mixtures and relative abundances following geometric series, it is illustrated that methods based on
the multinomial assumption have unacceptably low coverage probability for the simulated values of
overdispersion. The three bootstrap versions show coverage probabilities closer to the nominal level for
all situations with overdispersed data considered in our simulation. Using classical multiple comparison
procedures such as the Dunnett procedure to compare samples of observed diversity indices has good
coverage probabilities when there is no difference between the samples. However, such intervals may
have very low coverage probabilities when samples differ in diversity and the Shannon index is used.
Following the previously published recommendation to sum up counts within groups (Rogers and
Hsu, 2001) in the context of randomized field trials concerning diversity, and to use methods based
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on the multinomial assumption for subsequent statistical inference may have devastating effects on
the validity of this inference. Rogers and Hsu (2001) discourage taking replications into account by
using linear models or ANOVA when comparing Simpson indices. In contrast to Rogers and Hsu
(2001), we recommend using linear models and subsequent multiple comparisons or appropriate
bootstrap methods as a first choice if randomized replications are available, and discourage basing
conclusions on methods relying on the multinomial assumption without a careful assessment of this
strong assumption.

The comparison of three different bootstrap methods is motivated by some specific problems of
the diversity indices considered: The estimator of the Simpson index may have a skewed distribution
because it is bounded between 0 and 1, the estimator for the Shannon diversity is biased depending
on the sample size and the relative abundance pattern, the latter being only observable in parts, and
may have a skewed distribution as well. Multiple comparison procedures based on assuming Gaussian
errors and the Westfall–Young method of resampling the residuals of a linear model are well known
and simple to use. The Westfall–Young method, in principle, has the advantage that it can deal with
nonnormality of the data. In the simulation study, however, we found very similar coverage probabilities
in the two approaches. Because both are based on diversity indices computed for each observational
unit, their coverage probability can be severely decreased when applied for the Shannon index with its
biased estimator. The two alternative methods, which are based on group-wise summed counts, are less
affected by the bias of the Shannon estimator. However, the percentile method has considerably lower
coverage probability than the two other methods, in particular with low group-wise sample sizes as
are common in many studies. An advantage of the simple percentile procedures based on approximate
normality and the Westfall–Young method is that they can also straightforwardly be applied for other
indices of diversity without the need of specifying a variance estimator, e.g., if additional interest
would be in the evenness or species richness. Another difference of the percentile method from all
other methods considered in this paper is that the intervals are not constructed symmetrically with
respect to the point estimates. This is an advantage when the distribution of the estimators is skewed
by different magnitudes between samples, and thus the distributions of the estimated differences are
skewed as well. However, both other bootstrap methods may be constructed asymmetrically too, while
using the 1 − α/2-quantiles of the minimum and maximum test statistics; see pages 58 and 83 in
Westfall and Young (1993).

In many practical situations, additional structures such as blocks, more complicated hierarchical
structures, or observation of covariates may be contained in the data. The Westfall–Young method
of resampling the residuals is the only bootstrap method considered here that could be modified
to deal with blocks or covariates. A detailed example and a discussion of bootstrapping residuals
in presence of covariates are presented in Westfall and Young (1993, pp. 106–111). Our simulation
study does not involve these practically relevant problems. Hence, the methods and conclusions of
the simulation studies are restricted to the simplistic case of a completely randomized design. If a
data set contains more complex randomization structures or covariates, a more flexible approach is to
use linear models (assuming homoscedastic Gaussian residuals) to fit diversity indices computed for
each observational unit. Subsequent multiple comparison procedures are described in Hothorn et al.
(2008). When following this approach, transformations may be necessary to approach the plausibility
of additive effects, homoscedasticity and normality of the residuals. The analysis of the four example
data sets here suggests that this has to be assessed on a case-by-case basis.

Although only comparisons to control in a simple one-way treatment structure have been considered
in detail, all four methods can be generalized for user-defined multiple contrasts among several treat-
ment groups. This generalization, where particular comparisons of interest are defined in a contrast
matrix, is already implemented in the R-programs used for the simulation study above. Generally, the
use of diversity indices, summarizing observed abundances in a community by just one number, might
be the subject of debate. A more informative approach is that of Di Battista and Gattone (2003) which
directly compares relative abundance patterns.
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a b s t r a c t

In biological and medical research, continuous, strictly positive, right-skewed data,
possibly with heterogeneous variances, are common, and can be described by log-normal
distributions. In experiments involving multiple treatments in a one-way layout, various
sets of multiple comparisons among the treatments and corresponding simultaneous
confidence intervals can be of interest. The focus is on multiple contrasts of the expected
values of the treatments. Previously published methods based on normal approximations
and generalized pivotal quantities are extended to the case of multiple contrasts. These
methods are evaluated in a simulation study that involves comparisons to a control group,
all pairwise comparisons and, to illustrate more general multiple contrast types, a non-
standard type of contrast matrix. A method based on generalized pivotal quantities is
recommendedbecause it is superior to all othermethods in termsof simultaneous coverage
probability andbecause the type-I-errors are distributed almost equally between lower and
upper confidence bounds. Methods based on normal approximations are found to be very
liberal and biased with respect to directional type-I-errors. These methods are illustrated
with an example from pharmaceutical research.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In biological or medical research, data are often strictly positive and have right-skewed distributions with variances
that increase with increasing means. In particular, these properties can be expected when the observed random variable
can be assumed to arise from multiplicative processes. Examples include the mass of cultures or areas of plant leaves in
early (exponential) stages of growth, gene expression and metabolite contents in biological systems. One way to take those
properties into account is to assume a log-normal distribution for the data. This assumption can be justified theoretically in
some situations, e.g., particle size distributions (Johnson et al., 1994). In other cases, such as the area under the curve (AUC)
in pharmacokinetics, a log-normal distribution is frequently assumedwithout theoretical justification (Liu andWeng, 1994).

In controlled studies that include several experimental treatments, multiple comparisons among these treatments are
common. This paper considers the case where the familywise error rate (FWER) is controlled for a set of comparisons, and
the magnitude and relevance of effects are assessed via simultaneous confidence intervals for those multiple comparisons.
Standard procedures under the assumption of normal data are Tukey’s method for all pairwise comparisons (Tukey, 1953)
andDunnett’smethod for comparisons to a control group (Dunnett, 1955). To addressmore specific experimental questions,
simultaneous confidence intervals for user-defined multiple contrasts are available as well (Bretz et al., 2001) under the
normality assumption.

A frequently used approach to analyze log-normal data is to log-transform the observations, to assume normality,
apply standard methods and interpret the back-transformed confidence intervals (e.g. Steinijans and Hauschke, 1992). In
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cases that involve two or more treatment comparisons of the means of the log-transformed data, this approach leads to
confidence intervals for ratios ofmedians. Another (computationallymore difficult) option is tomake an explicit comparison
of treatments in terms of the differences or ratios of their expected values. To compare two samples, different methods
to compute confidence intervals for those parameters have been proposed and evaluated with respect to their coverage
probability (Chen and Zhou, 2006; Krishnamoorthy andMathew, 2003).While a computationally simple asymptotic version
has been found to have very poor empirical properties, other methods based on likelihood profiles and generalized pivotal
quantities have been recommended (Chen and Zhou, 2006). A number of related problems have been addressed recently:
Tian andWu (2007) considered the estimation of a confidence interval for the commonmean of several log-normal samples.
Li (2009) addressed the problem of globally testing the equality of means of several samples in a generalized p-value
approach. The problem of constructing simultaneous confidence intervals for user-defined sets of ratios or differences of
expected values under the log-normal assumption has not been considered until now.

In Section 2, the asymptotic method and the method based on generalized pivotal quantities as described by
Krishnamoorthy andMathew (2003) and Chen and Zhou (2006) are extended to the construction of simultaneous confidence
intervals for multiple, user-defined sets of ratios or differences of expected values. The simple standard techniques of
Bonferroni adjustments for two-sample comparisons (Chen and Zhou, 2006) are included. The simultaneous coverage
probability is compared in a Monte Carlo simulation with various parameter settings including balanced and unbalanced
sample sizes and different sets of comparisons in Section 3. In Section 4, these methods are illustrated by applying them to
a data set.

2. Methods

2.1. Notation and assumptions

In this work, a completely randomized design is assumed where variablesWij are observable with i = 1, . . . , I denoting
the treatment groups and j = 1, . . . , ni denoting the independent replications of the ith treatment. It is also assumed that
Wij = exp(Yij), where Yij ∼ N(µi, σ

2
i ), such that the variables Wij have two-parameter log-normal distributions where

both parameters, µi and σ 2
i , can differ among the treatment groups i = 1, . . . , I . Under this assumption, the median of Wij

depends only on µi via exp (µi); the coefficient of variation, CVi =


eσ

2
i − 1, depends only on σ 2

i ; and the expected value

E

Wij


= exp

µi +

σ 2
i
2


, the variance V


Wij


= exp

2µi + σ 2

i

 
exp(σ 2

i )− 1

, the skewness and the kurtosis depend on

both parameters, µi and σ 2
i (Johnson et al., 1994).

The observations are denoted wij, and the corresponding log-transformed values are yij = log

wij

. The quantities

µ̂i =
1
ni

ni
i=1 yij and σ̂

2
i =

1
ni

ni
i=1


yij − µ̂i

2 are the maximum likelihood estimates for the parameters µi and σ 2
i ,

respectively, while σ̄ 2
i =

1
ni−1

ni
i=1


yij − µ̂i

2 denotes the usual unbiased estimate for σ 2
i .

2.2. Parameters of interest

Under the additional assumption of σ 2
i being equal in all groups i = 1, . . . , I (i.e., the assumption of a common coefficient

of variation in all treatments), it is straightforward to compute simultaneous confidence intervals for multiple differences
µi −µi′ using the methods of Tukey, Dunnett or more general multiple contrast tests. Back-transformation of the resulting
intervals leads to intervals for ratios of the medians, eµi−µi′ =

eµi
eµi′

.
This work focuses on differences or ratios of expected values rather than ratios of medians. For simplicity, the notation

is θi = E

Wij


= exp

µi +

σ 2
i
2


, θ = (θi, . . . , θI)

⊤, and ψi = log (θi), ψ = (ψi, . . . , ψI)
⊤. This work considers multiple

comparisons of user-defined sets of M ratios ρii′ = θi/θi′ or sets of M differences δii′ = θi − θi′ . More generally, the set of
theM parameters of interest is defined by anM × I matrix C with elements cmi in Eqs. (1) and (2),

ρ = exp

Cψ

, (1)

δ = Cθ. (2)

The conditions
I

i=1 cmi = 0,∀m = 1, . . . ,M and


i:cmi>0 cmi = 1,∀m = 1, . . . ,M simplify the practical interpretations
of the parameters as ratios of the expected values (or ratios of weighted geometric means of expected values) in Eq. (1), and
differences of the expected values (or differences of weighted arithmetic means of expected values) in Eq. (2).

When observations are assumed to be normally distributed, the expected value and the expectedmedian are the same. In
a number of models with non-normal distributions, treatments are compared by using differences or ratios of the expected
values or directly related parameters, e.g., in generalized linear models assuming Poisson, binomial or related distributions.
Conversely, comparing expected medians in parametric inference is uncommon, except under the log-normal assumption,
probably due to its computational convenience. In some applications of the log-normal distribution, such as the comparison
of medical costs (e.g. Chen and Zhou, 2006; Tian and Wu, 2007), it is evident that the expected values (the per case costs in
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the long run) are more relevant for decision making than median costs. An important practical advantage of using expected
medians for inference is that estimators for σ 2

i are not involved. An approach that uses medians is less vulnerable in the
presence of outlying observations than methods that compare expected values.

2.3. Simultaneous confidence intervals

Krishnamoorthy and Mathew (2003) and Chen and Zhou (2006) considered the case of computing intervals for ρ12 and
δ12 when I = 2. The computationally most simple method is to calculate the confidence intervals based on the normal

approximation. Maximum likelihood estimates for θi and ψi are θ̂i = exp

µ̂i +

σ̂ 2
i
2


and ψ̂i = µ̂i +

σ̂ 2
i
2 , respectively (Chen

and Zhou, 2006). For a case with I independent samples, the variance of θ̂i can be estimated as follows:

V̂

θ̂i


=
θ̂2i σ̂

2
i

ni
+
θ̂2i σ̂

4
i

2ni
, (3)

and the variance of ψ̂i can be estimated as follows:

V̂

ψ̂i


=
σ̂ 2
i

ni
+
σ̂ 4
i

2ni
, (4)

(Chen and Zhou, 2006; Krishnamoorthy and Mathew, 2003). Then, the asymptotic simultaneous two-sided (1 − α)
confidence intervals for ρm areexp

 I
i=1

cmiψ̂i ± z1−α/(2M)

 I
i=1

c2miV̂

ψ̂i

 (5)

and for δm I
i=1

cmiθ̂i ± z1−α/(2M)

 I
i=1

c2miV̂

θ̂i

 (6)

where z1−α/(2M) denotes the (1−α/(2M)) quantile of a standard normal distribution. This computationally simple standard
approach based on asymptotic normality and the Bonferroni adjustment, is referred to as the ANBmethod.

For the comparison of two samples, Chen and Zhou (2006) consider two methods based on likelihood profiles and a
methodbased on generalizedpivotal quantities. It is difficult to generalize profile likelihoodmethods tomultiple comparison
procedures, because it is computationally demanding to build the profile over an M-dimensional grid and it is unclear
which quantile to use in the M-dimensional problem, to take into account the correlations among the multiple contrasts.
However, Krishnamoorthy andMathew (2003) described amethod based on generalized pivotal quantities that can be used
to construct simultaneous confidence intervals. For the ith sample, the generalized pivotal quantity is given by Eq. (7):

Ti = µ̂i −
Ziσ̄i

Ui
√
ni/

√
ni − 1

+
σ̄ 2
i

2U2
i / (ni − 1)

, (7)

where Zi is a standard normal random variable Zi ∼ N(0, 1) and U2
i is a χ2 random variable with ni − 1 degrees of freedom.

The quantity Ti is free of unknown parameters in the sense that ni is determined by the experimental design, µ̂i and σ̂i
can be calculated from the sample wij, and Zi and U2

i have well-defined distributions with known parameters. Confidence
intervals for ratios and differences of θi can be constructed by sampling a large number (K ) of values from Zi ∼ N(0, 1) and
U2
i ∼ χ2

ni−1 for each i and denoting them zik and u2
ik, respectively, with k = 1, . . . , K . Then tik can be computed in Eq. (8) for

all i = 1, . . . , I and all k = 1, . . . , K

tik = µ̂i −
zikσ̄i

uik
√
ni/

√
ni − 1

+
σ̄ 2
i

2u2
ik/ (ni − 1)

. (8)

Extending the approach of Chen and Zhou, 2006, the corresponding quantities for the M ratios (ρ1, . . . , ρM) and M
differences (δ1, . . . , δM) are:

rmk = exp


I

i=1

cmitik


, m = 1, . . . ,M, and k = 1, . . . , K , (9)

and

dmk =

I
i=1

cmi exp (tik) , m = 1, . . . ,M and k = 1, . . . , K . (10)
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When applying a Bonferroni adjustment to an analysis with M comparisons, the two-sided simultaneous 95% confidence
intervals for ρ and δ can be obtained from the empirical (α/(2M)) and (1 − α/(2M)) quantiles in the samples rmk, and dmk,
respectively, for m = 1, . . . ,M . The simulation study of Chen and Zhou (2006) for the two-sample case (I = 2 and M = 1)
shows that these intervals have much better properties than the asymptotic normal and are easy to compute. However,
by applying a Bonferroni adjustment, the correlation structure among the M estimators is ignored, such that they may be
more conservative than necessary if M is large and the estimators are positively correlated. In this work, the approach of
generalized pivotal quantities with Bonferroni adjustment (GPQB) is considered to be a standard.

By using a Bonferroni adjusted standard normal quantile z1−α/(2M), the ANBmethod above takes into account the number
of parameters, M , in the multiple comparisons problem, but ignores possible correlations among the estimators. Treating
this situation as a special case of the approach of Hothorn et al. (2008), a method can be defined that usesM-variate normal
quantiles zM,R,1−α in Eqs. (5) and (6) instead. By the assumption of independence among the groups i = 1, . . . , I , the

covariance matrix V

θ̂

for

θ̂1, . . . , θ̂I

T
has the diagonal elements V̂


θ̂i


and 0 in all off-diagonal positions. An estimator

of theM ×M correlation matrix for the case of multiple differences Cθ, denoted R

θ̂

, follows from standardizing CV


θ̂

C T .

More explicitly, the element in themth row andm′th column of R

θ̂

is given in Eq. (11):

I
i=1

cmicm′ iV̂

θ̂i




I
i=1

c2miV̂

θ̂i

 I
i=1

c2m′ iV̂

θ̂i

 . (11)

Given R(θ̂), the R package mvtnorm (Genz et al., 2011) can be used to find a two-sided quantile z2,M,R(θ̂),1−α such that

P

|Zm| < z2,M,R(θ̂),1−α,∀m = 1, . . . ,M


= 1 − α, where Z = (Z1, . . . , ZM) is a central, M-variate normal random vector

with correlation matrix R(θ̂). Quantiles for the one-sided case, z1,M,R(θ̂),1−α , can be chosen to fulfill P

Zm < z2,M,R(θ̂),1−α,

∀m = 1, . . . ,M


= 1− α. Accordingly, R(ψ̂) may be obtained if interest is in Cψ, using V̂

ψ̂i


from Eq. (4). This method is

referred to asANM, as it is based on a normal approximation and amultiplicity adjustment viamultivariate normal quantiles.
In the GPQB method in Eqs. (8)–(10), the marginal distributions are well-approximated. However, the joint distribution,

which involves potential correlations, is ignored. Both can be accounted for by applying the method of Besag et al. (1995) to
construct simultaneous confidence sets for a joint sample of the parameters of interest, here, rmk and dmk. Their method is
recalled for rmk:

1. Order rmk separately for each rowm = 1, . . . ,M , yielding the order statistics r [k]
m and the ranks r (k)m .

2. Build maxk = max

max


r (k)m


, K + 1 − min


r (k)m


, for each k = 1, . . . , K .

3. Order maxk, yielding max[k].
4. Let q1−α denote the nearest integer to (1 − α)K and find k∗

= max[q1−α ].
5. The lower and upper confidence limits of ρm,m = 1, . . . ,M are


r [K+1−k∗]
m ; r [k∗]

m


.

Upper confidence limits can be obtained by using maxk = max

r (k)m


in step 2 and


; r [k∗]

m


in step 5. Lower confidence

limits can be obtained by using mink = min

r (k)m


in step 2, ordering mink, yielding min[k] in step 3, and k∗

= min[qα ] and
r [k∗]
m ;


in steps 4 and 5 (compare Mandel and Betensky, 2008). Due to the use of ranks, it is not important whether the

algorithm is applied for a given sample of rmk on the scale of ρ or ψ. Additionally, the correlations of the M dimensions of
the joint distribution are taken into account by choosing the order statistics in the dimensions m = 1, . . . ,M according to
the quantile of the maximum ranks. If the sampled values rmk show a clearly positive correlation among the parameters of
interestm = 1, . . . ,M , then thismethodwill yield narrower intervals than the GPQBmethod. In this paper, this lastmethod
is called GPQ; on a theoretical basis, it is expected to perform the best among the methods considered.

With the GPQ and GPQB methods it is straightforward to construct simultaneous confidence intervals for more
complicated parameters, e.g., ratios of weighted arithmetic means (Hothorn and Djira, 2011). Two (M × I) contrast
matrices, A and B (with elements ami and bmi, respectively), may define linear combinations of the expected values
θi, to analyze the M ratios of those linear combinations, Aθ/Bθ. Instead of using Eqs. (9) or (10), one may computeI

i=1 ami exp tik

/
I

i=1 bmi exp tik

, for m = 1, . . . ,M, and k = 1, . . . , K , and apply the percentile confidence interval

methods (Besag et al., 1995) to yield simultaneous confidence bounds. However, this approach is not considered any further
in this paper.

Various types of bootstrap can also be used to construct simultaneous confidence intervals. Chen and Zhou (2006)
considered a parametric bootstrap approach in their simulation study for comparing two samples. This method can be

82



F. Schaarschmidt / Computational Statistics and Data Analysis 58 (2013) 265–275 269

adapted to multiple contrasts by obtaining an appropriate quantile by means of bootstrapping the maximum test statistic
(Westfall and Young, 1993) over the M contrasts. However, this approach relies on the same parametric assumptions, but
approximates the distribution of interest with less precision than the GPQ method (Chen and Zhou, 2006). The simulation
results of Chen and Zhou (2006) do not motivate to consider this approach any further. Another option is to use non-
parametric bootstrapping, for example, resampling from the observations wij with replacement and stratification by the
treatment groups. For each of the resulting data sets, the parameter of interest can be estimated, and the percentilemethods
by Besag et al. (1995) or Mandel and Betensky (2008) can be used to construct simultaneous confidence intervals. If the
log-normal assumption holds, such an approach should be suboptimal due to resampling a non-pivotal statistic. If the log-
normal assumption is clearly violated, it should outperform the remaining approaches. However, the investigation of these
problems is beyond the scope of this paper.

2.4. Monte Carlo simulation

A simulation study was performed to assess empirically the properties of two-sided nominal 95% confidence intervals.
As a primary criterion, the simultaneous coverage probability is considered, which is defined as the probability that all true
parameters ρm are included in their respective lower and upper confidence limits ρ l

m, ρ
u
m, i.e., P(ρ

l
m ≤ ρm ≤ ρu

m, for allm =

1, . . . ,M). Because confidence intervals are used for decisions upon directional hypotheses, it can be of interest to assess
whether the probability to exclude the true parameter is equal for both the upper and lower limits. For this purpose, the
difference between the probability of lower bounds to exclude any true parameters and that of the upper bounds in relation
to the overall probability to exclude any true parameter,

P

∃m = 1, . . . ,M : ρ l

m > ρm

− P


∃m = 1, . . . ,M : ρm > ρu

m


1 − P


ρ l
m ≤ ρm ≤ ρ l

m∀m = 1, . . . ,M
 , (12)

is estimated in the simulation study. In accordance with Chen and Zhou (2006), this quantity is referred to as the relative
bias. The above criteria were assessed for ρ and δ and the 23 parameter settings of µi and σ 2

i with I = 4, as shown in
Table 1. The parameter settings comprise settings with no difference in the expected values among the four groups, due
to the equality of µi and σ 2

i (settings 1–5) and despite the inequality of µi and σ 2
i (settings 6–11). Patterns of decreasing

and increasing values of θi are invoked by either differences in µi, while the σ 2
i s are held to be equal (settings 12–15), or by

differences in σ 2
i while theµis are held to be equal (settings 16–19), or by differences in bothµi and σ 2

i (settings 20–23). All
parameter settings are simulated for balanced sample sizes with ni = 5, 10, 20, 40, 100 and four sets of unbalanced sample
sizes (n1, . . . , n4) = (5, 10, 10, 10), (20, 10, 10, 10), (10, 20, 20, 20), (40, 20, 20, 20). Three types of contrast matrices C were
applied (Eq. (13)), which implement many-to-one comparisons to the first group, all pairwise comparisons and a particular
set of pairwise comparisons to the first and second group. Many-to-one comparisons, C (1), are a very common practical
problem, leading to only positive correlations among the M = I − 1 estimators. All pairwise comparisons, C (2), induce a
more complicated, singular correlationmatrix, as the contrastmatrix contains implicit redundancy. The last contrastmatrix,
C (3), is included merely to illustrate that the given methods can be used for more general multiple comparison problems
customized by the user for particular experimental questions.

C (1) =


−1 1 0 0
−1 0 1 0
−1 0 0 1


, C (2) =


−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1

 , C (3) =

−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1

 . (13)

For each parameter setting, 10 000 random samples were drawn from log-normal distributions, and the above criteria
were recorded. The GPQ and GPQB method were applied with K = 10 000. The simulation study was performed using
R-2.12.0 (RDevelopment Core Team, 2010). Tomake themethods defined here available for users, the GPQ andANMmethod
have been included in the R package MCPAN 1.1-13 (Schaarschmidt et al., 2011), where the functions lnrci and lndci
implement the methodology for the ratios and the differences, respectively.

3. Results

Fig. 1 shows that, summarizing over all the settings ofµi, σ
2
i , ni, contrast types and for both the ratios and differences, the

GPQ method provides simultaneous coverage probabilities that are closest to the nominal level. The Bonferroni corrected
GPQB has relatively good properties, but it is always more conservative than the GPQmethod. The two asymptotic methods
are severely liberal in themajority of the cases, but can be conservative in some settings. Violations of the nominal confidence
level (or the type-I-error of hypothesis tests) of similarmagnitude have been reported for the asymptoticmethod in the two-
sample case (Chen and Zhou, 2006; Krishnamoorthy andMathew, 2003). Themost severe violations are due to small sample
settings (see Fig. 2) and situations with large σ 2

i , or σ
2
i s differing among groups (not shown). In general, the asymptotic

methods perform better for ratios than for differences.

83



270 F. Schaarschmidt / Computational Statistics and Data Analysis 58 (2013) 265–275

Table 1
Settings of the parameters µi and σ 2

i in the simulation study.

Setting µ1 µ2 µ3 µ4 σ 2
1 σ 2

2 σ 2
3 σ 2

4

1 1.90 1.90 1.90 1.90 0.2 0.2 0.2 0.2
2 3.75 3.75 3.75 3.75 0.5 0.5 0.5 0.5
3 1.00 1.00 1.00 1.00 2.0 2.0 2.0 2.0
4 3.00 3.00 3.00 3.00 2.0 2.0 2.0 2.0
5 −2.00 −2.00 −2.00 −2.00 0.5 0.5 0.5 0.5

6 1.90 1.90 1.90 1.75 0.2 0.2 0.2 0.5
7 1.90 1.90 1.90 1.95 0.2 0.2 0.2 0.1
8 3.75 3.75 3.50 3.50 0.5 0.5 1.0 1.0
9 3.75 3.75 3.90 3.90 0.5 0.5 0.2 0.2
10 1.00 1.00 0.50 0.50 2.0 2.0 3.0 3.0
11 1.00 1.00 1.50 1.50 2.0 2.0 1.0 1.0

12 1.90 1.90 3.90 3.90 0.2 0.2 0.2 0.2
13 1.90 1.90 −1.85 −1.85 0.2 0.2 0.2 0.2
14 1.00 3.00 3.00 3.00 2.0 2.0 2.0 2.0
15 3.00 1.00 1.00 1.00 2.0 2.0 2.0 2.0

16 1.00 1.00 1.00 1.00 2.0 2.0 1.0 0.5
17 1.90 1.90 1.90 1.90 0.2 0.2 0.5 1.0
18 −2.00 −2.00 −2.00 −2.00 0.5 0.5 0.5 0.1
19 −2.00 −2.00 −2.00 −2.00 0.5 0.5 0.5 2.0

20 −1.85 1.75 3.75 3.75 0.2 0.5 0.5 0.5
21 1.95 1.90 3.75 3.50 0.1 0.2 0.5 1.0
22 3.00 1.75 1.90 1.90 2.0 0.5 0.2 0.1
23 2.50 3.00 3.50 1.50 3.0 2.0 1.0 1.0

Fig. 1. Simultaneous coverage probability of the four methods, for nominal 95% confidence intervals for ratios and differences as defined by the contrast
matrices in Eq. (13). The boxplots summarize results for all settings of µi , σ 2

i and ni introduced in Section 2.4.

Fig. 2 provides a more detailed comparison of the estimated simultaneous coverage probabilities of the GPQ method
relative to the other methods, with restriction to many-to-one comparisons. The dotted lines mark the least extreme values
of observed coverage probabilities, forwhich hypotheses tests against a null of coverage probability=0.95would be rejected
at the 5% level. Thus, for an exact method, only 5% of the settings should be smaller or larger than the dotted lines. Fig. 2(a)
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a b c

d e f

Fig. 2. The simultaneous coverage probability for the GPQmethod (y-axis) is plotted against the simultaneous coverage probability of the GPQB, ANM and
ANB methods for many-to-one comparisons. Different symbols distinguish the various sample size settings, where a darker gray indicates higher average
sample size.

and (d) illustrate that using the GPQ instead of the GPQB method leads to a coverage probability closer to the nominal level
in nearly all cases. Nevertheless, the GPQmethod ismore conservative thanwould be allowed for an exactmethod, if sample
sizes ni = 5, 10 are involved. Fig. 2(b) and (e) show that those difficult settings with small or unbalanced sample size are
mainly responsible for the severely liberal performance of the ANMmethod, whereas with ni = 100 also this method shows
coverage probabilities close to the nominal level. Finally, Fig. 2(c) and (f) show that the unacceptable performance of the
ANM method is not due to using estimates of the variances to estimate the correlation matrix; this performance is also
evident when the simple Bonferroni correction is usedwith the normal approximation. The Bonferroni correction, however,
may lead to an unnecessarily high coverage probability when sample sizes are larger (ni = 40, 100).

Fig. 3 shows the results for the relative bias (Eq. (12)) of the simultaneous confidence intervals with respect to the
occurrence of type-I-errors in the lower and upper tails. Values close to 0 indicate that type-I-errors are equally likely in
lower and upper tails, while negative values indicate that true parameters are more likely to be excluded erroneously by
upper bounds than by lower bounds. In general, the magnitude of the bias is smaller for ratio intervals than for intervals
for multiple differences, and the ANM method shows extreme values of relative bias. Most extreme bias values are found
in situations of unbalanced or small sample sizes, and in situations where the σ 2

i parameters (the groupwise coefficients of
variation) are high in value or differ among the groups. In the ANMmethod, the magnitude and the direction of the relative
bias depends strongly on the particular parameter setting; in the GPQ approach, this dependency is less pronounced. This
illustrates that the symmetric ANM intervals are inadequate with respect to the skewed distributions.

Additional simulations (results not shown) have been run using unbiased variance estimates σ̄ 2
i and the denominator

(ni − 1) in the computation of the ANM and ANB methods (Krishnamoorthy and Mathew, 2003). With this modification,
the general patterns of the coverage probability and the relative bias are the same. However, the methods are slightly less
liberal, and the amount of relative bias is reduced. The minimal coverage probabilities are approximately 0.85 and 0.68,
whereas with ML estimates, values of only 0.75 and below 0.60 are observed. Thus, such an adjustment improves the ANM
and ANB methods, but the improvements are not large enough to recommend ANM or ANB for small or moderate sample
sizes.

For a limited number of parameter settings, the properties of the four methods have been compared under slight
violations of the log-normal assumption. With a probability of 0.1, individual values yij were replaced by values sampled
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a b

c d

Fig. 3. Relative bias (Eq. (12)) of the GPQ and ANM method for the 23 parameter settings given in Table 1 (y-axis), where different symbols distinguish
the different sample size settings.

from a normal distribution with identical µi but doubled values of σ 2
i , thus adding a small amount of outlying observations

to both tails of the log-normal distributions specified in Table 1. For the GPQ method, this results in increased absolute
values of the relative bias and more liberal performances for large sample sizes (ni = 100) in single parameter settings.
The minimal coverage probability observed for the GPQ method was 0.92 for the nominal 0.95 confidence intervals. The
ANMmethod and ANBmethod show unacceptably low coverage probabilities and extreme relative bias values under these
conditions. The details of these additional simulations are available from the author upon request.

4. Example

The example data set (Hand et al., 1994) consists of 57 observations of nitrogen bound bovine serum albumin in mice,
where animals are assigned to I = 3 treatment groups: normal mice (n1 = 20), alloxan-induced diabetic mice (n2 = 18)
and alloxan-induced diabetic mice treated with insulin (n3 = 19). Fig. 4 (a) shows boxplots of the three treatment groups;
Fig. 4 (b) and (c) present Q–Q plots of the residuals of a linear model (accounting for differences among treatment groups)
based on the original serum albumin values and the log-transformed serum albumin values, respectively.

The original values are obviously right-skewed, while the log-transformed data do not contradict the assumption of
a normal distribution. Further, applying the Shapiro–Wilk test to those residuals leads to the rejection of the normality
assumption for the original data (p = 7 ∗ 10−6); after a log-transformation, the hypothesis of normality cannot be rejected
(p = 0.315). Hence, the log-normal assumption appears to be reasonable for the given data set.

Table 2 lists sample estimates for µi, σi and expected values θi. A possible experimental question is whether the mean
serum albumin levels in the two treated groups are changed with respect to the mean serum albumin level in the control
group of normalmice. This leads to applying the contrastmatrix C(1) from (13)with the last column and the last row omitted.
Because the ANB andGPQBmethods are unnecessarily conservative in some cases,while the ANBdoes not avoid the severely
liberal performance of the normal approximation in other cases, this example is restricted to showing results for the ANM
and GPQ methods. To illustrate the empirical distribution of the two ratios and two differences obtained using the GPQ
method, Fig. 5 shows scatterplots of K = 10000 values of rmk and dmk as well as histograms for the marginal distributions
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a b c

Fig. 4. Boxplot (a), Normal Q–Q plot of the residuals of a 1-way-ANOVA model for the original (b), and log-transformed serum albumin values (c).

a b

Fig. 5. Scatterplots for the joint distribution and histograms of the marginal distributions of for (a) the two ratios, rmk , and (b) the two differences, dmk .
Solid gray boxes and dotted gray lines show the confidence set obtained by the GPQ method and the projection to the axes, respectively.

Table 2
Groupwise parameter estimates for the example.

Group i ni µ̂i σ̄i θ̂i

Normals 20 4.859 0.963 205.1
Alloxan 18 4.867 0.922 198.7
AlloxanInsulin 19 4.397 0.834 115.0

for eachm = 1, 2. It is clear that the joint distribution underlying the GPQ confidence intervals is not elliptic (as is assumed
when using the normal approximation), and the marginal distributions are skewed, particularly for the differences to the
control. The gray boxes are the confidence regions obtained by the GPQ method; they contain the central 9500 sampled
values rmk and dmk. Table 3 presents the two-sided nominal 95% simultaneous confidence intervals for the resulting ratios
anddifferences to the control group, according to theANMandGPQmethods. At the 5% significance level, no change between
the two treated groups and the control group can be inferred. In general, the ANM intervals are narrower than the GPQ
intervals, which is consistent with the results of the simulation study.

5. Discussion

This paper describes methods to compute simultaneous confidence intervals in multiple comparisons for ratios or
differences of expected values of several log-normal samples in a one-way layout. Simple asymptotic methods, which rely
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Table 3
Two-sided nominal 95% simultaneous confidence intervals for ratios and differences to the control
group.

ANM GPQ
Comparison Estimate Lower Upper Lower Upper

Alloxan/Normal 0.9686 0.4272 2.1958 0.3665 2.5759
AlloxanInsulin/Normal 0.5608 0.2617 1.2016 0.2216 1.2787

Alloxan - Normal −6.4481 −170.4314 157.5352 −281.7700 250.5247
AlloxanInsulin - Normal −90.0815 −220.9288 40.7658 −363.5005 42.8610

only on sample estimates for the first and second moments, fail to cover the true parameter vector with the prespecified
confidence probability, except in cases where sample sizes are large, e.g., 40 or 100 observations per group. Methods based
on generalized pivotal quantities (Weerahandi, 1993) clearly performbetter, even for sample sizes as small as 5 observations
per group. In addition, taking into account the correlations among the parameter estimates avoids the unnecessarily
conservative performance that is a consequence of applying the simple Bonferroni-correction. The use of contrast matrices
allows for standard multiple comparisons such as comparisons to a control group, all pairwise comparisons, but also for
user-defined comparisons related to non-standard experimental questions. It is straightforward to generalize this approach
to other contrast types such as groupwise comparisons to the overall mean. The approaches discussed here are restricted
severely in that they are described only for the one-way layout, i.e., they cannot be applied in the presence of covariates,
block effects or other secondary sources of variation.

The method based on generalized pivotal quantities is computationally simple, it does not depend on the availability
of algorithms to compute multivariate normal quantiles and it approximates a joint distribution of parameters, which is
not available analytically. In this respect, it is an interesting option for other multiple comparison problems. For example,
multiple contrasts of means of unbalanced, heteroscedastic normal samples follow a multivariate t-distribution. However,
the degrees of freedom of the χ2 denominators defining the multivariate t distribution differ among the multiple contrasts,
i.e., among the dimensions of themultivariate t distribution. Probabilities and quantiles of such amultivariate t-distribution
are not available analytically. Hasler and Hothorn (2008) used multiple multivariate t quantiles with different degrees of
freedom to address this problem. Related approaches have been proposed recently (Li et al., 2011; Xiong and Mu, 2009);
a combination of their approaches with the simple algorithm here could yield competitive performance compared to
the method of Hasler and Hothorn (2008) with respect to computation time, theoretical background and computational
availability.
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ABSTRACT

In multiple comparisons of fixed effect parameters in linear mixed models, treatment effects

can be reported as relative changes or ratios. Simultaneous confidence intervals for such ratios had

been previously proposed based on Bonferroni adjustments or multivariate normal quantiles ac-

counting for the correlation among the multiple contrasts. We propose Fieller-type intervals using

multivariate t quantiles and the application of Markov Chain Monte Carlo techniques to sample

from the joint posterior distribution and construct percentile-based simultaneous intervals. The

methods are compared in a simulation study including bioassay problems with random intercepts

and slopes, repeated measurements designs and multicenter clinical trials.
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1. INTRODUCTION

Inferences for ratios of mean parameters in linear modelsare neededwhen the parameters of

interest are ratios of the original model parameters or ratios of linear combinations of theoriginal

model parameters. For example, this problem arises in relative potency estimations (Zerbe,

1978; Djira, 2010). In other cases, expressing the change between treatment means in terms

of fold-change (Dilba et al., 2006) instead of absolute differences may be more convenient for

interpretations of relevancy as is needed for assessing non-inferiority or superiority.

Trials involving multiple treatments may lead to multiple comparisons and the estimation of

simultaneous confidence intervals for multiple, correlated ratio parameters. Commonly used meth-

ods to account for multiple comparisons (e.g. Bonferroni, Sidak or Scheffe adjustment) are based

on conservative assumptions concerning the correlation structures. Such methods can be improved

by taking the correlations into account (Djira, 2010; Dilba et al., 2006; Piepho et al., 2005) through

quantiles of the related multivariatet or multivariate normal distribution. However, the correlation

structure in these problems depends on the unknown ratio parameters. For special cases, exact

confidence sets can be constructed (Dilba et al., 2006; Hare and Spurrier, 2007). In more gen-

eral approaches, methods based on the plug-in of ratio estimates have been proposed (Djira, 2010;

Dilba et al., 2006; Piepho et al. 2005).

If trials involve clustered observations their analysis by linear mixed models leads to further

complications for estimating simultaneous confidence intervals of fixed effects parameters. De-

pending on how treatments are assigned to or within clusters, the random effects accounting for

the clusters may lead to correlations among the estimates for the fixed effects parameters. The

construction of simultaneous confidence intervals for ratios of fixed effect parameters has been

considered by Young, Zerbe and Hay (1997) and Djira (2010). Young et al. (1997) adjust for mul-

tiple comparisons based on the conservative Scheffe approach, ignoring the correlation structure

and imposing some restrictions on the denominators of the ratios. Djira (2010) proposed a method

based on multivariate normal quantiles, using an estimate of the correlation structure that depends
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both on the estimated covariance matrix of the fixed effects parameters and the estimated ratios.

Different approximations are involved in the construction of simultaneous confidence intervals

for ratios in mixed linear models, but their practical impact on the coverage probability has not yet

been assessed. In this paper, the simultaneous coverage probability of such intervals is estimated

for a number of different models as well as parameter and sample size settings. In particular, the

properties of the methods described by Djira (2010) are investigated using multivariate normal and

multivariatet quantiles as well as Bonferroni adjustedt-quantiles. Alternatively, one can directly

deal with the uncertainty concerning the covariance structure and the ratio parameters by using

objective priors and base inference on samples from the joint posterior distribution of the ratio

parameters. Based on this sample, simultaneous confidence intervals can be constructed (Besag et

al., 1995).

The rest of the paper is organized as follows. Sections 2.1 and 2.2 lay down the notations and

methods for simultaneous confidence intervals for ratios in linear mixed effects models. Section

2.3 describes the simulation setup. And a variety of models of practical interest are described in

Section 2.4. Section 3 compares the methods in terms of the empirical coverage probabilities and

interval widths. In Section 4, the methods are applied to a real data example. Finally, the findings

are discussed in Section 5.

2. METHODS

Consider linear mixed effects models of the general form

Y = Xθ + Zu + e, (1)

whereY is the response variable,X is the design matrix of the fixed effects, and the corresponding

vector of fixed effects isθ = (θ1, ..., θI )
′. Z is the random effects design matrix with corresponding

random effectsu. The residual errore is assumed to be independent ofu and bothu ande are

normally distributed.
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Although the model in (1) assumes additivity of effects, in some contexts, it is of interest to

further express differential effects in terms of ratio parameters (Young et al., 1997; Djira, 2010). In

general, we considerM ratios of linear combinations of the fixed effects parameters. That is,

γm =
cmθ

dmθ
, m= 1, ...,M (2)

The row vectorscm = (cm1, ..., cmI) anddm = (dm1, ..., dmI) contain known constants determining

which (linear combinations of) elements ofθ are used to define themth ratio. TheM ratios are

defined by two matrices (numerator and denominator)C andD of dimension(M × I ), and with

elementscmi anddmi, respectively.

2.1. SIMULTANEOUS FIELLER CONFIDENCE INTERVALS

From a linear mixed effects model fit, estimates for the fixed effects parameters,̂θ, and its

covariance matrixV̂(θ̂) can be obtained. Approximate simultaneous confidence intervals for

γ1, ..., γM can be obtained as follows (Djira, 2010). Let

Wm = (cm− γmdm) θ̂. (3)

Following the asymptotic normality of estimates of the fixed effects parameters (e.g., Verbeke and

Molenberghs, 2000), the joint distribution ofWm, m= 1, ...,M is approximatelyM-variate normal

with mean0 and covariance matrixΣ, with elementsσmm′

σmm′ = Cov(Wm,Wm′) = (cm− γmdm) V(θ̂) (cm′ − γm′dm′)
′ . (4)

Simultaneous (1−α)100% Fieller confidence intervals can be constructed by solving the equations

[
(cm− γmdm) θ̂

]2

(cm− γmdm) V̂(θ̂) (cm − γmdm)′
= z2

M,1−α,R̂
, (5)

for γm, m= 1, ...,M.

The critical pointzM,1−α,R̂ in the above equations is a two-sided (1− α)100% equicoordinate
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quantile of a centralM-variate normal distribution with mean0 and correlation matrix̂R. R̂ is ob-

tained by evaluating Equation (4) at the estimates ˆγm = cmθ̂/dmθ̂ andV̂(θ̂), resulting in an estimate

Σ̂, which is then standardized by its diagonal elements. The elements ˆρmm′ of the correlation matrix

R̂ are then: ˆρmm′ = σ̂mm′/
(√
σ̂mm
√
σ̂m′m′

)
. The correlations occur due to the interrelated parameter

estimates from the model or several comparisons involving the same parameter estimates.

Note that the above computation involves some approximations. First, the critical value for in-

verting the test statistic in Equation (5) depends on the unknown ratio parameters and the unknown

covariance matrix. Both quantities are replaced by their estimates. For small samples, a multivari-

atet-distribution should provide a better approximation than the multivariate normal distribution,

that is replacing the multivariate normal quantilezM,1−α,R̂ by a multivariatet quantile,tM,1−α,R̂ ,ν,

with a common number of degrees of freedomν. However, different options exist for computing

the degrees of freedom in mixed linear models. The situation for ratios is complicated by the fact

that estimating a degree of freedom should involve not only sample sizes and variance components

but also the unknown ratio parameter. Easily, situations arise whereM different degrees of freedom

would be most appropriate for theM dimensions of the multivariatet distribution. The computa-

tion of quantiles for this type of multivariatet distributions is not yet available. In the following,

an adjustment of the degrees of freedom for small sample size will be used (Pinheiro and Bates,

2000). For all cases considered here, this adjustment corresponds to the containment method in

SAS (Littell et al., 1996), i.e., only the structure of nesting of the fixed effect parameters in the ran-

dom effects is taken into account. Note that, depending on the nesting of treatments within fixed

effects, the degrees of freedom can be equal to the residual degrees of freedom or much smaller. In

the following, the method based on multivariate normal quantiles will be called Fieller multivariate

z, while the modification using multivariatet quantiles will be called Fieller multivariatet.

An approach that avoids the plug-in of estimates to obtain quantiles is to use Bonferroni ad-

justed quantiles of univariatet-distribution withν degrees of freedom, i.e.,t1−α/(2M),ν. Bonferroni

adjustment takes the number of comparisonsM into consideration but does not account for the
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correlations directly hence yielding conservative results. This method will be referred to as Fieller

Bonferronit.

2.2. SIMULTANEOUS CONFIDENCE INTERVALS BASED ON MCMC

The linear mixed effects model in Equation (1) is inherently hierarchical in nature. An alter-

native and flexible approach that accounts for the hierarchy and also allows as to directly deal

with the distribution of ratio estimates is to use Bayesian statistics. Markov Chain Monte Carlo

(MCMC) methods allow to sample from the joint posterior distribution of the ratio parameters

(e.g., Gelman and Hill, 2007). By this approach, the uncertainty concerning the covariance matrix,

the ratios, and their combined effect on the correlation is implicitly included in the joint posterior

distribution of the parameters of interest. If the priors onθ and hyperpriors onu are chosen to be

non-informative, the posterior distribution ofθ is primarily influenced by the data and the model

assumptions. In this case, the Bayesian credible intervals will be generally comparable to that of

frequentist confidence intervals.

Suppose that we haveK draws from the joint posterior ofθ. Samples from the joint posterior

distribution of the ratios can be generated asgmk = cmθk/dmθk, m= 1, ...M, k = 1, ...,K, whereθk

is thekth draw from the posterior distribution ofθ. A method to establish simultaneous (1−α)100%

credible intervals forγm, ..., γM from such a sample has been described by Besag et al. (1995).

2.3 SIMULATION STUDY

A frequentist simulation study was performed to assess the performance of the rectangu-

lar confidence sets described in Sections 2.1 and 2.2. The simultaneous coverage probability

P
(
γ(l)

m ≤ γm ≤ γ
(u)
m ,∀m= 1, ...,M

)
was estimated for two-sided 95% confidence intervals. The

number of simulation runs for each parameter was set at 10000 for the simultaneous Fieller in-

tervals in Section 2.1. Due to infeasible computing time, 1000 simulation runs were used for the

MCMC. With 1000 replications, the standard error of the estimated coverage probabilities would

be 0.0069 for an exact 95% confidence interval. To gauge the uncertainties in the simulated cover-
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age probabilities, the thresholds for which an observed coverage probability deviates significantly

from the nominal 95% level, are shown as dotted lines in Figures 1-4. Comparing the Fieller-type

and MCMC based methods can be tricky since depending on the parameter settings, there may be

a non-negligible probability that the Fieller-type intervals have no solution, or that the set consists

of two separate semi-finite intervals (Young et al., 1997). In such cases, the confidence limits are

set to [−∞,∞].

As a secondary criterion, the mean confidence interval width was recorded. The widths of the

confidence intervals severely differ between the different models and parameter settings introduced

below. The distribution of interval widths is highly skewed, in particular for ratios larger than 1.

Occasionally, very wide intervals may occur that are still bounded and have high influence on the

observed mean interval width. Thus, the different methods are compared by showing the ratios of

the 1% trimmed means of interval widths, for each parameter setting.

2.4 THE MODELS

Four linear mixed models of practical interests that involve ratio estimation problems are con-

sidered here. They are (i) relative potency estimation, (ii) slope ratio estimation, (iii) multiple

comparisons in repeated measurements designs, and (iv) multiple treatment comparisons in terms

of ratios in multicenter clinical trials. For all models, the fixed effects parameters have been varied

such that the case of equality of all treatments as well as cases of decreasing or increasing treatment

effects are considered. Since inferences in linear mixed effects models are based on Wald tests, the

effect of sample size has also been investigated.

(i) Relative potency estimation in parallel-line assays.Consider parallel-line assays with ran-

dom batch effects. If there are various batches to which treatments have been applied, random

effects on slope and intercepts are introduced to model the between batch variability as

yjsq = α j + βxjsq + as + bsxjsq + ejsq (6)
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whereyjsq is the response of thesth subject in thejth treatment at timeq, α j is the popula-

tion intercept for thejth treatment,β is the common population slope for all treatments. Here,

θ = (α1, α2, ..., αJ, β)
′, as andbs are random intercept and slope for thesth subject and they jointly

follow a bivariate normal distributed with zero means, variancesσ2
a andσ2

b, and covarianceρσaσb.

The interest is the relative potencies among theJ treatments, e.g. multiple relative potencies com-

pared to a standard treatment, sayj = 1. With J = 4 treatments, the three (M = 3) relative potency

parameters of interest areγi = (αi − α1)/β, i = 2,3,4. The numerator (C) and denominator (D)

contrast matrices described in Section 2 will be

C =




−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0




, D =




0 0 0 0 1

0 0 0 0 1

0 0 0 0 1




Using block matrices, the contrast matrices are given byC = (−13×1 I3 03×1) andD = (03×4 13×1).

Simulations were run for balanced samples sizes of 10,20 and 40 subjects per treatment, five

variance parameters, four configurations of intercepts (all intercepts equal, intercepts decreasing

compared to control and two sets with decreasing intercepts compared to the control). The results

are succinctly displayed in Figure 1.

(ii) Slope ratio assays.A different situation arises if a common interceptα is assumed in

combination withJ treatment-specific slopesβ j:

yjsq = α + β j xjsq + as + bsxjsq + ejsq (7)

Here,θ = (α, β1, β2, ..., βJ)
′ and treatments will be compared using multiple slope ratios. ForJ = 4

treatments andM = 3 comparisons to a control treatment (j = 1), the associated numerator and

denominator contrast matrices will beC = (03×2 I3) andD = (03×1 13×1 03×3).

For this model, balanced sample sizes of 10, 20, and 40 subjects per group, four variances

as well as three configurations of slope parameters have been considered (all slopes equal, slopes
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increasing or decreasing compared to the control). The results are summarized in Figure 2.

(iii) Repeated measures designs.This model involves multiple treatments that are randomly as-

signed to subjects (e.g., patients). For each experimental unit, one observation is obtained at time

pointsq = 1, ...,Q. Of interest is treatment, time, or treatment by time interaction effects. Of par-

ticular interest is the time-by-treatment interaction. In this model, the correlation of measurements

within subjects is modeled by including subject-specific random intercepts, namelyajs ∼ N(0, σ2
a).

This will induce a covariance structure known as exchangeable or compound-symmetry (CS).

yjsq = μ jq + ajs + ejsq (8)

In this model, the fixed effects are ordered primarily according to time and then by treatment as

θ =
(
μ11, μ12, ..., μ1Q, μ21, μ22, ..., μ2Q, ..., μJ1, ..., μJQ

)′. With this definition, ratios of two treatments

to a control treatment (say,j = 1), separately for each of three time points, would be defined by

the contrast matricesC = (06×3 I6) andD = I2×1 ⊗ (I3 03×6).

For this model, three types of treatment numbers and contrasts have been considered: the

above type of contrast is considered forJ = 4 treatments withQ = 3 time points, resulting in

M = 9 ratios; the comparisons of time points to the first time point within each treatment (J = 4,

Q = 3, M = 8); a three arm trial aiming at the estimation of the ratio of (treatment - placebo)

to (active - placebo) (Pigeot et al., 2003) for each of three time points (J = 3, Q = 3, M = 3)

are additional types of comparisons considered in the simulation study. The number of subjects

per group was hold to be equal at 5, 10, 20 or 40 subjects in each treatment group; additionally

the following unbalanced settings were considered: (32,56,56,56), (8,24,24,24), (4,12,12,12)

subjects inJ = 4 treatment groups and, (30,60,60), (10,25,25), (6,12,12) for J = 3. The two

variance components were setσ2
a = 2 andσ2

e = 2 such that the within subject correlation is 0.5

for all settings. Three configurations of the fixed effect parameter were considered: The treatment

means over time were hold to be equal for all treatments and time points; the treatment effects with

increasing or decreasing means compared to control were simulated, were the magnitude of effects
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changed over time.

(iv) Multiple comparisons in multicenter trails.This scenario differs with respect to the struc-

ture of nesting. The response of thesth patient in centerh assigned to receive treatmentj is

denoted byyjhs. The population effects of the treatmentsj = 1, ..., J are denotedμ j. The random

effects contain the variability among centers, modeled byah ∼ N(0, σ2
a) and a putative variability

in efficacy of the treatments among the centers, modeled by the treatment-center interaction term,

bjh ∼ N(0, σ2
b), h = 1, ...,H. Again, ejhs models the residual error of thesth patient in centerh

randomized in treatment armj.

yjhs = μ j + ah + bjh + ejhs (9)

For the fixed effect parameterθ = (μ1, ..., μJ)
′, M = 3 comparisons to control (j = 1) among

J = 4 treatments in terms of ratios is defined using the contrast matricesC = (03×1 I3) and

D = (13×1 03×3).

In the simulation, three different sets of variance components (see Figure 4) as well as four con-

figurations of fixed effect parameters: all treatments hold to be equal, decreasing means compared

to control and two settings of increasing means compared to the control treatment. Sample sizes

within center were balanced with 10, 20, 50, or 100 in a setting with five centers, or 10, 20, and 50

in settings with 10 centers. Five settings with unbalanced samples sizes between centers were con-

sidered: (150,150,100,50,50), (60,60,40,20,20), (30,30,20,10,10), (120,120,40,40,40,40,40,20,20,20),

and (48,48,16,16,16,16,16,8,8,8).

2.5 SOFTWARE AND TECHNICAL DETAILS

For data generation, the R software (R Development Core Team, 2010) was used. Linear mixed

models were fitted by the add-on package nlme (Pinheiro et al., 2010), and the Fieller-type intervals

(Section 2.1) were computed using the packages mratios (Djira et al., 2012) and mvtnorm (Genz et

al., 2010). The Gibbs Sampler as implemented in OpenBUGS 3.0.3 (Spiegelhalter et al., 2007) and

the R-package R2WinBUGS (Sturtz et al., 2005) was used to obtain samples of the posterior distri-
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bution of the fixed effects parameters. When defining the above models in OpenBUGS, the priors

for fixed effects parameters were independent normal with expectation 0 and precision parameter

τ = 1/σ2 = 0.0001. Priors for the squared variance parameters were taken as uniform distributed

U(0,100) (Gelman and Hill, 2007). The BUGS models used in the simulations can be found in the

supplementary materialsavailable at http://www.biostat.uni-hannover.de/software.html. For

each simulated data set, 70000 updates were drawn, with initial 20000 discarded, and 1 out of 10

values retained in the remaining chain. Thus, the simultaneous intervals described in Section 2.2

are based on a sample ofK = 5000 values from the joint posterior distribution.

3. RESULTS

The scatter plots in Figures 1 to 4 compare the coverage probabilities of the four methods, with

reference to the Fieller Bonferronit method. Summarizing the results below, the Fieller multivari-

atezmethod can be clearly liberal, while the two Fieller-type methods usingt approximations and

the MCMC-based intervals both are closer to the nominal level. The Fieller Bonferronit method

is slightly conservative. It rarely exhibits too low coverage probabilities except for the slope ra-

tio setting with sample size 10 per group (Figure 2), but shows too high coverage probabilities in

a number of parameter settings for all models. The Fieller multivariatez method is particularly

liberal when either the number of observations is small or the number of clusters to estimate the

variance components is small (Figure 4). The Fieller multivariatet method is less liberal, except for

a number of small sample settings in the estimation of slope ratios (Figure 2) and relative potencies

(Figure 1). In the remaining problematic cases the coverage probability of the Fieller multivariate

t method is very close to the nominal level (Figures 2 and 3) or tends to be conservative for small

sample sizes and the low number of centers (Figure 4). The MCMC-based intervals do not show

systematically liberal performance for most of the parameter constellations considered. Occasion-

ally, too low coverage probabilities are observed for estimating slope ratios and relative potencies,

which are also problematic with the Fieller-type intervals. However, the MCMC-based intervals
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are slightly more conservative than the computationally much simpler Fieller multivariatet method

in settings with small sample sizes in the relative potency and repeated measures situations (Fig-

ures 1 and 3) and in the multicenter setting with small sample sizes and the lower number of

centers (Figure 4). For the multicenter setting with only five centers and small total sample sizes,

the MCMC based method is even slightly more conservative than the Fieller Bonferronit method.

Additional simulations (supplementary material) suggest, that using ’non-informative’ inverse

gamma priors instead of the uniform priors above, leads to MCMC-based intervals that are less

conservative but show occasionally slightly too low coverage probabilities. However, with the few

parameter settings considered, this can only be a hint for further investigations.

Problems with convergence and unbounded intervals occurred only in the relative potency and

the slope ratio model. About 60-70% of the parameter settings for these models did not show

any convergence problems or unbounded solutions; for the remaining parameter settings, usually

less than 0.5% of the simulated data sets caused at least one of the two problems. The observed

maximum rate of convergence problems occurred in the slope ratio model, Eq.(7), withni = 10

andσ2
a = 1, σ2

b = 0.5, σ2
e = 1 with about 1.5% of the data sets. Simulations were run for a

number of additional parameter settings of the relative potency and slope ratio model, where larger

proportions of simulations lead to convergence problems or yielded unbounded solutions for the

Fieller-type methods. Such problems occurred in settings with small sample sizes, as 5 subjects

per treatment. For these cases, a meaningful comparison of frequentist coverage probabilities is

difficult. When treating unbounded intervals in the simulation as covering the true parameter,

high proportions of unbounded cases will increase the coverage probability. Using this definition

of coverage probability leads to similar interpretations as above (supplementary material): the

Fieller multivariatez method is even more liberal for such small sample settings, while the Fieller

multivariatet method can be liberal or conservative to similar or slightly extremer extend as shown

above.

Figure 5 shows the ratios of trimmed mean interval widths over all models and parameter
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settings between the Fieller multivariatet and Bonferronit, as well as between the MCMC and

the Fieller Bonferronit method. The simplistic plug-in of the covariance matrix and the ratio

estimates to obtain multivariatet quantiles results for nearly all considered cases in shorter intervals

as compared to ignoring correlations with the Bonferroni t approach. The achieved reduction

in interval width rarely exceeds 10%. The MCMC intervals have similar widths as the Fieller

Bonferronit method, however, occasionally have been observed to be 10% narrower or wider for

some parameter settings. High relative deviations in interval width occur when intervals are wide,

usually due to small sample sizes. In the relative potency model and the repeated measurement

settings, the MCMC intervals are usually narrower than the Bonferronit intervals. In the slope

ratio and the multicenter setting, where the estimation of the variance components is difficult, the

MCMC method often yields wider intervals when sample sizes or the number of centers is small.

4. EXAMPLE

Pinheiro and Bates (2000) present an example of 16 rats assigned to three different diets, with

treatment groups comprising 8, 4, and 4 rats (package nlme). The body weight of individual rats

was observed over a period of 64 days. Although the bodyweights do differ already at the initial

time points, it might be of interest to compare the average daily increase in bodyweight in the

different diets.

Equation (10) shows the model fitted for this data set,

yjsq = α j + β j xjsq + ajs + bjsxjsq + ejsq, (10)

with yjsq observed bodyweight of subjects within diet j at timeq, xjsq the time point,α j andβ j

the population intercepts and slopes for the three dietsj = 1,2,3. Finally, ajs andbjs denote the

rat specific random deviation of slopes and intercepts, for which a bivariate normal distribution is

assumed as in Equations (6,7), and the residualsejsq are assumed to be independently normally dis-

tributed. Note that this type of model is not included in the simulation study, and the related model
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and multiple comparison problem in Eq.(7) has not been simulated for so small and unbalanced

sample sizes and parameter configurations as suggested by this example.

Table 1 gives fixed effects estimates and the estimated covariance matrix obtained by fitting

this model using the R packagenlme (Pinheiro et al., 2010). Whether the average daily increase in

weight differs between any of the diets and, if so, to what extent, may be addressed by all pairwise

comparisons between diet specific population slopes. With respect to the fixed effects parameter

vectorθ = (α1, α2, α3, β1, β2, β3)
′ these ratios are defined by the matricesC andD in Equation

(11):

C =




0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1




, D =




0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0




. (11)

Applying Equation (4) and the correlation formula in Section 2.1 yields a correlation matrixR̂

with the off-diagonal elements ˆρ12 = 0.700, ρ̂13 = −0.262, ρ̂23 = 0.505. The resulting two-sided

quantile of the 3-variatet-distribution withν = 158 istM=3,0.95,R̂ ,ν=158 = 2.07. To illustrate the gain

in precision of the confidence intervals by accounting for correlations, the quantile resulting from

using the simple Bonferroni method ist1−0.05/(3∗2),ν=158 = 2.42. Whereas ignoring multiple com-

parisons and using single two-sidedt-tests for all three comparisons would result in the quantile

t1−0.05/2,ν=158 = 1.98. The confidence intervals of the Fieller multivariatet and Bonferronit method

accounting for correlations are shown in Table 2.

Alternatively, one may sample from the joint posterior distribution of the parameters of interest

using code close to that used for the models in Eq. (6) and Eq. (7), with a diet specific intercept and

slope on the population level (Gelman and Hill, 2007). In the given example, independent normal

priorsα j ∼ N(0,10000),β j ∼ N(0,10000), for the dietsj = 1, .., 3 and uniform priors for the

variance components and correlation parameterσ2
a ∼ U(0,100),σ2

b ∼ U(0,100),σ2
e ∼ U(0,100)

andρ ∼ U(−1,1) were used. A single MCMC chain was updated 70000 times, initial 20000 draws

discarded and 1 out of 5 values of the remaining chain retained. The resulting sample was free of
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autocorrelations assessed by graphical methods (not shown).

The three possible scatter plots of the joint empirical posterior for the ratiosβ2/β1, β3/β1, and

β3/β2 are shown in Figure 6. The posterior means and medians, as well as the limits of two-sided

95% credible sets based on this sample are shown in Table 2.

Comparing the limits resulting from the two methods (Table 2) shows that the MCMC based

intervals are slightly wider than the Fieller multivariatet and Fieller Bonferronit intervals for all

three parameters. The average daily increase in weight in diet 2 is about 1.5 - 6.9 times increased

over that in diet 1, with 95% confidence (Fieller multivariatet). Based on this data, there is no

clear difference detectable with 95% confidence between diet 2 and diet 3, or diet 2 and diet 1.

5. DISCUSSION

In this paper, previously described methods to construct simultaneous confidence intervals for

ratios of fixed effect parameters in mixed models have been evaluated by simulating their simul-

taneous coverage probabilities. The simulation study includes four different linear mixed models,

various constellations of sample size, fixed effects and variance components, and also a number of

different types of comparisons, representing different multiple comparisons problems. In line with

straightforward expectations it is found that using Fieller-type confidence intervals with multivari-

ate normal quantiles may lead to too narrow confidence intervals when sample sizes are small.

Using multivariatet quantiles with a simple adjustment of the degree of freedom yields confidence

sets with coverage close to the nominal level for most of the simulated cases. Though, this method

showed coverage probabilities as low as 91% for nominal 95% intervals for some small sample set-

tings. Running MCMC with non-informative priors and constructing simultaneous intervals based

on samples of the posterior distribution yields intervals that have appropriate or slightly too high

frequentist simultaneous coverage probabilities, and wider intervals than the Fieller multivariatet

approach.

The Fieller-type intervals have the clear advantage to be computationally simple. A docu-
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mented function (gsci.ratio) to compute such intervals for a user defined set of ratios, given esti-

mates of the fixed effects, the corresponding estimate of the covariance matrix and the degree of

freedom is available in the R package mratios (Djira et al., 2010). Thus, using this function, a

much wider range of models and multiple comparison problems can be addressed than illustrated

here. The MCMC based method with non-informative priors has been shown to be comparable to

frequentist results. However, applying this method in practice requires careful choice of technical

parameters, check of convergence and autocorrelations for any new model and data set, problems

which have not been illustrated in the example above. Hence it is technically much more demand-

ing. Moreover, there is generally no really non-informative prior. The particular choices of the

distributional assumption and the parameters considered as non-informative may differ between

authors, (e.g., Browne and Draper, 2005; Gelman, 2006; Zhao et al., 2006), and of course the

choice of the parameters depends on the scaling of the variables in the data set. Hence, using the

models in the supplementary material and the example with the given prior distribution for new

data still requires thinking and careful check of imposed assumptions, data and results.
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—————————————————————————————————-

Table 1: Parameter estimates for the exampledata.

Parameter Estimate Estimated covariance matrix

α1 α2 α3 β1 β2 β3

α1 251 171 0.00 0.00 -0.19 0.00 0.00

α2 452 0.00 342 0.00 0.00 -0.38 0.00

α3 503 0.00 0.00 342 0.00 0.00 -0.38

β1 0.36 -0.19 0.00 0.00 0.01 0.00 0.00

β2 0.97 0.00 -0.38 0.00 0.00 0.02 0.00

β3 0.66 0.00 0.00 -0.38 0.00 0.00 0.02

Table 2: Two-sided 95% Fieller multivariatet confidence intervals and two-sided 95% credible

intervals based on an MCMC sample of 10000 values, for all pairwise ratios of the 3 slope

parameters.

Fieller MCMC

Bonferronit multivariatet posterior credible intervals

Ratio estimate lower upper lower upper mean median lower upper

β2/β1 2.685 1.445 7.160 1.467 6.883 2.636 2.660 1.263 8.485

β3/β1 1.830 0.825 5.039 0.845 4.845 1.829 1.811 0.673 6.246

β3/β2 0.682 0.340 1.182 0.348 1.165 0.700 0.679 0.291 1.307
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Figure 1: Simultaneous coverage probability for comparison to control of relative potencies, Eq.
(6), estimates are based on 10000 and 1000 simulations for Fieller-type and MCMC methods, re-
spectively. Dotted lines indicate thresholds for which the coverage probability differs significantly
from the nominal level.
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Figure 2: Simultaneous coverage probability for comparison to control in the slope ratio assay, Eq.
(7), estimates are based on 10000 and 1000 simulations for Fieller-type and MCMC methods, re-
spectively. Dotted lines indicate thresholds for which the coverage probability differs significantly
from the nominal level.
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Figure 3: Simultaneous coverage probability for different types of comparisons in a repeated mea-
surement setting, Eq. (8), estimates are based on 10000 and 1000 simulations for Fieller-type and
MCMC methods, respectively. Dotted lines indicate thresholds for which the coverage probability
differs significantly from the nominal level.
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Figure 4: Simultaneous coverage probability for comparison to control in terms of among treat-
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coverage probability differs significantly from the nominal level.
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Figure 6: Scatter plots of all pairwise ratios of joint posterior of the slope parametersβ1, β2, β3.
Solid rectangles show the 95% credible sets based on this sample.
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Abstract Multinomial data occur if the major outcome of an experiment is the classification of
experimental units into more than two mutually exclusive categories. In experiments with several
treatment groups, one may then be interested in multiple comparisons between the treatments w.r.t
several definitions of odds between the multinomial proportions. We describe asymptotic methods
for constructing simultaneous confidence intervals for this inferential problem. Further, alternative
methods based on sampling from Dirichlet posterior distributions with vague Dirichlet priors are de-
scribed. Monte Carlo simulations are performed to compare these methods w.r.t. their frequentist
simultaneous coverage probabilities for a wide range of sample sizes and multinomial proportions: The
methods have comparable properties for large samples and no rare events involved. In small sample
situations or when rare events are involved in the sense that the expected values in some cells of the
contingency table are as low as 5 or 10, the method based on sampling from the Dirichlet poste-
rior yields simultaneous coverage probabilities closest to the nominal confidence level. The methods
are provided in an R-package and their application is illustrated for examples from developmental
toxicology and differential blood counts.

Keywords: multiple comparisons; polytomous data; Dirichlet; baseline logit; coverage probability

1 Introduction

In a number of toxicological assays, the major outcome is the classification of each experimental unit
into one of several categories. For example cells may be classified by visual assessment into several
categories, where categories distinguish undamaged cells from different types of unusual characteristics
or malformation. In clinical trials, the primary outcome may be the classification of individual patients
into one of several categories reflecting disease severity, or clinical subtypes of a certain disease. Often,
such categories are ordinal. In some applications, however, the order of categories can be ambiguous,
that is, there is no clear order of severity among categories, or there may be no order at all, such that
the categories are best described as a nominal variable.

In such trials, multiple treatments can be of interest, for example, multiple dose groups compared to
a control group in toxicological assays or different therapeutic interventions in a clinical trial. Counting
the number of individuals in each category and each treatment group gives rise to a 2-dimensional
contingency table with several rows and columns. In the following, we will assume that the individual
experimental units are assigned to treatment groups in a completely randomized design and that the
sample size per treatment group is fixed by the experimental design (i.e., it is not the result of a
random process as, for example, in an epidemiological exposure study). Under these conditions, we
may assume that the counts of the different categories follow a multinomial distribution, independently
in each treatment group.

Such contingency tables may be analyzed by applying the χ2 tests for independence. Significance
of such a test will only produce the rather general interpretation: The probability to fall into some
of the categories does significantly differ between some of the treatment groups. In practice, this will
rarely be an exhaustive interpretation of the data. On the contrary, interest will be in more detailed
interpretation: Which categories increase or decrease in probability between which of the treatment
groups, and if so, by what extent? If multiple comparisons between treatments with respect to several
categories contribute to an overall hypothesis in the sense of a union intersection test (e.g. Casella
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and Berger, 2002), simultaneous confidence intervals are necessary for such interpretations. But,
depending on the application, not all possible comparisons between categories are of interest and not
all comparisons between treatments may play a role for the overall hypothesis. Rather, particular
categories and treatments in a given assay or trial will give rise to a special set of comparisons which
are of interest.

Methods for simultaneous confidence intervals (SCI) in multiple comparisons in contingency tables
have been proposed by Gold (1963) and Goodman (1964). Gold (1963) describes an asymptotic
Scheffe-type-approach for SCI suitable for all possible linear combinations of the proportions of several
multinomial vectors by using a χ2-quantile with degrees of freedom as in the corresponding global
test. Such approaches are inherently two-sided, and the resulting intervals will be unnecessarily large
if only a small subset of comparisons (out of all possible comparisons) is of interest. Goodman (1964)
considers asymptotic methods for all possible comparisons as well as a selected subset of comparisons of
multinomial proportions on the log-scale, assuming a single multinomial distribution for a contingency
table with multiple rows and columns (as suitable, e.g. for epidemiological studies). He shows that
Bonferroni-adjusted standard normal quantiles may yield narrower intervals than the Scheffe-type
approach, when only few comparisons are of interest. Still this approach can be improved because the
Bonferroni-adjustment ignores the correlation between the estimators (or the related test statistics).

Since then, numerous authors have considered simultaneous confidence intervals for proportions
or pairwise comparisons of proportions in a single multinomial sample (e.g. Glaz and Sison, 1999;
Piegorsch and Richwine, 2001; Hou et al., 2003; Wang, 2000; Chafa and Concordet, 2009). To our
knowledge, simultaneous confidence intervals for the comparison of multiple odds between multiple
multinomial samples have not been considered any further, although there is room for improvement
compared to the seminal methods of Gold (1963) and Goodman (1964): The test statistics related to
comparisons of multiple logits of multinomial proportions asymptotically follow a multivariate normal
distribution (e.g., Agresti, 2013) and multiple multinomial samples can be considered as a special case
for the application of multivariate generalized linear models (e.g. McCullagh and Nelder, 1989; Agresti,
2013). One can thus use quantiles of the multivariate normal distribution (Bretz et al., 2001) based
on a sample estimate of the correlation structure to construct asymptotic simultaneous confidence
intervals according to Hothorn et al. (2008). Such intervals will be narrower than Bonferroni-adjusted
intervals in cases where only a limited subset of parameters with correlated estimators is of interest,
because their quantiles account for the correlation structure that is ignored by Bonferroni or Scheffe-
type approaches. Although all necessary computational methods are available, these methods have
so far not been investigated w.r.t. their properties when applied with small sample sizes. Also, they
suffer from infinite interval bounds, when single cells of the contingency table happen to contain zeros.
Further improvements compared to these asymptotic methods might be achievable by sampling from
the joint distribution of interest, e.g. from the posterior of a Bayesian model with a vague prior.
Simultaneous confidence intervals can then be computed from such samples by percentile methods as
described in Besag et al. (1995), or Mandel and Betensky (2008).

In the remaining part of the paper, we will first describe asymptotic simultaneous confidence
intervals for user-defined sets of logits compared between several multinomial samples. Additionally,
we will consider simultaneous percentile intervals applied on samples of Dirichlet posteriors with vague
Dirichlet priors. The small sample performance of these methods will be compared in frequentist
simulation studies. Finally, the methods are applied to two data sets.

2 Material and Methods

2.1 Data structure and notation

We consider g = 1, ..., G treatment groups in a randomized design, where ng is the sample size in group
g that has been fixed by the experimental design. As the experimental outcome, each individual or
experimental unit in group g is categorized into exactly one of C possible categories, with index c =
1, ..., C. Furthermore we assume that due to the randomized assignment of treatments to individuals or
experimental units, there is no further subgrouping of individuals or heterogeneity among individuals
and also, that there are no secondary factors or covariates that affect the outcome. Thus we assume
that the counted number of individuals of categories c = 1, ..., C in group g, xg = (xg1, xg2, ..., xgC),
follows a multinomial distribution

(xg1, xg2, ..., xgC) ∼ multinomial (ng, (πg1, πg2, ..., πgC))

where πgc is the unknown probability of an individual in treatment group g to fall into category c.
Usually, such observed counts are summarized in a contingency table, X(G×C).
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2.2 Parameters of interest

A simple choice for the analysis of such data is to compare the baseline logits between the groups.
That is, the ratios of the latter proportions, πg2, ..., πgC , to that of the first category πg1 (the baseline
category) are of interest. Treatment effects are then expressed as the relative change of these ratios
between the treatment groups. For only two treatment groups, g = 1, 2, the odds ratios of interest
are then

(
π22/π21
π12/π11

,
π23/π21
π13/π11

, ...,
π2C/π21
π1C/π11

)
.

Depending on the practical meaning of the different categories, more or less parameters than
these comparisons to the baseline categories might be of interest. Either, the comparisons of certain
categories to baseline may be not of primary interest, or, additional odds, referring to ratios between
the proportions of categories c = 2, ..., C, may be important. On the log scale, all possible pairwise
logits can be written as




δg1
δg2
...
δgI


 = A(I×C) log

(
πTg
)

=




−1 1 0 . . . 0 0
−1 0 1 . . . 0 0
...

...
...

...
...

−1 0 0 . . . 0 1
0 −1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −1 1







log(πg1)
log(πg2)

...
log(πgC)




Note that on the scale of baseline logits, ψgc = log(πgc)− log(πg1), c = 2, ..., C, all pairwise logits
can be written as




δg1
δg2
...
δgI


 = A∗

(I×C−1)ψ
T
g =




1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 0 1
−1 1 . . . 0 0
...

...
...

...
0 0 . . . −1 1







ψg2
ψg3

...
ψgC


 .

2.3 Between-group comparisons of interest

Similarly, comparisons to a control treatment (’Dunnett-type’), all pairwise comparisons (’Tukey-
type’) between treatments or a particular subset of these may be of interest, depending on the practical
meaning of the G treatment groups for a given experimental question. We can thus write the between-
group-comparisons in a contrast matrix B(J×G) for the ith logit defined above

θi =




θ1i
θ2i
...
θJi


 = B(J×G)δ

T
i =




−1 1 0 . . . 0 0
−1 0 1 . . . 0 0
...

...
...

...
...

−1 0 0 . . . 0 1
0 −1 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . −1 1







δ1i
δ2i
...
δGi


 .

If these between-group-comparisons j = 1, ..., J are the same for all logits i = 1, .., I, the parameter
vector can be briefly written as

θ = (B⊗A)




logπ1

logπ2

...
logπG


 ,

where the elements θij of θ are primarily ordered by between group comparison j = 1, ..., J and then,
for each j,, by odds ratio i = 1, ..., I (inner order).
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2.4 Simultaneous Wald-type confidence intervals

The statistical model outlined above is a special case of a multivariate generalized linear model
(Agresti, 2013; McCullagh and Nelder, 1989), for which the baseline logits ψgc, c = 2, ..., C are the
natural parameter (Agresti, 2013). One can thus use the methods of Hothorn et al. (2008) to construct

simultaneous confidence intervals for θ based on the estimated baseline logits ψ̂ and the corresponding
estimated variance covariance matrix Σ̂. In more general settings, such estimates could be obtained
by fitting baseline logit models. Then, also secondary factors or covariates might be included in such
a model. In the simple case considered here, these estimates can be obtained from the contingency
table X(G×C), using the asymptotic variance of baseline logits under multinomial sampling (derived
using the Delta Method in Agresti, 2013, p.590-591): Denote the vector of sample estimators of the
log-proportions in group g by log (π̂g) = (log (xg1/ng) , ..., log (xgC/ng)). The corresponding estima-

tors of the I linear combinations of interest are δ̂g = A log (π̂g), which have the asymptotic covariance
matrix (Agresti, 2013, p.591)

Σg = n−1
g

(
ADiag(πg)

−1AT −A11TAT
)
,

where Diag(πg)
−1 is the inverse of a diagonal matrix containing the true proportions πg, and 1 is an

(C × 1) vector with all elements = 1.
Since we assumed independence between the treatment groups g = 1, ..., G, we can assemble the

logits of interest for all treatment groups g = 1, ..., G by stacking the column vectors δg, such that the
corresponding covariance matrix can be written as a block-diagonal matrix:

δ =




δ1
δ2
...
δG


 ,Σ =




Σ1 0 . . . 0
0 Σ2 . . . 0
...

...
...

0 0 . . . ΣG


 .

The between-group comparisons (outer order) for all logits of interest (inner order) can then be
written as

θ = (B⊗ II×I) δ,

where II×I is the identity matrix with I rows and columns. The corresponding covariance matrix is

V = (B⊗ II) Σ (B⊗ II)
T
.

Estimators for θ, Σg, Σ and V, may be obtained by plugging-in of the sample proportions π̂g
instead of πg, and are denoted as θ̂, Σ̂g, Σ̂ and V̂. Approximate simultaneous confidence intervals
for the M = IJ corresponding odds ratios are then

exp
[
θ̂m ± ztwo−sided,1−α,M,R̂

√
v̂m

]
,m = 1, ...,M,

where θ̂m is the mth element of θ̂, v̂m is the mth element of diagonal of Σ̂, ztwo−sided,1−α,M,R̂ is the

two-sided 1−α-quantile of the M -variate normal distribution (Genz and Bretz, 2009) with correlation

matrix R̂, and R̂ is obtained by standardizing Σ̂ by its diagonal elements (Hothorn et al., 2008).

Clearly, this approach has a number of problems: The plug-in of π̂g to obtain Σ̂, and the plug-in

of R̂ to obtain the multivariate normal quantile ztwo−sided,1−α,M,R̂ are only justified for large samples

(Hothorn et al., 2008). Moreover, Σ is only the asymptotic variance. The confidence intervals are

symmetric w.r.t. θ̂m, but the sampling distribution of θ̂m may be skewed if some expected cell counts,
ngπgc, are small and πgc differ, that is, if some sample sizes are moderate and/or the proportions
are close to the border of the parameter space. Finally, the plug-in of πgc with extreme observations
as xgc = 0 yields unreasonable estimated variances (∞) for the parameters on the log-scale; this

leads to the failure of computing ztwo−sided,1−α,M,R̂, based on R̂, and even when using some ad-hoc

adjustment for computing R̂, the intervals involving the corresponding πgc will be uninformative due
to spanning the complete parameter space. In parameter settings, where such events occur frequently,
we can expect that the Wald-type simultaneous confidence intervals are unnecessarily conservative,
that is, cover the true parameters too often.

In order to deal with the last problem, we apply the following ad-hoc adjustments: To compute
the correlation matrix and contrasts of interest when the contingency table contains zeros, these are
replaced by 0.5 (e.g. Plackett, 1962; Goodman, 1964). This approach is referred to as W. Alternatively,

one may use x̃gc = xgc + 0.5, ñg =
∑C
c=1 x̃gc and π̃g = (x̃g1/ñg, x̃g2/ñg, ..., x̃gC/ñg) instead of π̂g
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in all computations above. That is, 0.5 is added to each cell of the G × C contingency table, and
all subsequent computations are performed based on this altered contingency table. This adjusted
method is referred to as W0.5.

2.5 Sampling from the posterior distribution with a weakly informative
prior

Under the assumption of G independent multinomial samples, one can make use of the fact that the
Dirichlet distribution is a conjugate prior for the assumption of multinomial data. In the Bayesian
model

(πg1, πg2, ..., πgC) ∼ Dirichlet ((αg1, αg2, ..., αgC)) ,
(xg1, xg2, ..., xgC) ∼ multinomial (ng, (πg1, πg2, ..., πgC)) ,

we can easily draw samples from the joint posterior distribution,

P ((πg1, ..., πgC) | (xg1, ..., xgC)) ∼ Dirichlet ((xg1 + αg1, ..., xgC + αgC)) .

To construct simultaneous intervals for θ, many (say K) samples are drawn from this posterior,
independently for each group g: Denote with pk the stacked vectors of all groups g = 1, .., G in the
kth sample, that is, pk = (p11, ..., p1C , p21, ..., p2C , pG1, ..., pGC)

T
. For each sample k = 1, ...,K, the

corresponding sample for the M = IJ parameters of interest can be computed by:

tk = (B⊗A) logpk.

Rectangular sets containing the central 95% of the K sampled vectors tk, k = 1, ...,K are described
by Besag et al. (1995). For a (K ×M) matrix T , containing the K samples of the parameter vector
of interest, tk, the main steps of this procedure are recalled here in close relation to the descriptions
in Schaarschmidt and Djira (in press) or Schaarschmidt (2003):

1. Rank each column, m = 1, ...,M of T separately and record the resulting ranks rkm and order

statistics t
(k)
m .

2. For each row, k = 1, ...,K, of the resulting matrix (K ×M) matrix of ranks with elements rkm,
compute maxk = max(maxm=1,..,M (rkm),K + 1−minm=1,...,M (rkm)).

3. Order maxk, resulting in the order statistics max[k] and find k∗ = max[q0.95], where q0.95 is the
nearest integer to K ∗ 0.95.

The lower and upper interval bounds for each parameter of interest, m = 1, ...,M , are then obtained

from the order statistics and back-transformation to the scale of odds-ratios: exp
[
t
(K+1−k∗)
m , t

(k∗)
m

]
.

Corresponding one-sided 95% simultaneous percentile intervals (Mandel and Betensky, 2008) can be
calculated to obtain upper and/or lower limits for each element of θ. When the prior is chosen
such that it has nearly no impact on the posterior, one can expect that the resulting intervals have
good frequentist properties, e.g. simultaneous coverage probability close to 95%. Choosing the prior
parameters αgc = 1 for all g, c results in an uniform prior distribution, while αgc = 0.5 for all g, c is
known as Jeffreys prior. In the following, such intervals will be called DP0.5 and DP1, if used with
the Jeffreys prior or the uniform prior, respectively.

2.6 Simulation study

In order to compare the frequentist coverage probabilities between the different methods, a Monte
Carlo Simulation has been performed for the following parameter settings: for C = 3 or c = 5 categories
and G = 4 treatment groups, balanced sample sizes per treatment group of ng = 10, 20, 50, 100, 1000
are considered. Three different sets of odds ratios have been considered: Baseline logits are compared
between treatments (g = 2, 3, 4) and the control group (g = 1), as well as all pairwise comparisons
between treatment groups for baseline logits, and all pairwise logits compared between treatments
and control group. The true proportions of the categories are varied from the case that all categories
appear equally often (1/3, 1/3, 1/3) to settings where the earlier categories (serving as baseline)
are dominating (up to πg1 = 0.9) and the remaining categories are rare (down to πg3 = 0.01), and
conversely, the earlier categories being rare (πg1 = 0.01) and the remaining categories abundant
(πg3 = 0.9). For C = 3, 59 different configurations of πg have been simulated. In 21 of these, all
logits are equal between all treatment groups, in the remaining 38 settings some logits differ between

5

117



some of the treatment groups. For C = 5, 35 different parameter settings for πg were considered
(13 implying equal logits between treatment groups and 22 implying differences); with five categories,
only samples sizes ng = 50, 100, 1000 per group have been considered. A complete list of parameter
settings is available as supplementary material. For each resulting parameter setting, 1000 data sets
have been drawn from the multinomial distribution. In the methods based on sampling from the
Dirichlet distribution, K = 10, 000 values were drawn from the posterior to compute the simultaneous
intervals for each data set.

2.7 Software

An implementation of the Wald-type intervals is available in the R-package MCPAN 1.1-20 (Schaarschmidt
et al., 2015) relying on multivariate normal quantiles obtained from the R-package mvtnorm (Genz
et al., 2015). The methods based on sampling from the Dirichlet-posterior make use of the R-package
MCMCpack (Martin et al., 2011) for Dirichlet random numbers, and the percentile intervals (Besag et
al., 1995; Mandel and Betensky, 2008) implemented in package MCPAN .

3 Results

3.1 Simultaneous coverage probabilities

Figure 1 shows the simulated simultaneous coverage probabilities (SCP) of nominal 95% simultaneous
confidence intervals. For all methods, there is a clear dependency of SCP on the minimal expected
cell count (min(ngcπgc)): Intervals cover the parameters too often if the minimal expected cell count
is small, e.g. below 5 or 2, while SCPs are close to the nominal level when the minimal expected cell
count is equal or larger than 50. The intervals based on sampling from the Dirichlet posterior with
uniform priors (DP1) show SCPs close to or above the nominal levels, whereas using Jeffreys prior
may result in SCPs below the nominal level. The DP1 interval shows improved SCP compared to the
Wald-type interval for intermediate values of the minimal expected cell count: While the Wald-type
intervals start to be too conservative for minimal expected cell counts in the range of 10 or 20, the
DP1 method shows SCPs close to the nominal level for minimal expected cell counts of 5 or 10. With
the exception of a few parameter settings, the ad-hoc approach of adding 0.5 to each cell and using the
Wald-type intervals afterwards does not show tangible differences of the SCP. Figure 2 illustrates the
improvement of SCP when using the DP1 method instaed of the Wald-type interval: With samples
sizes such as 100, 50, or 20 per group, the DP1 is less conservative than the Wald-type interval for
the majority of parameter settings but rarely shows observed SCP larger than that of the Wald-type
interval.
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Figure 1: Simultaneous coverage probabilities of nominal 95% simultaneous confidence intervals, given
the minimal expected cell count min(ngcπgc). Symbols distinguish sample size per treatment group
g, grayscale distinguishes parameter settings with C = 3 or C = 5 categories. Column panels show
results for different confidence intervals methods, while row panels distinguish parameter settings
where at least one logit differs between treatment groups (upper row) and all logits of interest are
equal in all treatment groups (lower row). Dashed horizontal lines show the range in which 95% of
all simulation results (based on 1000 simulations per setting) would fall if a methods had exactly 95%
true simultaneous coverage probability.
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Figure 2: Simulated (1000 simulation runs per parameter setting) simultaneous coverage probabilities
of the Wald-type interval (x-axis) plotted against that of the Wald-add-0.5 interval and the interval
based on Dirichlet sampling with uniform prior. Gray scale is used to show each settings minimal
expected cell count min(ngcπgc); symbols distinguish sample size per treatment group g. Dashed
horizontal and vertical lines show the range in which 95% of all simulation results (1000 simulations)
would fall if a methods had exactly 95% true coverage probability.
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Figure 3: Mosaicplot of the (5× 3) table of developmental toxicity data (Agresti, 1990)

4 Examples

4.1 Developmental toxicity

Agresti (1990, p.320, Tab.9.7 therein) shows results of a study on developmental toxicity in mice.
After exposure to G = 5 treatments (control d0, and 4 different dosages, d62.5, d125, d150, d500) of a
compound during pregnancy, the offspring of mice (n1 = 297, n2 = 242, n3 = 312, n4 = 299, n5 = 285)
is classified into C = 3 categories: alive, dead, malformation. Figure 3 shows a mosaic plot derived
from the (5× 3) contingency table data. To investigate for which dose groups there is an increase of
πdead/πalive or πmalformation/πalive over that of the control, one can consider simultaneous confidence
intervals for baseline logits (baseline = alive) compared between the 4 dose groups and the control.

Figure 4a shows a scatter plot matrix of 2000 sampled values for the (M = 8) corresponding logits
based on a sample of the joint posterior with prior (πalive, πdead, πmalformation) ∼ Dirichlet((1, 1, 1))
on each sample g = 1, ..., 5. It is obvious that those parameters referring to comparisons to the
control group for the same odds are positively correlated (parameters 1, ...4 and 5, ..., 8, respectively)
and that the magnitude of correlation further depends on the estimated proportions (higher positive
correlations in malformed/alive than in dead/alive). Figure 4b shows the estimated correlation matrix

(R̂) underlying the quantiles Wald-type-intervals (W) for this example. Table 1 shows the lower and
upper limits of the corresponding 95% simutaneous intervals for the oddsratios: The odds dead/alive
are significantly increased compared to control in d250 and d500 according to the DP1 method this
ratio is increased by factor 1.5 - 8.3 in d250 and by factor 97 - 930 in d500. The odds malformation/alive
also show a significant increase in dose groups d250 and d500, at least by factor 10 and 390 (DP1),
respectively. The R code to reproduce these calculations (up to uncertainties due to sampling) is
provided as supplementary material.

The corresponding (two-sided) 95% quantile of an 8-variate normal distribution is z0.95,M=8,R̂ =

2.638. Compared to the Scheffe-type quantile adjusting for all possible contrasts (Gold, 1963),√
χ2
df=8 = 3.938, the Wald-type intervals have considerably reduced width, whereas the reduction of

width is relatively little compared to the Bonferroni adjustment of Goodman (1964): z1−0.05/(8∗2) =
2.734.

Table 1: Simultaneous 95% confidence intervals for comparisons to control for the baseline odds
dead/alive and malformed/alive, rounded to the second significant digit.

Odds Betw-group-ratio Estimate Lower(W) Upper(W) Lower(DP1) Upper(DP1)
dead/alive d62.5/d0 1.4 0.54 3.7 0.55 3.7
dead/alive d125/d0 1.5 0.59 3.6 0.59 3.7
dead/alive d250/d0 3.5 1.5 8.2 1.5 8.3
dead/alive d500/d0 300 95 940 97 930
malf./alive d62.5/d0 0.62 0.01 60 0.00 18
malf./alive d125/d0 6.9 0.41 120 0.66 88
malf./alive d250/d0 82 5.7 1200 10 890
malf./alive d500/d0 4100 250 67000 390 45000
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(a) Sample of 2000 values from the Dirichlet pos-
terior with uniform prior (DP1).

(b) Estimated correlation matrix R̂ correspond-
ing underlying the Wald-type interval (W).

Figure 4: Observed correlation between estimators of the eight parameters of interest in the develop-
mental toxicity example.

4.2 Differential blood count (WBC) in rats

Table 2 (Hothorn et al., technical report) shows counts of white blood cells of 4 categories, LY, MO,
NE, EO (lymphocytes, monocytes, neutrophil and eosinephil granulocytes); other cell types occurred
only with one cell and are omitted. Counts have been obtained from rats (females and males) under
four different treatments: an untreated control (C) and three dose groups (L, M, H, for low, mid
and high dose). Note that the counts in Table 2 are obtained by pooling ten individuals per sex and
treatment group (exception: eight animals for males in high dose).

Table 2: Differential count of white blood cells in rats of both sexes and four treatment groups.

sex Group LY MO NE EO
female C 1668 41 272 19
female L 1633 47 305 15
female M 1699 39 244 18
female H 1643 37 299 21

male C 1594 32 340 34
male L 1593 25 356 26
male M 1510 34 431 25
male H 1196 33 351 19

One may now be interested, whether any of the relative proportions of the single categories change
between control and dose groups in males or females. We express this as all (I = 6) pairwise odds
between the C = 4 categories. These odds are then compared between the L, M and H dose and
the control, separately for males and females, resulting in J = 6 between-group-comparisons. The
corresponding matrices A and B are then:

A(I×C) =




−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1
0 0 −1 1



,B(J×G) =




−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
−1 0 0 1 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 −1 0 0 1



.

The counts in Table 2 are relatively large, thus all considered methods can be expected to perform
well and to yield very similar results. The quantiles between the Goodman approach (z1−0.05/(36∗2) =
3.197) and the Wald-type intervals with plug-in of estimated correlations (z0.95,M=36,R̂ = 3.085) again
differ only slightly.

10

122



Figure 5: Simultaneous 95% confidence intervals for 36 odds ratios defined in the differential blood
count example.

Figure 5 shows the 95% confidence intervals for the 36 odds ratios defined above for the methods
DP1 and W. The intervals hardly differ between the methods. The only significant differences w.r.t.
these 36 odds ratios are found for the mid and high dose groups (H, M) in males where the proportion
of neutrophile granulocytes relative to lymphocytes (πNE/πLY ) is significantly increased in treatment
groups M and H compared to the control group, C. Table 3 shows estimates and confidence limits of
the W and DP1 method for those odds (πNE/πLY ): in males, the ratio (πNE/πLY ) is increaaed by
factor [1.041, 1.720] in group M, and by factor [1.065, 1.792] in group H, relative to that of the control
group. The R code to reproduce these calculations is provided as supplementary material.

Table 3: Simultaneous 95% confidence intervals for comparisons to control for the baseline odds
dead/alive and malformed/alive (subset out of a total of 36 comparisons), rounded to the 3rd digit.

Oddsratio Estimate Lower(W) Upper(W) Lower(DP1) Upper(DP1)
NE/LY btw L/C, in females 1.145 0.868 1.511 0.868 1.511
NE/LY btw M/C, in females 0.881 0.659 1.178 0.658 1.183
NE/LY btw H/C, in females 1.116 0.845 1.474 0.844 1.472
NE/LY btw L/C, in males 1.048 0.810 1.355 0.810 1.357
NE/LY btw M/C, in males 1.338 1.044 1.716 1.041 1.720
NE/LY btw H/C, in males 1.376 1.059 1.787 1.065 1.792

5 Discussion

We described methods for the computation of simultaneous confidence intervals for user defined sets of
pairwise between-treatment comparisons w.r.t. user defined sets of odds ratios based on the assump-
tion of several independent multinomial samples. The asymptotic method accounts for the correlation
between estimators by the plug-in of an estimated covariance matrix. A small sample approach, based
on sampling from a Dirichlet posterior with vague priors, is considered as an alternative.

In a simulation study, the coverage probability of these methods is assessed for different sets
of multinomial proportions, different sample sizes per treatment group, three (or five) multinomial
categories, as well as different types of comparisons between groups and categories. The method based

11

123



on sampling from the Dirichlet posterior with a vague prior assigning parameter α = 1 to all categories
performs best in the considered settings: When the minimal expected cell count of the contingency
table is moderate (e.g. at least five) the simultaneous coverage probability is close to the nominal
level. If rare proportions or small sample sizes lead to smaller expected cell counts, the method is
conservative. The asymptotic method is more conservative as it reaches coverage probabilities close
to the nominal level for expected cell counts of 20 or above, and covers the true parameter too often
otherwise. Note that these recommendations may not hold when comparing multinomial samples with
much more categories than considered here, e.g. 10 or 20.

All methods considered are conservative for small sample size and/or rare events. That is, with
either method it will be hard to detect relatively small changes in the proportions of rare categories,
or when sample sizes are small. The method based on sampling from the Dirichlet posterior can easily
be extended to include informative priors. For example, when historical control data are available for
bioassays, the Dirichlet prior for untreated control groups may be chosen to reflect the expected values
and the plausible range for the proportions of the categories under control conditions. Moreover, it
would be computationally simple, to extend the methods based on Dirichlet posteriors to simultaneous
confidence intervals for differences or ratios between multinomial proportions.

Clearly the statistical model used here (i.e. all methods considered) has a number of problems.
In the statistical model, many parameters are fitted to the data. Such approaches may over-fit the
data in situations where simpler models would be appropriate. For example, when in dose-response
analysis linear or log-linear relations to baseline logits are plausible, regression models for baseline
logits are a sparse alternative to estimating extra parameters for each dose group (see, e.g. Agresti,
2013). When there are several ordinal categories, cumulative logit models or related approaches can
be more appropriate (see, e.g. Ryu, 2009; Agresti, 2013). Furthermore, the methods described here
as well as the simulation settings apply only to highly controlled lab experiments or randomized
trials with no further substructures. However, the Wald-type intervals can likewise be applied when
baseline logits and corresponding covariance matrix are estimated from generalized linear model fits.
Then similar inferential procedures can be performed while including covariates, secondary factors
of interest or stratification. Moreover, experiments or studies will often involve replicated biological
units per treatment group, for example, several animals, litters, or cultures per treatment group in
toxicology or clustered observations in clinical trials or exposure studies. If variation between these
units is larger than expected under multinomial distribution (over-dispersion): all methods considered
here will have (severely) too narrow confidence intervals, that is too low coverage probability, because
they do not account for such over-dispersion.
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