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Abstract 

The primary objectives of this thesis are the extension of multimodel inference to 

multiple comparisons and the construction of model-averaged simultaneous 

confidence intervals (MASCI). This approach is intended to help dealing with model 

selection uncertainty, an issue which arises when there is uncertainty in regard to 

several influencing factors in an experiment. Two cases were considered in this thesis: 

a linear model setting with unknown influence of several covariables and a setting 

with different correlation structures of linear mixed effects models.  

For this purpose, two formulas by Burnham and Anderson (2002) for calculating the 

standard error of model-averaged parameters were modified. By changes in the 

quantiles they were made suitable for multiple comparisons. This approach was tested 

on the mentioned settings for a multiple comparison by simulation studies. Model-

averaging was compared to the often used AICc selection of one model. 

The simulation studies showed that the proposed calculation of model-averaged 

simultaneous confidence intervals works. Especially for small sample sizes of 5 or 10 

model-averaging performed better than using a single model after AICc selection. For 

instance, AICc selection achieved a coverage probability of 70 – 90 % in case of 

sample size ni = 5, instead of the expected 95 %. Although MASCIs could not reach 

the 95 %, too, the coverage was always over 90 % and consistently better than the 

result of only one model. As expected, these asymptotic methods work better for high 

sample sizes. 

The calculation of MASCI was also applied in two examples. 

The calculation of model-averaged simultaneous confidence intervals can now easily 

be made with a function implemented in R called “masci”. How to use it and the 

additional code can be found in the Appendix.  

 

Keywords: multimodel inference, model-averaging, simultaneous confidence intervals, 

multiple comparisons, model selection uncertainty 
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1. Introduction: The Problem with Model Selection 

Uncertainty 
 

 

 

Statistical analyses for significance, estimation, standard error or confidence intervals are 

based on data and a statistical model. Usually, the model is not known a priori. Additionally, 

in some situations of data analysis several models are plausible. This creates uncertainty about 

which model should be selected for inference. A common problem, even with the same data, 

is the production of diverse results for significance etc. by different statistical models.  

The issue of model selection uncertainty and the usage of multimodel inference will be the 

core of this thesis. The approach of model-averaging will be extended on multiple 

comparisons. To illustrate the issue, some example data are shown in the beginning. 

Thereafter, some statistical basics are explained and a new method is introduced. After two 

simulation studies, the results of the following data are shown.  

 

1.2 Example “Bodenfauna”: Influence of Genetically Modified Crops on Three 

Soil-Living Species 

 

This field trail deals with the influence of genetically modified crops on three soil-living 

species. For this, four plant varieties (“variety”) were cultivated in a complete block design (8 

blocks) and the total number of the three soil-living invertebrate species of interest was 

counted over the entire vegetation period (“species”). The genetically modified (“GM”), a 

near-isogenic (“ISO”) and a conventional variety (“B”) were compared with a second 

conventional variety “A”. Furthermore six soil characteristics were collected (“pH”, grain-

size fraction 1-3 (“KF1”, “KF2”, “KF3”), content of organic substance (“Corg”) and Nitrogen 

(“N”)).  
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Table 1.1: Short overview of the structure and variables of the “Bodenfauna” data 

Target variable soil-living species Sum of three counted species 

Treatment groups four plant varieties GM 

ISO 

A 

B 

Covariables block design 8 blocks 

 soil characteristics pH 

KF1, KF2, KF3 

Corg 

N 

 

 

 

Figure 1.1: “Bodenfauna” data with number of counted species for each variety (A, B, 

GM, ISO) 

 

The next step for the evaluation was the formation of possible models. An influence of the 

mentioned covariables and also of the block design on the invertebrates seemed plausible. 

Consequently, six linear models were built. Model `lm1´ is the standard model for analysing 

block design. `lm1-3´ could play a role due to soil biology. Here, `KF1´ was selected as an 

example for the grain-size fraction. After that, a full model with all covariables (`lm5´) and 

finally a model with none of them (`lm6´) was built. 

lm1<- lm(species ~ variety + block)  
lm2<- lm(species ~ variety + pH)  
lm3<- lm(species ~ variety + KF1)  
lm4<- lm(species ~ variety + Corg)  
lm5<- lm(species ~ variety + block + pH + KF1 + KF2 + Corg)  
lm6<- lm(species ~ variety) 
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All of these models can be justified logically. So which one explains the data best and should 

therefore be chosen for the multiple comparisons? To illustrate how the use of different 

models influences further evaluation, the calculated confidence intervals of a Dunnett 

comparison are shown in Figure 1.2. The values of estimated mean and standard error and 

therefore the confidence bounds vary.  

 

Figure 1.2: Calculated simultaneous confidence intervals (SCI) based on six different 

models for three comparisons (Dunnett test). 

 

How to solve this evaluation using model-averaging is shown in chapter 7.  
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1.2 Example: Bradykinin Receptor Antagonism 

 

The next example deals with postoperative bleeding after cardiopulmonary bypass (CPB). 

That is often caused by fibrinolysis and you can use D-dimers as a biomarker. CPB promotes 

fibrinolysis via a peptide called bradykinin and the associated bradykinin B2 receptor. In a 

randomized, double blind trail, two drugs (HOE 140 and ε-aminocaproic acid (EACA)) were 

compared to a placebo control (saline) (Balaguer et al. 2013). HOE 140 is a specific 

bradykinin B2 receptor antagonist and EACA a well-known antifibrinolytic drug. 37 (EACE 

and placebo) and 38 (HOE140) patients were assigned to the treatment groups. The 

concentration of the D-dimers in blood samples was tested at these five time points: 

 prior to surgical incision (baseline) 

 after 30 minutes on a heart-lung machine (“on-pump”) 

 after 60 minutes “on-pump” 

 after separation from the heart-lung machine (post-bypass) 

 on the first postoperative day 

The goal was to test which treatments (HOE140, EACA) reduce D-dimers and therefore 

fibrinolysis compared to the control.  

 

Figure 1.3: Bradykinin data set; individual patient observations (grey) and mean (black) 

of log-concentration of D-dimers per treatment. 
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The different observations over the time can be correlated among each other. By using linear 

mixed effects models, these dependencies can be taken into account. They can be adapted to 

the data by different correlations structures (read more in chapter 5). Normally, an AIC 

selection of the candidate models is then performed. In Chapter 7 the evaluation is also 

carried out using model-averaging.  
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2. Model Selection Procedures 
 

 

 

In this chapter, some methods of model selection are reviewed, focused on the AIC(c) 

selection.  

 

2.1 AIC Model Selection  

 

The following presents results according to Burnham and Anderson (2002) for a given set of 

R candidate models. After building a set of R candidate models, information criteria help to 

compare the adequacy of these models. A popular criterion is the Akaike information criterion 

(AIC, Akaike 1973). It estimates the expected, relative Kullback-Leiber (K-L; Kullback & 

Leiber 1951) divergence (I(f,g)) and therefore the information loss between the unknown truth 

f(x) and the approximating model        with data x and parameter    

                 
    

      
    

For                 as the maximized log-likelihood of model gi and K as the number of 

estimable parameters, the AIC is calculated as follows. 

                        

Comparing the AIC values of all models of your set, the one with the lowest AIC is to be 

preferred due to being the best approximation to f(x). However, since AIC is a relative value, 

it is only comparable between models fitting the same data. Additionally, one should note that 

AIC only chooses the best model out of the built set, thus, these models should be chosen 

carefully. Furthermore, it is assumed that none of the candidate models is the “true model” 

(Burnham & Anderson 2002). 
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For small sample sizes the AICc, following the underneath formula is recommended (Sugiura 

1978; Hurvich & Tsai 1989). Burnham and Anderson (2002) mentioned the limit 
 

 
    for 

AICc use with n being the sample size. And in 2004 Burnham and Anderson described that 

AICc converges to AIC, as n gets large, so AICc should be used in practice. Therefore, the 

AICc is also used in this thesis. For cases with overdispersed count data, there is another 

extension of AIC called QAIC(c) (Anderson et al. 1994), but it is not used in this thesis.  

 

          
         

     
 

 

To describe model probabilities, Burnham & Anderson (2002) named the following model 

weights “Akaike weights”. These weights     sum up to 1 and have to be built for all models 

in the set, too. They can be interpreted as a quantified probability of a model gi to be the 

actual K-L best model in this set (e.g., Burnham & Anderson, 2001). Using  , the model with 

the highest probability should be chosen. After each change in the set of R models, the 

weights have to be calculated again. Instead of AIC, other information criteria like AICc or 

BIC can be used.  

     
      

 
       

       
 
       

 
   

 

 

2.2 The Bayesian Information Criterion  

 

Another information criterion used for model selection is the Bayesian Information Criterion 

(BIC). Like the AIC it is based on the likelihood function but differs in the penalty term. 

According to Schwarz (1978) the BIC is defined as 

                            

and the model with lowest BIC is chosen. Alternatively, the BIC can be used to calculate 

Akaike weights. 
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3. Model Averaging/Multimodel Inference:  
 

 

 

In case of model selection uncertainty, the described methods won´t lead to one clear best 

model, e.g. with an Akaike weight of over 95 % compared to the other models in the set. 

Instead of choosing only one model nonetheless and therewith risking poorer results (e.g. 

Chatfield 1995), model averaging allows to use the information of the entire set for further 

calculation. This often leads to better precision and reduced bias (Burnham & Anderson 1998; 

chapter 4+5). 

Additionally, it is reported that the decision for a single model leads to confidence intervals 

(CI) with too high error rates (Hurvich & Tsai 1990, Lukacs et al. 2010) whereas model-

averaged CIs can have coverage rates close to the nominal level and can be narrower than 

those from the full model (Fletcher & Dillingham 2011). Several approaches for a model-

averaged variant were made (Buckland et al. (1997), Burnham & Anderson (2002), Hjort & 

Claeskens (2003), Claeskens & Hjort (2008), Fletcher & Turek (2011), Turek & Fletcher 

(2012)). This thesis focuses on the publications of Buckland (1997) and Burnham & 

Anderson (2002, 2004). 

Regardless of the advantages of model-averaging, a thoughtful selection of the candidate 

models is unavoidable. Burnham and Anderson (2003) recommend a small model set.  

Fletcher and Dillingham (2011) did not find that the differences between methods were 

greatly affected by the choice of model sets. They used a set of 19 models. Feas et al. (2007) 

found stabilized results using a large set and mentioned an example with 36 candidate models.   
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3.1 Burnham & Anderson  

 

The model-averaged estimate of a parameter   is calculated according to Buckland et al. 

(1997) as follows. It is important that the interpretation of  is consistent across all R 

candidate models. 

          
 

 

For model-averaged confidence interval construction a simple 95 % 1-parameter interval can 

be used whereas   is the 1- 
 

 
th percentile of the standard normal distribution.  

                     

As an estimator of the variance of estimator    under consideration of the model weights wi, 

Buckland et al. (1997) recommend the following calculation with            
 
   : 

             
                       

 

   

 

 

 

 

Burnham and Anderson (2002) extend this formula by a term including the quotient of the 

97.5
th 

percentile of the t-distribution with v degrees of freedom and the standard normal 

distribution. They called it “adjusted standard error” (ase) in their publications and 

furthermore mentioned two different variations of calculation. 

The first calculation for      is described in Burnham & Anderson 2002 (section 4.3.3, page 

164) and will be named       hereinafter. 

                 
         

      

 

 

                       
 

   

 

 

The second variant is also mentioned in Burnham & Anderson (2002; p.345, Eq. (6.12)) and 

will be called       from now on. 
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4. Multiple Comparisons 
 

 

 

If more than two groups are considered in an experiment, many-to-one or all-pairs tests can be 

used for their comparison.  The Dunnett-test (Dunnett 1955) as a many-to-one test and the 

Tukey-test (Tukey 1953) for all-pair comparisons are widely used. Therefore, the data should 

be continuous, independent, normally distributed and have homogeneous variance. The 

associated contrast matrices C for 4 groups are shown below. The rows contain the single 

comparison and the columns the different treatments. Whereas the “-1” and “1” label the 

treatments chosen for the comparison. E.g. the first row of the Dunnett contrast matrix imply 

the comparison of treatment 1 (“1”) against the control (“-1”). 

           
    
    
    

    
 
 
 
  

 

        

 

  
 

     
     
     
     
     
      

  
 

 

Our parameter of interest is the matrix product θ = Cμ, where μ is the column vector of 

treatment means μ = (μ1, μ2, μ3, μ4).  
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4.1 Simultaneous Confidence Intervals 

 

The corresponding test statistic T for a single contrast h with    as difference of treatment 

means is 

    
   

        
  

For e.g. Dunnett comparison of three groups to control, T = (T1, T2, T3) follows the 

multivariate t-distribution. 

The calculation of an approximate simultaneous confidence interval (SCI) for a chosen 

contrast uses a two-sided quantile of the multivariate t- distribution with α = 0.05, v degrees 

of freedom and the correlation R among the test statistics (Hothorn et al. 2008).  

         
                   

 

4.2 Model-Averaged Simultaneous Confidence Intervals MASCI 

 
The next step combines the model-averaging formulas for      (1+2) by Burnham and 

Anderson (2002) and the calculation of SCIs for using multimodel inference for multiple 

comparisons, too. Therefore, the additional term containing the t- and z-quantiles was 

modified. The new formula replaces the quantile of the univariate t-distribution by one of the 

multivariate t-distribution (with α = 0.05 and correlation matrix    ).  

The simultaneous confidence intervals computed using      will be called model-averaged 

simultaneous confidence intervals 1 (MASCI1) and using      leads to MASCI2: 
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The performance of these model-averaged simultaneous confidence intervals was tested in 

two simulation studies. First, a linear model setting with unknown influence of several 

covariables (Chapter 5) and second, a setting with linear mixed-effect models with unknown 

random effect structure (Chapter 6) was simulated. 
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5. Simulation Study 1: Linear Models with Unknown 

Influence of Covariables 
 

 

 

The next two chapters deal with simulation studies. But why do we need them? After the 

made assumption about the calculation of model-averaged simultaneous confidence intervals, 

there are still questions to be asked. Does the adaption of 1-parameter confidence intervals to 

multiple comparisons work this way? The derivation of ase1 and ase2 by Burnham and 

Anderson (2002) was rather heuristic. Moreover, the used methods are asymptotically, i.e. 

only valid for large sample sizes n. So for which sample sizes does the method work and 

which n can be chosen in practice? Are there any improvements through this more complex 

method against simpler approaches? And is this method worth the effort? Simulation studies 

are therefore a tool to verify the previous suggested calculation for model-averaged 

simultaneous confidence intervals.  

As a criterion for the comparison of different methods, the coverage probability was chosen. 

For this, a large number of data sets are simulated for a special parameter setting and then the 

SCIs are calculated. How many of these SCIs contain the true difference of mean? The 

coverage probability should be 95%. 

                      
                                

                            
 

 

In the first simulation study the coverage probabilities of confidence intervals calculated with 

different methods were compared. As model averaging method intervals were built according 

to both variants of 4.2 (“Model-Averaged Simultaneous Confidence Intervals, MA-SCI1/2”). 

The underlying set of models was made up from all possible models (using a maximum of 

four covariables in one model) without any selection (Tab. 5.2). The other intervals were 
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calculated first after model selection using AICc (“AIC best”), then with all (“full model”) 

and last with none (“smallest model”) of the covariables. 

The computed situation was a multiple comparison of three treatment groups (control, T1, T2) 

with different effect of covariables.  For the comparison, a Dunnett test was chosen (T1-

control; T2-control). As an illustration, the data of one simulated parameter setting is shown 

in Figure 5.1. 

Figure 5.1: Data of one exemplary chosen parameter setting of simulation study 1.  

 

The goal was to simulate model uncertainty and to identify which method deals best with it.  
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5.1 Parameter Settings 

 

The data generation followed the formula underneath 

 

yij = ai + b1*x1ij + b2*x2ij + … + b10*x10ij + eij 

i  treatment group 1-3 

j  1,..., n[i] Observations per group 

 yij   observations  

x1ij,..., x10ij  values of covariable 1 to 10  

ai   Intercept of group i=1,2,3; parameter of interest is the 

difference of these two intercepts d 

b1,...,b10  slope of the covariables x1ij,..., x10ij  

eij   Normal distributed residuals of the linear model,  

with eij~ N(0, sde2), and sde is the standard deviation of the 

residues 

 

The variation of parameters ni (sample size per group), b and sde is shown in Table 5.1 and 

5.2. Therefore, 48 different settings were tested. The true difference between treatment 1 and 

the control was fixed at 2 und treatment 2 had no difference to control. There was no 

correlation among the covariables. 

 

Table 5.1: Fixed and varied values of parameter ni, sde, b and d. 

Parameter  values 

n Sample size 5 |10 | 20 | 50 

sde Standard error of residuals 0.1 | 3 | 10 

b Number of covariables 4 | 6 | 8 | 10 

 Correlation between covariables No (fixed) 

d True difference of mean T1 – C: 2 (fixed) 

T2 – C: 0 (fixed) 
 

 

For a better understanding of the model building process, Table 5.2 shows the number of all 

candidate models at the different covariable settings. Remember that a maximum of four 

covariables were in one model.  Additionally, the values of the parameter b are listed. 
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Table 5.2: Model building at the different covariable settings and values of b. 

Number of covariables  models in the set value of each b 

4 16 1, 0, -2, 0 

6 57 1, 0, -2, 0, 0, 2 

8 163 1, 0, 0, -1, 0, 0, 2, 0 

10 386 0, 0, 0, 1, 0, 0, -1, 0, 2, 0 

 

The simulation had 1000 repetitions.  

 

5.2 Control with Two Groups 

 

As a control for the new model averaged method, the whole simulation study was repeated 

comparing only two groups. Therefore, the two original equations (see chapter 3) from 

Burnham & Anderson (2002) were used. 

5.3 Shannon-Wiener Index 

 

As an indication of model uncertainty in the single settings of this simulation study, the 

Shannon-Wiener index was calculated for every repetition and the mean for each setting was 

outputted.  The Shannon-Wiener index is often used to describe biodiversity, but here it 

reflects the weight distribution of the models.  

                                         
 

  
  
 

 

N sum of all weights  1 

ni Akaike weight of modeli 

 

If all models are equally weighted, the Shannon-Wiener index will reach its maximum (log of 

the number of models). Because of the different numbers of models (16, 57, 163 or 386) in 

the settings you can´t compare the indices automatically. For the comparison between all 

settings the following quotient was used: 
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5.4 Result 

 

As you see in figure 5.2 and 5.3, especially the standard error (sde) and the number of 

observations (n) and covariables affect the coverage probability of the model-averaged and 

AIC selected methods. The coverage probability of the other two methods (usage of “full” and 

“smallest model”) constantly remained around 0.95.  

For n 20 all methods work equally well, but smaller sample sizes showed poorer results. 

With an increasing number of covariables and with higher standard errors the coverage 

probabilities deteriorate even more. This effect was observed most clearly for “AICbest”. At 

settings with b = 10, sde =  3 or 10 and sample sizes of 5, the coverage probability went down 

to 70 %. The model averaged methods performed better than the AIC selected (see also 

Figure 5.4).  

 

 

Figure 5.2: Coverage probability of two-sided 95% simultaneous confidence intervals 

calculated according to different methods and at diverse parameter settings. 
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Figure 5.3: Coverage probability of two-sided 95% simultaneous confidence intervals 

calculated according to different methods and at diverse parameter settings. 

 

In the direct comparison there are hardly any differences between the two variants of model-

averaged simultaneous confidence intervals (Figure 5.3). In some settings MASCI2 reached 

marginal better results. Furthermore, it can be seen that the model-averaged methods achieve 

better results than the interval after AIC selection.  
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Figure 5.4: Comparison of the coverage probabilities of the two model-averaged 

methods (MASCI 1+2) and of the MASCI1 to the AIC selected method. The solid line 

would implicate equal coverage probabilities of the methods. 

 

Figure 5.5 shows the Shannon quotient at different parameter settings. Higher Shannon 

quotients reflect a greater uniformity of model weights and therefore more obvious model 

uncertainty. It can be seen that the Shannon quotient is lower with small and becomes larger 

with increasing standard error. Small sample sizes did not lead to higher uncertainty and an 

effect of the number of covariables is not uniform.  
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Figure 5.5: Shannon quotient for different parameter settings with influence if 

parameters ni, sde and b.  

 

As a further illustration the mean of the three highest model weights is shown in Figure 5.6.  

 

Figure 5.6: The mean of the three highest weighted models (“w1”, “w2”, “w3”) for 

different parameter settings.  
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5.4.1 Results from control 

 

The control results roughly follow the pattern of the multiple comparisons (Fig. 5.6). Apart 

from the setting with b  8 and ni = 5, where the full model and “AICbest”couldn´t be 

fitted. As a reminder: all in all, only ten observations were simulated in these settings and not 

15 as in the comparison of three groups.  

 

Figure 5.6: Coverage probability of two-sided 95% confidence intervals calculated 

according to different methods and at diverse parameter settings. 

 

As you see in Figure 5.7, the model-averaged methods work equally and both achieve better 

results than the one using AICc selection.  In some settings using ase2 reached marginal better 
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Figure 5.7: Comparison of the coverage probabilities of the two model-averaged 

methods and of the model-averaged (1) to the AIC selected method. The solid line would 

implicate equal coverage probabilities of the methods. 

 

 

5.5 Discussion 

 

The Shannon quotient and the Akaike weights should provide information about the model 

selection uncertainty of the single settings. Although these were the means from the 1000 

repetitions per setting, the uncertainty about model selection is evident (Figure 5.5, 5.6). Thus, 

a good starting point for evaluation with multimodel inference was created.  

Moreover, the results show that using a model-averaged confidence interval improves the 

coverage probability in contrast to the usage of only the “AICbest” model. This applies to 

single as to multiple comparisons. In the simulated multiple comparison, MASCIs reached 

with sample sizes ni ≥ 10 the desired approximately coverage of 0.95. In case of smaller 

sample sizes, the coverage probability decreased. However, this method also achieves better 

results than AICc selection, even with smaller sample sizes. For instance, AICc selection 

achieved a coverage probability of 70 – 90 % in case of sample size ni = 5, instead of the 

expected 95 %. This means that in the worst case α is 0.3 instead of the assumed and required 

α = 0.05.  
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Comparing the two groups, the coverage probability reached 95 % only with sample size ni ≥ 

20, because the total number of observations was lower (e.g. nc+nT1 = 40) than in the case of 

the multiple comparison (e.g. nc + nT1 + nT3 =60). 

The two MASCI variants worked mostly the same. In some settings, MASCI2 reached 

marginal better results. This observation can also be found in the literature. Turek and 

Fletcher (2012) explain this with the narrower interval of MASCI1. The interval width was 

not documented in this simulation study. Fletcher and Dillingham reported in 2011 that both 

equations performed equally well using AIC criterions (AIC, AICc, AIC
*
c) but for BIC the 

use of ase2 provided slightly better coverage.  

The formation of the model set was a little different than in practice because of the automatic 

simulation. All possible covariable combinations were computed without any well-considered 

choice as recommended (Burnham & Anderson 2002) for building a model set. Furthermore, 

the maximum number of covariables was set to 4. The extent to which these facts have had a 

negative impact is difficult to predict.  

Surprising was the good performance of the smallest and largest model. But to therefore 

always choose these simple solutions is not a recommended alternative. Covariables with 

effect on the observation should be taken into account in the evaluation. In this simulation 

study, only a few of the generated covariables had an influence (Table 5.2). And these 2-3 

covariables per setting had values from -2 to 2. Perhaps, settings should be simulated with a 

larger variation of the covariables. But why not choose a model with all the factors considered 

important? Burnham and Anderson (2011) refer to the limited information content of a data 

set and that an increasing number of factors eventually make the fitted model unstable and 

uninformative. 
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6. Simulation Study 2: Linear Mixed Effects Models with 

Random Effects 
 

 

 

In this simulation study an experiment with crossover design was computed. Those designs 

are especially important in health care. A varying number of individuals receive a sequence of 

different treatments at five time points. Ultimately, all individuals received all the treatments. 

As an illustration, an example dataset was generated and plotted (Figure 6.1).  

Figure 6.1: Simulated data in crossover design with 10 individuals (colored lines) and 

five different treatments at five time points. 

 

As in simulation study 1, a Dunnett test was chosen to compare the five treatments (treatment 

A-D to control). The simultaneous confidence intervals were built using both model-averaged 

equations and with the “best” model after AICc selection. AIC selection is recommended by 

Zuur et al. (2009, chapter 7) and also Pinheiro and Bates (2000). The coverage probability of 

each method was evaluated.  
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6.1 Parameter Settings 

 

In experimental setups with repeated measurements, linear mixed-effects models can be used 

for evaluation. The model can be written as seen below with     as a known vector of 

observations,    and    are known design matrices for the fixed and random effects and   is 

an unknown vector of the fixed effects. Additionally to fixed-effect parameters, the residual 

error    and random effects parameters     can be included.  

                                 

In this simulation study    codes the treatment groups, such that the fixed effect parameter   

estimates the mean differences between the treatment groups (parameter of interest in 

multiple comparisons).    codes, which observation belongs to which individual. 

            
   is the random effect representing the variance between individuals.     is the 

vector of residuals over time belong the same individuals. Repeated measurement over time 

may invoke different correlations among these residuals, depending on time. These 

correlation structures are subject to model selection.
 

In this simulation study, some frequently used correlation structures for the random effects 

were chosen (for background information read Pinheiro & Bates 2000, chapter 5.3). 

Eventually, eight different data generating settings with the “true” correlation structure (Table 

6.1) were simulated. 

 

Table 6.1: Used correlation structures for data generating. Since they are symmetric, only 

their upper triangles are displayed. 

Independence (“NULL”)  

 

 
 

     
    

   
  

  

 
 

 

 

 

First-order autoregressive 

(AR1) 

 

 

 
 

                
            

        
    

  

 
 

 

 

 

“AR1”  

corAR1(0.8, ~1|id) 
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“AR1low” 

 corAR1(0.3, ~1|id) 

Autocorrelation-moving 

average (ARMA) 

 

 

 
 

        
       

      
     

  

 
 

 

 

“ARMA1”  

corARMA(0.8,  ~1|id, p=0, 

q=1) 

  

 

 

 
 

        
       

      
     

  

 
 

 

 

 

 

“ARMA1low” 

corARMA(0.3, ~1|id, p=0, 

q=1) 

  

 

 
 

                
            

        
    

  

 
 

 

 

 

“ARMA2” 

corARMA(c(0.6,0.8), 

~1|id, p=1, q=1) 

  

 

 
 

               
              

         
     

  

 
 

 

 

 

“ARMA2low” 

corARMA(c(0.1,0.3), 

~1|id, p=1, q=1) 

Unstructured   

 

 
 

           
        

     
  

  

 
 

 

 

 

corSymm(c(0.8,0.4,0.2,0.0, 

0.4,0.2,0.0, 0.2,0.0, 0.0), 

~1|id) 

 

 

Beside the random effects, some parameters (ni, sdi, sde) vary per setting; others were fixed. 

A compilation can be found in Table 6.2.  
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Table 6.2: Values of fixed and varied parameters ni, sdi, sde and differences of means. 

ni number of individuals 5 | 10 | 20 |100 

sdi standard deviation between individuals 0.01 | 0.5 | 1 | 5 

sde residual standard deviation 0.5 | 1 | 10 

 Number of measurement points 5 (fixed) 

 Differences of means A – control: 0 

B  – control: 1 

C - control: 0 

D – control: 0 

 

The model set was built of six models with different random effects. The structures followed 

the ones mentioned in Table 6.1 (Independence, AR1, ARMA) but differ in their values. The 

underlying “true” model was never included in the set except the assumption of 

independence. In some cases, a model could not be fitted to the generated data. Then, the 

model set was smaller. 

A total of 384 settings were simulated with 2000 repetitions.  

 

6.2 Results 

 

The coverage probabilities were calculated for each setting and method (Figure 6.2). The 

model-averaging methods achieved better results than using AICc selection except setting ni = 

100. At this high sample size, the methods worked equally well and reached an approximate 

coverage of 0.95. With decreasing ni, the AICc selected model produced increasingly poorer 

results up to a coverage probability of under 90 % (ni = 5 and 10). At the same time, model-

averaging performed much better. Thus, the coverage probability can be positively influenced 

by sample size and calculation method. An influence by sde and sdi on the coverage was not 

found. 
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Figure 6.2: Coverage probabilities from simultaneous confidence intervals calculated by 

different methods (model-averaged (MASCI 1/2) and AICc selection) at several 

parameter settings. ni is the number of individuals, sdi the standard deviation between 

individuals and sde the residual standard deviation. 

 

As shown in Figure 6.3, the Shannon quotient as an illustration for model selection 

uncertainty was similar in most settings. It fluctuated around 0.75, whereas a value of 1 would 

mean that all models are equally weighted. The mean of the highest model weight was around 

0.4. These values indicate an existing model selection uncertainty in the settings. However, a 

complete independence of the ni effect and the model uncertainty could not be achieved. Yet, 

the lower coverage probability at smaller sample sizes (Figure 6.2) cannot be explained by 

greater uncertainty. On the contrary, smaller sample sizes often reached lower Shannon 

quotients and therefore lower model uncertainty. As an exception, settings with an “ARMA2” 

correlation structure and ni = 50 and 100 led to the lowest Shannon quotients by far.  
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Figure 6.3: Mean of the Shannon quotient per setting and in dependence of the 

correlation structure and ni. 

 

In addition, the selection uncertainty did not negatively affect the coverage (Figure 6.4). 

Lower coverage probabilities can be better clarified with the selected method. 
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Figure 6.4: Coverage probability depending on the Shannon quotient for model-

averaging (MASCI 1/2) and AICc selection method. Additionally parameter ni is 

represented. 

 

Between the two model-averaging methods, no serious difference could be found (see 

especially Figure 6.5), if at all MASCI2 performed slightly better. However, the difference to 

the AICc selection method was clear. 
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Figure 6.5: Direct comparison of coverage probabilities with model-averaged 

simultaneous confidence intervals 1/2 (MASCI1/2) and from the best model after AICc 

selection 

Apart from some outliers, the final number of models in the sets approached approximately 

six. An influence of a lower number of models on the coverage probability cannot be seen. 

 

6.3 Discussion  

 

As in simulation study 1, an existing model selection uncertainty can be assumed in the 

various settings.   

The coverage probability could be improved with MASCIs. Only for sample sizes ni = 100 the 

AICc selected model performed equally well (Figure 6.2 and 6.4). Once more, MASCI2 

achieved slightly better results than MASCI1 (Figure 6.5).  

Unlike simulation study 1, no control was performed using the original equations (3.1). A 

comparable setting would be a comparison of two treatments at only two time points. 

However, a simulation with only two time points makes no sense since the selection among 

different correlation structures between several time points was the goal of this study. 
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7. Results Examples 
 

 

 

This Chapter presents the results of the example data “Bodenfauna” (7.1) and “Bradykinin” 

(7.2) and each a brief diskussion.   

 

 7.1 Results Example „Bodenfauna“  

 

As an illustration for the model selection uncertainty, the Akaike weights were calculated and 

shown in figure 7.1: 

 

Figure 7.1: The calculated Akaike weights (see 2.1) of the set of candidate models  

 

As you see in the pie chart (Figure 7.1), none of the built models reach really high weights 

(e.g > 0.95). To deal with this uncertainty, model-averaged simultaneous confidence intervals 
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(MASCI 1+2) according to chapter 4.2 were calculated for a Dunnett test. Figure 7.2 shows 

MASCI 1+2 in addition to the SCIs based on each single model for the tree comparisons.  

 

 

Figure 7.2: Model-averaged (MASCI 1+2) and single model (lm1-lm6) simultaneous 

confidence intervals of the multiple comparisons (Dunnett test) of the number of species 

in different plant varieties (“B – A”, “GM – A”, “ISO – A”). 
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With none of the methods a difference in the number of species could be detected. The two 

model-averaged variants achieved same confidence intervals. For detailed values see Table 

7.1. 

 

Table 7.1: This table contains the values of several simultaneous confidence intervals of 

the multiple comparisons (Dunnett test) of the number of species in different plant 

varieties (“B – A”, “GM – A”, “ISO – A”). These were calculated for each single 

candidate model (SCI.lm1,..., SCI.lm6) and then model-averaged according to chapter 4.2 

(MASCI1&2). 

Comparison Method/Model Estimate Lower bound Upper bound 

B - A SCI.lm1 0,40095 -0,2574 1,0593 

B - A SCI.lm2 0,4583 -0,2024 1,119 

B - A SCI.lm3 0,41765 -0,1979 1,0332 

B - A SCI.lm4 0,3901 -0,2653 1,0455 

B - A SCI.lm5 0,3197 -0,4285 1,0679 

B - A SCI.lm6 0,40095 -0,2437 1,0456 

B - A MASCI1 0,4145847 -0,2196306 1,0488 

B - A MASCI2 0,41458335 -0,2197333 1,0489 

GM - A SCI.lm1 0,49315 -0,1652 1,1515 

GM - A SCI.lm2 0,5046 -0,1419 1,1511 

GM - A SCI.lm3 0,4098 -0,2142 1,0338 

GM - A SCI.lm4 0,48615 -0,1685 1,1408 

GM - A SCI.lm5 0,3853 -0,3139 1,0845 

GM - A SCI.lm6 0,4931 -0,1515 1,1377 

GM - A MASCI1 0,4516326 -0,1898348 1,0931 

GM - A MASCI2 0,45167455 -0,1897509 1,0931 

ISO - A SCI.lm1 -0,14125 -0,7996 0,5171 

ISO - A SCI.lm2 -0,13555 -0,7816 0,5105 

ISO - A SCI.lm3 -0,2409 -0,8686 0,3868 

ISO - A SCI.lm4 -0,11335 -0,7762 0,5495 

ISO - A SCI.lm5 -0,2781 -1,0096 0,4534 

ISO - A SCI.lm6 -0,14125 -0,7859 0,5034 

ISO - A MASCI1 -0,1890507 -0,8359014 0,4578 

ISO - A MASCI2 -0,1890608 -0,8358216 0,4577 

 

 

7.1.1 Discussion “Bodenfauna” 

As illustrated in Figure 7.1, none of the candidate models reached an Akaike weight of    

 0.95. Therefore, we can assume model selection uncertainty. Nevertheless, the conclusion for 

all methods are the same. But the different confidence bounds are clearly visible (Figure 7.2, 
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Table 7.1). Unlike the simulation studies, MASCI1 and MASCI2 achieved equal results. The 

width of the calculated intervals differed only after the third decimal (Table 7.1).  

With a sample size of 8, this field trail was set in a range between the two ni settings of 

simulation study 1 (ni = 5 and 10). Sample sizes of 10 reached approximately 95 % coverage 

but ni = 5 performed worse. When exactly the 95 % are reached, the study did not cover.  

 

 

7.2 Results „Bradykinin” 

 

For evaluation five models with different correlation structures were fitted. The calculated 

Akaike weights are shown in Figure 7.3. Model `fdt1´ reached only w = 0.00003 and therefore 

cannot be seen on the pie chart. The highest Akaike weight was achieved by model 

`fdtARMA02´ with w = 0.53. 

 

Figure 7.3: The calculated Akaike weights of the set of candidate models. 

 

All treatments were compared at each time point, except baseline. The corresponding SCIs 

were calculated for each single model and using model-averaging. In Figure 7.4, the 
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calculated SCIs from the model with the lowest (fdt1) and highest (fdtARMA02) weight are 

shown together with both MASCIs.  

Figure 7.4: SCIs for all-pair comparison at different time points. For the two MASCIs 

and the SCIs based on the lowest (fdt1) and highest (fdtARMA02) weighted models. 

 

7.2.1 Discussion 

Despite assumable model selection uncertainty (Figure 7.3), there are hardly any differences 

between the confidence bounds (Figure 7.4). One reason could be the high sample size of 37 

or 38 patients. In simulation study 2, only sample sizes of ni = 5, 10, 20 or 100 were observed. 

The range around 37 was insufficiently covered. Consequently, we do not know how the 

difference between the methods at this point is or whether they behave as with ni = 100.  

MASCI1 and 2 performed equally well.  
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8. General Discussion 
 

 

 

Extending model-averaging on multiple comparisons and finding a construction for model-

averaged simultaneous confidence intervals was the goal of this thesis. The simulation studies 

showed that the proposed calculation of model-averaged simultaneous confidence intervals 

works. Two cases were considered: a linear model setting with unknown influence of several 

covariables and a setting with different correlation structures of linear mixed effects models. 

Model selection uncertainty could be assumed in both simulations. Model-averaging was 

compared against the often used AICc selection of one model. Especially for small sample 

sizes of 5 or 10 model-averaging performed better than using a single model after AICc 

selection. For instance, AICc selection achieved a coverage probability of 70 – 90 % in case 

of sample size ni = 5, instead of the expected 95 %. Although MASCIs could not reach the 95 

%, too, the coverage was always over 90 % und always better than the result of only one 

model. As is not to be expected otherwise, these asymptotic methods work better for high 

sample sizes. 

This improvement over AICc selection has been descripted in the literature (e.g. Fletcher & 

Dillingham 2011). However, the confidence intervals were partly calculated differently. 

Fletcher and Turek (2011) recommend model-averaging a set of profile likelihood-intervals to 

improve coverage rate and avoid the assumption of normality of the estimates. Their 

simulation studies confirm an improved coverage compared to intervals using ase1. For 

simulation, they made the assumption that the “true” model is the largest in the set. In 2012, 

Turek and Fletcher took a different approach averaging the tail areas of the distribution of the 

estimators of the possible models and building model-averaged tail area (MATA) intervals. 

For dose response modelling, Faes et al. (2007) and Jensen&Ritz (2015) used model-

averaging methods, too. 
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Between MASCI 1 and 2, only marginal differences could be found in the simulation studies. 

In the examples, they differed only after several decimals.  

Unlike the simulation studies, the results of model-averaged and single model SCIs did not 

differ in the examples. Naturally, it remains important to note that substantial fewer 

comparisons were considered. In the example “Bradykinin”, 12 comparisons and in 

“Bodenfauna”, only 3 comparisons were made for one data set. By contrast, in the simulation 

studies the multiple comparisons were made for 48 (study 1) or 384 (study 2) parameter 

settings with each 1000 or 2000 repetitions. This means a calculation of overall 48000 or 

768000 different data sets and therefore multiple comparisons.   

The model-averaging method seems to be promising and should be tested in further settings.  

The calculation of MASCIs can now easily be made with a function implemented in R called 

“masci”. How to use it and the additional code can be found in the Appendix.  

  



 

40 
 

 

 

9. Appendix 
 

 

 

9.1 R Function for MASCI calculation 

 

The above explained calculation for model-averaged simultaneous confidence intervals 

(MASCI) was implemented in an R function called “masci” for simplified usage. You can 

choose whether MASCI1 or 2 is calculated. The function requires the R-packages MuMIn 

(Barton 2015), multcomp (Hothorn et al. 2015) and plyr (Wickham 2015). 

Step 1: Build a set of candidate models based on the data and previous knowledge. The entire 

set is used for further analysis.  The K-L best models will reach the highest weights and if the 

“true” model is included its weight would approach one.  

 lm1<- lm(SP ~ Sorte + Block , data=Bodenfauna) 
 ... 
 lm6<- lm(SP ~ Sorte, data = Bodenfauna) 
 
Step 2: Chose a multiple comparison and carry it out for all models. So far it only works with 

R-packet multcomp. The results (e.g. the glht objects) must be collected in a list. 

 lm1.mc <- glht(lm1,linfct = mcp(Sorte = "Dunnett")) 
 ... 
 lm6.mc <- glht(lm6,linfct=mcp(Sorte=”Dunnett”)) 
 
 FITLIST.mc <- list(lm1.mc, lm2.mc, lm3.mc, lm4.mc, lm5.mc, lm6.mc) 

 

Step 3: The implemented R-function “masci” only needs this list for calculating the averaged 

simultaneous confidence intervals according to 4.2. As default the function calculate 

MASCI2, if masci2 = FALSE the MASCI1 will be calculated.  

 MASCI1.Bodenfauna <- masci(glht.list = FITLIST.mc,  masci2=FALSE) 
 
 MASCI2.Bodenfauna <- masci(glht.list=FITLIST.mc) 
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The output contains the Estimate of treatment differences and the lower (lwr) and upper 

(upr) confidence bounds.  

 
 > MASCI1.Bodenfauna 
           Estimate        lwr       upr 
 B - A    0.4146017 -0.2195325 1.0487358 
 GM - A   0.4516512 -0.1897356 1.0930380 
 ISO - A -0.1890597 -0.8358023 0.4576828 

 

# masci code 

masci <- function(glht.list, masci2= TRUE) 
{ 
  require("MuMIn") 
  require("multcomp") 
  require("plyr") 
   
  RES <- matrix(NA, ncol=3, nrow=length((Fitlist.mc [[1]]$linfct)[,1])) 
  length.mc <- length((glht.list [[1]]$linfct)[,1]) 
  Fitlist<-lapply(glht.list, function(x){x$model}) 
{ 
  W1   <- Weights(do.call(what="AICc", args=Fitlist))  
  a <- 1-((1-(1-0.05))/2) 
 
  x.Fit <- laply(.data=glht.list,.fun=function(x){coefficients(x)}) 
  se.Fit <- laply(.data=glht.list,.fun=function(x){sqrt(diag(vcov(x)))}) 
 
  confint.glht.list <- lapply(glht.list, function(x){confint(x, level = 0.95)}) 
  t.Fit <- unlist(lapply(confint.glht.list, function(x){attr(x$confint,    
which="calpha")})) 
 
  wx <- aaply(x.Fit, 2, function(x){weighted.mean(x, W1, na.rm = TRUE)}) 
  x.sqdiff <- aaply(x.Fit, 1, function(x){x -wx}) 
  z <- c(t.Fit/qnorm(a))^2 
  xvar <- se.Fit^2 
  x.for.ase<-(xvar*z)+x.sqdiff^2 
 
if (masci2){ 
  ase <- aaply(x.for.ase, 2, function(x){sqrt(weighted.mean(x, W1, na.rm = TRUE))}) 
  } 
 
else{ 
  sqrt.x.for.ase <- aaply(x.for.ase, 1, function(x){sqrt(x)}) 
  ase <- aaply(sqrt.x.for.ase, 2, function(x){weighted.mean(x, W1, na.rm = TRUE)}) 
  } 
 
  ci <- qnorm(a,lower.tail=TRUE)* ase 
 
  lwr <- as.numeric(wx-ci) 
  upr <- as.numeric(wx+ci) 
  CI <- cbind(lwr, upr) 
 
  glht.object1 <-(FITLIST.mc[1]) 
  sumglht1<-summary(glht.object1[[1]]) 
  testglht1<-sumglht1$test 
  coefglht1 <-testglht1$coefficients 
  namesMC <- names(coefglht1) 
  RES <- cbind(wx,CI) 
} 
rownames(RES)<-namesMC 
colnames(RES)<-c("Estimate", "lwr", "upr") 
return (RES) 
} 
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9.2 R Code Simulation Studies 
 

########################################################################### 

###### Simulation Study 1: Covariables #################################### 
########################################################################### 

library(MuMIn) 
library(multcomp) 
library(MASS) 
library(plyr) 
library(MCPAN) 
 
# ni: integer vector, elements= sample size per group, length=number of 
groups 
# names(ni) 
# a: single numeric value (intercept in group 1) 
# d: vector of numeric values; differences to group 1 
 
#### Data Generation 
 
dancovaCOV<-function(ni, a, d, b, cov, sde) 
{ 
  require(mvtnorm) 
  if(length(d)+1 != length(ni)){warning("Length of 'ni' and length of 'd' 
do not fit")} 
  if(is.null(names(ni))){TRT <- c("C", paste("T", 1:(length(ni)-1), 
sep=""))}else{TRT <- names(ni)} 
  N <- sum(ni) 
  ncov<-nrow(cov) 
  X <- rmvnorm(n=N, mean=rep(0, ncov), sigma=cov) 
  xnam <- paste("x", 1:ncov, sep="") 
  colnames(X) <- xnam                
  bvec <- rep(b, length.out=ncov)    
  fb <- factor(rep(TRT, times=ni)) 
  dat <- data.frame("Treat"=fb, X)    
  form1 <- as.formula(paste(" ~ Treat + ", paste(xnam, collapse=" + "))) 
  #print(form1) 
  mm <- model.matrix(form1, data=dat) # statt: mm <- 
model.matrix(formula=form1, data=dat) 
  para <- matrix(c(a, d, bvec), ncol=1) 
  epsilon <- rnorm(n=N, mean=0, sd=sde) 
  y<-mm %*% para + epsilon    
   
  return(data.frame(y=y, Treat=fb,  X)) 
} 
 
#### Model Set 
# 1) 
indexlist <- function(nox, maxx){ 
  indx <- 1:nox 
  indlist <- NULL 
  for(i in 1:maxx){ 
    indlist <- c(indlist, as.list(data.frame(combn(x=indx,m=i)))) 
  } 
  return(indlist) 
} 
 
# 2) all possible models were built 
 
formulist <- function(indexlist, xnames=NULL, trtname="Treat", yname="y", 
add0=TRUE){ 
  if(is.null(xnames)){XNAM <- paste("x", 1:max(unlist(indexlist)), 
sep="")}else{XNAM <- xnames} 
  FORMLIST <- lapply(indexlist, FUN=function(x){ 
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    paste(yname, " ~ ", trtname, " + ", paste(XNAM[x], collapse=" + 
"),sep="")}) 
  if(add0){FORMLIST <- c(list("x0"= paste(yname, " ~ ", trtname, sep="")), 
FORMLIST)} 
  names(FORMLIST)<-NULL 
  return(FORMLIST) 
} 
 

#### Simulation Code 
SIMmulti<- function(nsim=nsim, ni=ni, a, d, b, cov, sde, maxx=maxx) 
{ 
  extractcoef <- function(fitlist, which){ unlist(lapply(fitlist, 
FUN=function(x){coefficients(x)[which]})) } 
  extractcoefE <- function(fitlist, which){ unlist(lapply(fitlist, 
FUN=function(x){coefficients(summary(x))[which,2]})) } 
  extract.probs <- function(res, nsim){colSums(res)/nsim} 
  RES<-matrix(NA, ncol=11, nrow=nsim) 
  NOX <- length(b)  
  ALLI <- indexlist(nox=NOX,maxx=maxx) 
  FORMI <- formulist(indexlist=ALLI) 
   
  FORMULA2 <- FORMI[[1]]                 # Ohne Kovariablen 
   
  for(i in 1:nsim) 
  { 
    DAT  <- dancovaCOV(ni=ni, a=a, d=d, b=b, cov=cov, sde=sde) 
     
     
    FORMIall<-paste( "y ~ Treat+", paste(paste("x", 1:length(b), sep=""), 
collapse=" + ")) 
    
    FIT1 <- lm(as.formula(FORMIall), data=DAT)   
    FIT2 <- lm(as.formula(FORMULA2), data=DAT)   
 
    FITLIST <- lapply(FORMI, FUN=function(x){lm(as.formula(x), data=DAT)})  
 
    FITLIST.mc <- llply(FITLIST, .fun=function(FITLIST){glht(FITLIST,linfct 
= mcp(Treat = "Dunnett"))}) 
     
    models <- length(FITLIST) 
     
    W   <- Weights(do.call(what="AICc", args=FITLIST)) 
    W1 <- sort((round(W, 4)), decreasing=TRUE)[1] 
    W2 <- sort((round(W, 4)), decreasing=TRUE)[2] 
    W3 <- sort((round(W, 4)), decreasing=TRUE)[3] 
    Shannon.wi <- Shannon(W) 
     
    max.Shannon <- log(length(FITLIST)) 
         
    masci1 <- masci(glht.list = FITLIST, masci2=FALSE) 
    masci2 <- masci(glht.list = FITLIST) 
     
    CIall <- confint(glht((aov(FIT1, data=DAT)),linfct = mcp(Treat = 
 "Dunnett"))) 
    FITstepAIC <- stepAIC(FIT1, scope = list(lower = ~ Treat), trace=0)   
 
    CIstepAIC <- confint(glht(FITstepAIC,linfct = mcp(Treat = "Dunnett"))) 
    CIign <- confint(glht((aov(FIT2, data=DAT)),linfct = mcp(Treat = 
 "Dunnett"))) 
    enthaltenmasci1 <- all(masci1[,1]<=d & masci2[,2]>=d) 
    enthaltenmasci2 <- all(masci2[,1]<=d & masci2[,2]>=d) 
    enthaltenSTEPAIC <- all(CIstepAIC$confint[,2]<=d & 
 CIstepAIC$confint[,3]>=d) 
    enthaltenALL <- all((CIall$confint[,2]<=d & CIall$confint[,3]>=d)) 
    enthaltenIGN <- all((CIign$confint[,2]<=d & CIign$confint[,3]>=d)) 
     
RES[i,]<-c(enthaltenmasci1, enthaltenmasci2, enthaltenSTEPAIC, 
enthaltenALL, enthaltenIGN,W1,W2,W3, Shannon.wi, max.Shannon, model 
  } 
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  RES <- as.data.frame(RES) 
  coverage.probabilities <- extract.probs(res=RES[1:5],nsim=nsim) 
  MeanW <- colMeans(RES[6:11]) 
   
  names(coverage.probabilities) <-c("MASCI1","MASCI2", "STEP", "ALL","IGN") 
  names(MeanW) <- c("MW W1", "MW W2", "MW W3", "MW Shannon", "max Shannon", 
 "models") 
 
  return(c(coverage.probabilities, MeanW))  
    
} 
 
### Parameter Setting  
 
Settings <- expand.grid(ni=c(5,10,20,50), sde=c(0.1,3,10), 
b=c("b4","b6","b8", "b10")) 
 
b4=c(1,0,-2,0) 
b6=c(1,0,-2,0,0,2) 
b8=c(1,0,0,-1,0,0,2,0) 
b10=c(0,0,0,1,0,0,-1,0,2,0) 
 
 
 
 
 
###########################################################################
###### Simulation Study 2: Repeated Measurements ########################## 

########################################################################### 

library(nlme) 
library(mvtnorm) 
library(ggplot2) 
library(multcomp) 
library(MuMIn) 
library(plyr) 
library(MCPAN) 
 

# repeated measures: cross-over-design 
# jedem Individuen werden über die Zeit alle Behandlungen von Interesse 
zugewiesen, 
# die zeitliche Reihenfolge der Behandlungen 
 
# ni: Anzahl Individuen 
# nt: Anzahl Zeipunkte=Anzahl Behandlungen 
# m Mittelwert in Behandlung A 
# d Mittelwertsdifferenzen zu Behandlung A, B-A, C-A, ... 
# sdi: stddev. between individuale 
# sde: residual stddev 
# cor ... noch nicht: Korrelastionsstruktur wie in Pinheiro und Bates(2000) 
 
 
#Data Generation: 
 
drepco <- function(ni, nt, m, d, sdi, sde, cor=NULL, print=FALSE) 
{ 
  require("mvtnorm") 
  require("nlme") 
   
  id <- paste("ID", 1:ni, sep="") 
  idf <- factor(id, levels=id) 
  trt <- LETTERS[1:nt] 
  trtf <- factor(trt, levels=trt) 
  idf2 <- rep(idf, each=nt) 
  trtf2 <- as.vector(replicate(n=ni, sample(trtf))) 
  time <- 1:nt 
  time2 <- rep(time, times=ni) 
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  mmX <- model.matrix(~trtf2) 
  MTRT2  <- mmX %*% matrix(c(m,d),ncol=1) 
  UID <- rnorm(n=ni,0, sd=sdi) 
  UID2 <- rep(UID, each=nt) 
   
  DF2 <- data.frame(resp=MTRT2, trt=trtf2, id=idf2, time=time2) 
   
  if(is.null(cor)){COR <- corCompSymm(0, ~1|id)}else{COR <- cor} 
   
  SDE <- diag(rep(sde, length=nt)) 
  CORLIST2 <- corMatrix(Initialize(COR, data=DF2)) 
  SIGLIST2 <- lapply(CORLIST2,function(x){SDE %*% x %*% SDE}) 
  RESLIST2 <- lapply(SIGLIST2, function(x){rmvnorm(n=1, sigma=x)}) 
   
   
  if(print){ 
    print(CORLIST2[[1]]) 
    print(SIGLIST2[[1]]) 
  } 
  RES2 <- unlist(RESLIST2) 
   
  DF2$resp <- MTRT2 + UID2 + RES2 
   
  return(DF2) 
   
} 
 
# Simulation Code 
 
SIMrepeatedMeasures<- function(nsim=nsim, ni, nt, m, d, sdi, sde, 
cor,print) 
{ 
  extractcoef <- function(fitlist, which){ unlist(lapply(fitlist, 
FUN=function(x){coefficients(x)[which]})) } 
  extractcoefE <- function(fitlist, which){ unlist(lapply(fitlist, 
FUN=function(x){coefficients(summary(x))[which,2]})) } 
  extract.probs <- function(res, nsim){colSums(res)/nsim} 
   
  RES<-matrix(NA, ncol=9, nrow=nsim) 
   
   
  for(i in 1:nsim) 
  { 
    DAT  <- drepco(ni=ni, nt=nt, m=m, d=d, sdi=sdi, sde=sde, cor) 
     
    #fit <- try(lme(resp ~ trt, data=DAT, random= ~1|id)) 
     
    # Modellfit             
     
    FITLISTpos <- lapply(corlist, FUN=function(x){try(lme(resp ~ trt, 
data=DAT, random= ~1|id, correlation=x), silent=TRUE)})   
    FITclass <-unlist(lapply(FITLISTpos, class)) 
    wsucc <- which(FITclass == "lme") 
    FITLIST <- FITLISTpos[wsucc]# Liste aller Modellfits 
     
    FITLIST.mc <- llply(FITLIST, .fun=function(FITLIST){glht(FITLIST,linfct 
= mcp(trt = "Dunnett"), df=FITLIST$fixDF$terms[2])}) 
     
    models <- length(FITLIST) 
     
    W   <- Weights(do.call(what="AICc", args=FITLIST)) 
    W1 <- sort((round(W, 4)), decreasing=TRUE)[1] 
    W2 <- sort((round(W, 4)), decreasing=TRUE)[2] 
    W3 <- sort((round(W, 4)), decreasing=TRUE)[3] 
    Shannon.wi <- Shannon(W) 
     
    max.Shannon <- log(length(FITLIST)) 
         
    masci1 <- masci(glht.list = FITLIST.mc, masci2=FALSE) 
    masci2 <- multi.par.avg.2004(glht.list=FITLIST.mc)     
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    #AICc best 
    mstAICc <- model.sel(FITLIST) #model selection table 
    FitAICcbest <- get.models(mstAICc, subset = 1)[[1]] 
     
    AICcSCI <- confint(glht(FitAICcbest,linfct = mcp(trt = "Dunnett"))) 
         
    enthaltenmasci1 <- all(masci1[,1]<=d & masci1[,2]>=d) 
    enthaltenmasci2 <- all(masci2[,1]<=d & masci2[,2]>=d) 
    enthaltenAIC <- all(AICcSCI$confint[,2]<=d & AICcSCI$confint[,3]>=d) 
     
     
    RES[i,]<-c(enthaltenmasci1, enthaltenmasci2,enthaltenAIC, W1,W2,W3,   
 Shannon.wi, max.Shannon, models) 
     
  } 
  RES <- as.data.frame(RES) 
   
  coverage.probabilities <- extract.probs(res=RES[1:3],nsim=nsim) 
  MeanW <- colMeans(RES[4:9]) 
   
  names(coverage.probabilities) <- c("MASCI1","MASCI2","AICcbest") 
  names(MeanW) <- c("MW W1", "MW W2", "MW W3", "MW Shannon", "max Shannon", 
 "models") 
   
  return(c(coverage.probabilities, MeanW))  
   
} 
 
# Correlation Structures for Data Generation 
"NULL"    <-corNULL <- NULL 
"AR1"     <-corAR1(0.8, ~1|id) 
"AR1low"  <-corAR1(0.3, ~1|id) 
"ARMA1"   <-corARMA(0.8,  ~1|id, p=0, q=1) 
"ARMA1low"<-corARMA(0.3, ~1|id, p=0, q=1) 
"ARMA2"   <-corARMA(c(0.6,0.8), ~1|id, p=1, q=1) 
"ARMA2low"<-corARMA(c(0.1,0.3), ~1|id, p=1, q=1) 
"UNSTR"   <-corSymm(c(0.8,0.4,0.2,0.0, 0.4,0.2,0.0, 0.2,0.0, 0.0), ~1|id) 
 
# Correlation Structures for Model Building 
cor1<-NULL 
cor2<-corAR1(0.5, ~1|id) 
cor3<-corAR1(0.2, ~1|id) 
cor4<-corARMA(0.4, ~1|id, p=0, q=1) 
cor5<-corARMA(c(0.7, 0.7), ~1|id, p=0, q=2) 
cor6<-corARMA(c(0.3,0.5), ~1|id, p=1, q=1) 
 
corlist <- list(cor1, cor2, cor3, cor4, cor5, cor6) 
 
# Parameter settings 
paradat <-  expand.grid(ni=c(5, 10, 20, 100), sdi=c(0.01, 0.5, 1, 5), 
sde=c(0.5, 1, 10)) 
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9.3 Example data  
 

Table 9.1: “Bodenfauna” data 

Block Variety Species pH KF1 KF2 KF3 Corg N 

1 ISO 19 5,3 66,6 25,9 7,5 0,69 0,062 

2 B 38 5,4 53,9 36,4 9,6 0,78 0,070 

3 A 99 5,6 49,7 39,8 10,5 0,81 0,077 

4 GM 27 5,8 47,1 41,9 11,1 0,83 0,074 

5 ISO 18 5,8 49,7 40,3 10,0 0,71 0,067 

6 GM 40 5,3 48,5 41,0 7,7 0,67 0,065 

7 A 56 5,6 48,9 40,7 8,8 0,72 0,070 

8 ISO 16 5,4 60,0 29,1 10,9 0,95 0,087 

1 B 40 5,2 68,2 25,6 6,2 0,77 0,067 

2 A 19 5,5 63,8 27,7 8,6 0,95 0,084 

3 GM 114 5,7 47,1 41,7 11,2 0,85 0,081 

4 ISO 40 5,7 47,2 41,5 11,3 0,84 0,073 

5 B 30 5,6 54,5 36,3 9,2 0,77 0,080 

6 A 33 5,3 59,1 32,8 8,1 0,72 0,069 

7 GM 34 5,3 57,1 34,3 8,6 0,83 0,080 

8 B 63 5,2 57,9 33,7 8,4 1,00 0,092 

1 A 24 5,1 68,1 24,8 7,1 0,86 0,079 

2 GM 66 5,5 56,3 33,8 10,0 0,83 0,081 

3 ISO 70 5,6 46,2 44,0 9,8 0,82 0,073 

4 B 55 5,7 57,6 33,9 8,5 0,95 0,081 

5 A 38 5,6 51,6 38,0 10,4 0,79 0,076 

6 ISO 25 5,3 55,5 35,6 8,8 0,77 0,076 

7 B 82 5,4 55,2 35,5 9,3 0,74 0,074 

8 GM 62 5,1 63,2 27,7 9,2 0,97 0,089 

1 GM 51 5,4 57,2 33,0 9,7 0,80 0,076 

2 ISO 55 5,5 44,8 41,8 16,9 0,84 0,078 

3 B 78 5,4 59,8 30,7 9,5 1,02 0,097 

4 A 27 5,9 58,9 31,5 9,6 1,02 0,099 

5 GM 162 5,8 59,2 31,2 9,5 0,98 0,087 

6 B 67 5,2 56,7 34,8 8,5 0,78 0,073 

7 ISO 42 5,4 61,1 30,5 8,4 0,69 0,069 

8 A 32 5,5 59,0 29,7 11,2 0,80 0,076 

 

 

Table 9.2: Bradykinin data 

ID Drug Baseline bypass_30_min bypass_60_min post_bypass postoperativ_day 

1 Placebo 5,0328 5,3976 5,7022 6,9740 6,6857 

2 Placebo 3,2558 4,6634 4,9376 4,7945 6,1281 

3 Placebo 4,3291 4,9985 5,3642 4,6745 5,6563 

4 Placebo 5,0445 5,6254 6,8620 7,1506 6,0146 

5 Placebo 4,6330 5,3544 5,0056 5,7522 5,4053 

6 Placebo 4,4899 4,7122 5,5447 5,9043 5,1270 

7 Placebo 5,5365 5,4413 4,5876 6,6356 5,2526 

8 Placebo 4,7983 5,0799 5,2646 6,6610 6,8176 
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9 Placebo 5,6800 6,3052 5,8627 7,5499 5,8322 

10 Placebo 4,2362 4,6818 5,1980 5,4522 5,7017 

11 Placebo 4,6783 5,3148 5,4520 6,3755 5,9469 

12 Placebo 4,6946 4,8387 6,0578 5,2295 5,0096 

13 Placebo 5,0146 4,6146 5,7012 4,5909 5,2785 

14 Placebo 2,9159 4,1731 4,1696 6,6341 5,2684 

15 Placebo 4,7121 3,9182 5,0801 5,7692 6,0655 

16 Placebo 4,5448 4,9799 5,0404 6,5512 6,3418 

17 Placebo 3,7075 4,4197 5,4676 5,6720 4,7158 

18 Placebo 4,0451 4,2258 5,2906 5,4650 5,7607 

19 Placebo 4,7075 5,4494 6,2947 6,3584 5,4620 

20 Placebo 4,5409 4,6756 5,2056 5,4788 5,4775 

21 Placebo 5,4544 5,6356 6,9267 5,7817 6,3965 

22 Placebo 3,5622 4,6621 4,6821 5,5313 5,8226 

23 Placebo 4,0237 4,1471 4,4944 4,8059 5,5482 

24 Placebo 4,0242 4,6737 4,0138 4,9760 6,3968 

25 Placebo 4,8555 5,2929 5,5312 6,8874 6,7966 

26 Placebo 4,4740 4,9425 6,4587 5,6305 5,4560 

27 Placebo 3,3500 3,7805 6,5075 6,6543 5,6083 

28 Placebo 5,4953 5,7717 6,0502 5,9109 6,5771 

29 Placebo 4,3722 4,1659 5,5897 6,1666 6,6083 

30 Placebo 3,2259 4,4792 6,2273 6,3012 5,8045 

31 Placebo 3,9048 4,0390 4,3449 5,9357 5,3479 

32 Placebo 5,1379 5,1654 5,5610 6,3409 6,9182 

33 Placebo 4,4870 4,9854 5,5398 5,6722 5,2836 

34 Placebo 3,8467 4,0678 4,7957 7,1809 5,4543 

35 Placebo 5,3440 5,2924 4,3547 7,2827 6,0409 

36 Placebo 5,1262 4,0154 4,6562 5,2560 6,8244 

37 Placebo 4,5716 5,2354 4,8145 5,7797 5,1237 

38 EACA 3,6417 4,2443 4,3455 4,1988 5,9690 

39 EACA 5,2347 5,4318 5,3544 5,0166 6,3620 

40 EACA 2,6799 3,1637 2,7691 4,1240 5,7665 

41 EACA 4,7959 4,7436 4,6865 4,6506 6,1241 

42 EACA 5,2384 5,3986 5,3641 6,3473 6,9881 

43 EACA 3,5313 3,3329 3,6316 4,2515 6,2711 

44 EACA 5,4374 5,4060 5,3116 5,1482 5,7317 

45 EACA 4,7497 5,2387 5,6755 5,9061 6,4901 

46 EACA 3,9994 4,5213 4,4003 4,9266 4,7635 

47 EACA 4,8602 5,1202 5,3856 4,6021 4,4033 

48 EACA 3,9622 4,8755 5,2243 5,4294 6,4295 

49 EACA 3,9181 4,7215 4,8748 4,8122 4,4851 

50 EACA 3,3999 3,8630 4,6350 4,7032 4,8127 

51 EACA 4,9221 5,1586 5,5928 5,3106 4,7746 

52 EACA 5,2920 5,3436 5,4094 5,0067 4,4851 

53 EACA 4,5566 5,4543 5,3121 5,4264 5,7615 

54 EACA 4,7541 4,3777 4,9523 4,7395 5,4966 

55 EACA 5,4079 5,1810 5,2174 5,3912 6,6474 
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56 EACA 5,1635 5,4551 5,5464 6,1374 6,1371 

57 EACA 3,9581 4,3298 4,1104 5,0314 6,0722 

58 EACA 3,4613 3,8509 4,4477 4,7059 4,6487 

59 EACA 3,7405 4,2339 4,4179 5,1570 5,7681 

60 EACA 5,6767 5,6736 5,7947 5,6614 6,8070 

61 EACA 4,3312 4,7918 5,0311 5,2973 4,9566 

62 EACA 4,3916 4,5870 4,1308 4,4881 5,0201 

63 EACA 4,7908 4,2328 4,6065 4,7723 5,5932 

64 EACA 4,0540 4,3076 4,3098 4,4834 4,6896 

65 EACA 3,1456 2,8166 2,8126 2,9901 5,5030 

66 EACA 3,7806 3,5349 3,3830 4,2426 5,1109 

67 EACA 3,1163 3,5123 3,0519 3,7246 5,4771 

68 EACA 5,3308 5,2923 5,6081 5,4353 4,3036 

69 EACA 3,8724 3,3093 3,7313 4,0622 6,2560 

70 EACA 4,2644 4,3283 3,7426 4,0981 6,1142 

71 EACA 6,1016 5,7934 5,8101 5,3895 5,4321 

72 EACA 4,0072 4,5687 4,8483 5,2821 5,3571 

73 EACA 5,5426 5,6376 6,0201 4,6867 5,1257 

74 EACA 3,2589 4,3041 4,3615 5,8699 6,2428 

75 HOE140 4,5445 4,8873 5,4660 6,3073 5,5362 

76 HOE140 3,9803 4,8262 5,4041 6,2802 5,1087 

77 HOE140 3,9903 4,3823 5,4635 5,4369 4,8006 

78 HOE140 3,7487 4,3809 4,4025 5,0761 5,4158 

79 HOE140 4,5056 6,4541 7,2489 5,2038 5,2371 

80 HOE140 4,7335 4,5281 4,9957 5,9588 5,5508 

81 HOE140 3,8898 5,5183 6,1211 4,6945 4,5179 

82 HOE140 5,0462 5,0754 4,7602 6,8555 6,1951 

83 HOE140 4,2530 5,3592 5,8218 7,3369 5,5629 

84 HOE140 5,2032 4,1962 4,6478 4,7834 5,6296 

85 HOE140 4,8197 4,6761 4,6860 7,1969 6,2184 

86 HOE140 3,8338 3,2804 4,4123 3,2687 5,3690 

87 HOE140 4,3278 5,4680 7,8066 5,9094 6,4212 

88 HOE140 4,7870 5,4737 6,2346 7,5477 5,5188 

89 HOE140 5,3246 7,6445 9,1348 8,1383 5,4224 

90 HOE140 4,4823 5,2752 5,6341 7,2637 6,0082 

91 HOE140 4,8353 5,3661 5,7152 7,9531 4,9737 

92 HOE140 4,0152 4,3153 4,0224 7,0902 5,7680 

93 HOE140 5,2540 5,8040 5,2497 7,5609 6,5343 

94 HOE140 4,5069 5,4298 5,0879 5,0988 5,7403 

95 HOE140 5,2905 5,7389 5,3995 6,4169 4,7768 

96 HOE140 3,7707 4,9903 5,8444 5,9301 6,1398 

97 HOE140 4,5504 6,0234 7,2443 5,4204 5,8115 

98 HOE140 3,4947 5,4485 6,5225 6,7342 6,5223 

99 HOE140 4,7115 4,3043 5,4028 5,6985 5,5124 

100 HOE140 4,2983 4,2313 4,4258 6,1352 5,1057 

101 HOE140 3,9304 4,8874 4,9906 6,4953 4,9962 

102 HOE140 4,7710 4,8861 5,6303 6,6411 5,9891 
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103 HOE140 4,6426 5,3947 5,6087 7,6143 5,7604 

104 HOE140 3,2668 4,3548 4,4293 6,2312 5,1774 

105 HOE140 4,0637 2,8750 3,9118 3,6200 5,1403 

106 HOE140 5,1109 5,3725 5,5433 5,4071 4,6849 

107 HOE140 4,0725 4,7567 5,0518 4,8867 5,2484 

108 HOE140 4,6810 5,2553 5,8034 4,6827 5,9189 

109 HOE140 3,9481 5,5836 5,8453 8,1567 5,2388 

110 HOE140 4,3871 5,2834 6,1268 6,6257 5,6175 

111 HOE140 4,5206 5,8390 6,3119 6,7712 5,6876 

112 HOE140 4,3511 3,7497 4,6832 5,7740 5,9268 
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