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Abstract

In ecological trials with multiple treatments and many observed spe-
cies, the point of interest may be comparing the species’ diversity among
treatments. This might be done in a proof of safety for a genetically mod-
ified organism as processed in this work or any other kind of diversity
comparison. There exist several diversity indices which summarize the
pattern of relative species abundances in treatment in a single number.
This work adresses statistical inference for two diversity indices, namely
the Shannon and the Simpson index. Since the variances of these in-
dices can be unequal although the indices are the same, standard multi-
ple comparison procedures like the ANOVA are not adequate. There are
asymptotic methods for multiple comparisons of diversity indices con-
sidering heterogeneous variances available in literature. These methods
are constructed under the assumption of multinomial distributed counts.
As this assumption may not hold true for ecological trials due to overdis-
persed species counts, this work addresses simultaneous bootstrap con-
fidence intervals, which take overdispersion into account.
In this thesis, three different methods to construct simultaneous boot-
strap confidence intervals are compared with the asymptotic methods in
simulation studies and further applied to two real data sets. It is found,
that the bootstrap methods perform well under overdispersed multi-
nomial counts, whereas the asymptotic methods exhibit poor coverage
probability.
Keywords: bootstrap, multiple comparisons, biodiversity, overdisper-
sion, heteroscedasticity
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1.1 General Introduction

In agricultural trials for genetically modified plants (GMOs) it can be of
interest to prove safety for non-target species by comparing the effects of
genetically modified plants on species with the effects of non-transgenic
plants on species.

In such kind of agricultural trials one may compare GMO plants with
several control treatments. These could be isogenic plants treated with
standard pesticides, as well as untreated, isogenic plants. For proving
safety of the GMOs one is interested in establishing equivalence effects
of the different treatments on the non-target species, since a decrease in
diversity may detect trouble in ecosystem. This could be for example a
decrease of benefical organisms as well as a decrease of essential species
in the associated food chain.

To detect effects on the biodiversity of habitats one may summarize
the colonizing species in so-called biodiversity indices. This yields to a
single number representing species richness and/ or evenness. There are
several different indices available in literature for this application area,
see Magurran [2004]. In this thesis I will focus on two of the most popular
indices, the Shannon [Shannon and Weaver, 1949] and the Simpson [Simp-
son, 1949] index. Furthermore we will apply a recently modified Shannon
index by Chao and Shen [2003], considering unseen species in sample.

Since there are more than two treatments to compare, applying multi-
ple test procedures (MCPs) is necessary. Due to the heterogeneous vari-
ances of the indices, see 1.3.1 on page 10, between treatments, standard
multiple test procedures like ANOVA, all-pairwise comparisons (MCA)
[Tukey, 1953] and comparisons to control (MCC) [Dunnett, 1955] are not
applicable [Rogers and Hsu, 2001]. These methods assume equal vari-
ances and normal distributed errors in the fixed-effects ANOVA model.

Fritsch and Hsu [1999] and Rogers and Hsu [2001] introduced variance
estimators for the Simpson and the Shannon index respectively, which al-
low to perform MCAs or MCCs without assuming equal variances. Since
these estimators depend on the assumption of multinomial distributed
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species counts and are constructed for only one vector of observations
in every community, they can not hold true for such data arising in the
analyzed experiments, where one has several replicates per community.
Due to this fact, I have to summarize the replications in one species count
vector, allowing calculation of the diversity indices and the corresponding
variance estimators by Rogers and Hsu [2001] and Fritsch and Hsu [1999].

This yields to an underestimation of the variance across the replicates,
if these data show strong over-dispersion, see section 1.3.2 on page 13, in-
dicating a higher variance than the multinomial distribution can describe.
To handle such over-dispersed count data with heterogeneous variances
between groups I use bootstrap methods to construct simultaneous con-
fidence intervals without making any assumptions about the underlying
distribution.

In the following I go more into details of the distributional assumptions
for our data, the problem of variance heterogeneity and the advantages
of bootstrap methods. Then I present several bootstrap confidence inter-
val methods for the one-sample problem to analyze their performance in
covering the true parameter of interest under a simulated over-dispersed
multinomial distribution. Next, I show different bootstrap methods to
construct simultaneous confidence intervals for the multiple sample de-
sign and study them under the same distributional assumptions. Finally I
apply them to real data sets introduced in chapter 1.2.

1.2 Motivating Example

In the following I will describe two example data sets based on real field
trials. For both examples the statistical hypotheses are explained and fur-
ther the data sets are graphically analysed using mosaicplots.

1.2.1 Example 1

The first example exhibits three different treatments to compare. These
are one genetically modified line (GM), one near isogenic line (Ins) treated
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with Baythroid and further one untreated, isogenic line. Per treatment 12
different traps were observed, where 112 species were counted within ev-
ery trap. Number of individuals per trap range from 417 to 1148. The point
of interest is proving safety of the genetically modified plants to the habi-
tat species. This may be done by proving superiority of the GM treatment
to the pesticide treatment or proving non-inferiority of the GM treatment
to the untreated near isogenic plants. Since the corresponding hypotheses
can not be ordered a priori one has to follow the union-intersection princi-
ple, see 1.4.2 on page 15, which leads to simultaneous confidence intervals.
Superiority for the contrast (Pesticide - GM) means, the upper bound of
the confidence interval for the difference is lower than a given superiority
border −δ. In contrast, non-inferiority for the contrast (Iso - GM) indi-
cates, that the upper bound of the confidence interval for the difference is
lower than a given non-inferiority border +δ. Choosing the correct values
for the superiority border −δ and the non-inferiority border +δ lies by the
ecologist, who is familiar with the values of the biodiversity indices. The
counts for species are plotted in figures from 1.1(a) on the following page
to 1.2(a) on page 6.
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(a) GM line

(b) Ins line

Figure 1.1: Mosaicplot for species in GMO field and pesticide treated, near
isogenic field – width of bars is proportional to the total count in one trap,
height of boxes within bar is proportional to the number of individuals
of one species in one trap, dashed lines indicate that the species was not
observed in one trap
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(a) Iso line

Figure 1.2: Mosaicplot for species in near isogenic, untreated field – width
of bars is proportional to the total count in one trap, height of boxes within
bar is proportional to the number of individuals of one species in one trap,
dashed lines indicate that the species was not observed in one trap

1.2.2 Example 2

The second example is as well as the first example an ecological trial with
genetically modified plants. The difference to the first example is more iso-
gene varieties as well as less species, where only a few species are highly
dominant and the rest are lowly abundant. In this trial one observes four
different treatments to compare, which are presented in figures from 1.3(a)
on the following page to 1.5(a) on page 9. One variety was a genetically
modified line (GM), while the other three were conventional varieties (S1,
S2, S3). Per variety eight plots were observed, each of them with one trap
situated on. At all, 33 species were observed, while the number of indi-
viduals per trap ranges from 27 to 384.
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Again, one has several possibilities to reject the null hypothesis that
the GM plants are safe. The three possible alternative hypotheses are non-
inferiority of GM treatment to S1 or S2 or S3.

(a) GM field

Figure 1.3: Mosaicplot for species in GM field – width of bars is propor-
tional to the total count in one trap, height of boxes within bar is propor-
tional to the number of individuals of one species in one trap, dashed lines
indicate that the species was not observed in one trap



CHAPTER 1. INTRODUCTION 8

(a) S1 field

(b) S2 field

Figure 1.4: Mosaicplot for species in S1 and S2 field – width of bars is pro-
portional to the total count in one trap, height of boxes within bar is pro-
portional to the number of individuals of one species in one trap, dashed
lines indicate that the species was not observed in one trap
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(a) S3 field

Figure 1.5: Mosaicplot for species in S3 field – width of bars is proportional
to the total count in one trap, height of boxes within bar is proportional to
the number of individuals of one species in one trap, dashed lines indicate
that the species was not observed in one trap

1.3 Difficulties in Comparing Diversity

During the statistical analysis of ecological field trials using biodiversity
indices two main problems will arise. These are the heterogeneous vari-
ances of the indices between treatments as well as the distrubional as-
sumptions including overdispersed species counts across replicates. In
the next section I go more into the details of these issues.
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1.3.1 Heterogeneous Variances

Let θ̂ij be the estimated Shannon Ĥ′ = −∑S
s=1 π̂s ln π̂s or Simpson ϕ̂ =

∑S
s=1 π̂2

s diversity index in population i, i = 1, ..., k and in trap or replicate
j, j = 1, ..., r . Here π̂s is the estimated proportion of species s. Further θ̄i

is the point estimator θ̄i =
1
r ∑r

j=1 θ̂ij for each population i.
Rogers and Hsu [2001] figured out, that the variances σ̂2

i of point es-
timators θ̄i of diversity indices may be unequal, even if all sample sizes
are the same and even if all k populations have exactly the same diversity
index. This depends on the calculation of the indices out of the probabil-
ity vectors π̂i = π̂i1, ..., π̂iS, which can be different for each community i,
even if all point estimators θ̄i for the diversity indices θ̂ij are the same, the
estimated variances can be completely uneven.

In figure 1.6 on the following page and figure 1.7 on page 12 I present
the distribution of Shannon’s and Simpson’s index based on a real data
set. Here, the indices are calculated for every trap or replicate separately.
These plots indicate variance heterogeneity as well as skew distributions.

1.3.2 Distributional Assumptions

Rogers and Hsu [2001] describe the analyzed data in the following way.
Let Xijs be the sample count for species s, s = 1, ..., S in community i and
replicate j. Further, for every i one takes a sample of size nijri, where nij is
the total sample size across all species for every replicates j, in other words
nij = ∑S

s=1 nijs. If all replicates j are assumed to be from the same, evenly
distributed population, one may summarize the counts for every species
in one resulting count vector Xi = Xi1, ..., XiS with corresponding vector
of proportions πi = πi1, ..., πis yielding to equation (1.3.2.1).

Xi ∼ Multinomial (πi, nijri) independently for i = 1, ..., k (1.3.2.1)

To take the replicates into account this leads to equation (1.3.2.2)

Xij ∼ Multinomial (πi, nij) iid for j = 1, ..., r (1.3.2.2)
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(b) Distribution of Simpson’s index

Figure 1.6: Distribution of Biodiversity indices illustrated as Box-
plots for the three different treatments: Bt-Novelis, Iso-Nobilis, Iso-
Nobilis+Baythroid (from left to right). Indices are calculated for every trap
separately
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(b) Distribution of Simpson’s index

Figure 1.7: Distribution of Biodiversity indices illustrated as Boxplots for
the four different treatments: GM, S1, S1, S3. Indices are calculated for
every trap separately
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From this follows, that Rogers and Hsu [2001] assume a multinomial
distribution as described in section A.2 on page 76 with probability vector
πi. The variance estimator σ̂2

i they use to construct simultaneous con-
fidence intervals, see section 3.4 on page 36, depends on the estimated
probability vector π̂i, being the same for every replicate j in community i.

Due to the assumption of multinomial distributed data, the variance
estimator σ̂2

i according to Rogers and Hsu [2001] underestimates the vari-
ance for such kind of data arising in ecological field trials, see section 1.2.
Here, one can observe a high variation of species counts across traps or
replicates in one community. Figure 1.1(a) on page 5 presents species
counts occurring in a real ecological field trial. Typically, species counts
have a high variation across traps, as well as a high rate of zero counts.

This kind of high variation across replicates yields to an over-dispersed
distribution (for over-dispersion: see section 1.3.2), meaning the observed
variance exceeds the variance describable by the multinomial distribution.
Therefore, I use a Dirichlet-multinomial [Mosimann, 1962] distribution to
sample over-dispersed count data with different probability vectors πij

for every replicate j. This yields to a higher variance than describable by
the multinomial distribution, see appendix A.4 on page 77.

Over-Dispersion

According to McCullagh and Nelder [1989] over-dispersion occurs if the
variance of the response Y exceeds the nominal variance of the postulated
distribution.

In the following, let πij = πij1, ..., πijS, s = 1, ..., S and j = 1, ..., r be the
probability vector of the multinomial distribution in community i. In case
of the Dirichlet-multinomial distribution, I am using for simulation, πij is
an outcome of a random vector Πij, which follows a Dirichlet distribution,
nearer described in section A.3 on page 77. Then, the resulting distribu-
tion is the Dirichlet-multinomial including an over-dispersion parameter.
This leads to a richer class of distribution, which takes over-dispersion into
account [Poortema, 1999].
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1.4 Applied Statistical Methods

As explained before, there are several issues in the statistical analysis of
ecological diversity trials. This leads to alternatives like the nonparametric
bootstrap methods, which I introduce, among the multiple comparison
requirements, in the following sections.

1.4.1 Bootstrap Methods

Due to the before described problems as heterogeneous variances and
over-dispersed count data, I introduce here nonparametric bootstrap meth-
ods to construct confidence intervals without making any assumptions
about the underlying distributions. The distribution for the confidence
intervals is based on the observed counts, yielding to confidence intervals
which take the over-dispersion into account.

The bootstrap confidence intervals described in section 3.1 on page 23
are applicable for one- and two-sample problems, while the methods in
section 3.3 on page 30 are applicable for multiple comparisons using si-
multaneous confidence intervals. In ecological trials, as described in sec-
tion 1.2, one may be interested in comparing more than two treatments
with each other. The common goal could be proving superiority to one
treatment or non-inferiority to another treatment. For example, superior-
ity of the GMOs to the pesticide treatment or non-inferiority of the GMOs
to the untreated plants. This yields to the comparison of one treatment
group, i.e. GMO plants, against multiple control groups, i.e. pesticide and
untreated plants. As the global null hypothesis is rejected if one of the
multiple null hypotheses is rejected, this leads to the principle of union-
intersection tests.
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1.4.2 Multiple Comparisons

Union-Intersection Testing

The union-intersection method (UIT) is appropriate if the null hypothesis is
expressed as an intersection.

Let θ be a population parameter yielding to the null and alternative
hypotheses in 1.4.2.1

H0 : θ ∈ Θ0 and H1 : θ ∈ Θc
0 (1.4.2.1)

with Θ0 being some subset of the parameter space and Θc
0 being its com-

plement. For example, θ may denote the average change in a patient’s
blood pressure after taking a drug leading to the hypotheses H0 : θ =

0 and H1 : θ 6= 0.
The global null hypothesis can be written in the following form.

H0 : θ ∈
⋂

γ∈Γ

Θγ, (1.4.2.2)

where Γ is, depending on the problem, an arbitrary finite or infinite index.
Suppose, one is interested in testing the hypotheses H0γ : θ ∈ Θγ ver-

sus H1γ : θ ∈ Θc
γ and the rejection region for the test of H0γ is {x : Tγ(x) ∈

Rγ}.
Thus the rejection region for the union-intersection test is

⋃
γ∈Γ

{x : Tγ(x) ∈ Rγ}. (1.4.2.3)

This indicates that the global H0 is true, only if any Hoγ is true for every γ.
In case that one Hoγ is rejected, the global H0 is rejected as well [Casella,
2001].

In contrast to the union-intersection testing exists intersection-union test-
ing (IUT) , which is applicable, if the global null hypothesis is only rejected
if all individual null hypothesises are rejected (intersection of the alterna-
tive hypothesises), meaning IUT demands all significant level-α tests.
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Controlling the FWE

On the basis of union-intersection testing, with more than one possibilities to
reject the null hypothesis, one have to adjust for multiplicity. This yields
to Simultaneous Test Procedures (STP’s) , e.g. by Hochberg and Tamhane
[1987], which control the Familywise-Error-Rate (FWE) by rejecting or ac-
cepting each of the γ hypotheses at a particular level α [Westfall and Young,
1993].

In section 3.4 on page 36 and 3.3 on page 30 I will introduce simulta-
neous confidence intervals, which control the FWE with adjusted quan-
tiles from the multivariate normal distribution, or, similar to the method
by Tukey [1953], from the maximum distribution of the bootstrapped test
statistics.



Chapter 2
Measurement of Biodiversity
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In the following chapter, I will describe three different indices for mea-
suring biodiversity. These are two well known indices, the Shannon [Shan-
non and Weaver, 1949] and the Simpson index [Simpson, 1949], as well as
a recently by Chao and Shen [2003] modified Shannon index considering
unseen species in sample. This modified Shannon index is not included
in the later following simulation results, since the corresponding variance
estimator is not described adequately in the publication. However, it was
possible to simulate this index with the method by Westfall and Young
[1993], as the variance is estimated here from the ANOVA model. The
resulting coverage probability showed only a slightly difference from the
original Shannon index.

2.1 Diversity measures

There are several biodiversity indices which encapsulate different aspects
of a samples’ or a communities’ diversity. However, it is not possible to
combine all aspects of diversity in a single measure.

This yields to the distinction between species richness measures [McIn-
tosh, 1967] and eveness/ dominance measures [Lloyd and Ghelardi, 1964].
Furthermore, there exist heterogeneity measures which combine species
richness and eveness components.

Species richness measures are the simplest indices giving information
on the number of species of a given taxon in a chosen assemblage. In con-
trast, eveness measures assess the departure of the observed pattern from
the expected pattern and range from completely even species to several
levels of uneven species [Magurran, 2004].

In the following I will present the indices applied in our analyzes.
These are the Shannon [Shannon and Weaver, 1949] , the Simpson [Simp-
son, 1949] and the modified Shannon index by Chao and Shen [2003] con-
sidering unseen species in sample. Distinguishing them by classification
into the diversity measure classes, the Shannon index belongs to the spe-
cies richness measures, while the Simpson index is a dominance measure.
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2.1.1 Shannon’s index

The Shannon index is one of the most used indices. This is all the more
remarkable, because different authors adverted to the disadvantages of
this measure. The Shannon index assumes randomly sampled individu-
als from an infinitely large community and also that the sample includes
all species [Magurran, 2004]. Calculation is done by equation (2.1.1.1). I
use this index for the following methods, because of the common use in
ecological area.

H′ = −
S

∑
s=1

πs ln πs (2.1.1.1)

with

πs proportion of individuals in the sth species

In a sample the true value of πs is unknown, therefore it is calculated
by its maximum likelihood estimator π̂s = Xs/N, where Xs is the sample
count for species s and N is the total sample count across all species. A
simple estimator for the Shannon H′ index can be Ĥ′, where one replaces
π with π̂ in equation 2.1.1.1. Since this estimator produces biased results
one may calculate the index by procedure (2.1.1.2).

Ĥ′ = −
S

∑
s=1

π̂s ln π̂s +
S− 1
2N

− 1−∑S
s=1 π̂−1

s
12N2 − ∑S

s=1 (π̂
−1
s − π̂−2

s )

12N3 − ...,

(2.1.1.2)
where S is the number of observed species. In practice using of the first
two terms is enough due to the fact that the following are very small, see
Fritsch and Hsu [1999].

The major disadvantage of the Shannon index is, that the sample could
not include all species in the community. This leads to an increasing error
with declining proportion of species in the sample. Another disadvan-
tage of this index is confounding species richness and evenness, which are
two different aspects of diversity. An increasing index value could show
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greater species richness or greater evenness as well as both of them. This
makes interpretation harder [Magurran, 2004].

In addition to this the Shannon index will always show the same result
as long as the number of species and their proportional abundances are
constant. That means the Shannon index will give the same result, if one
sample features 10 species, each with 5 individuals, and another sample
features 10 species, each with 10 individuals [Magurran, 2004].

2.1.2 Estimation of Shannon’s index considering unseen spe-

cies in sample

To consider unseen species in sample, Chao and Shen [2003] provided a
different approach to the estimation of diversity. It is based on unequal
probability sampling theory since species have different probabilities of
being discovered in sample.

Chao and Shen [2003] combine the Horvitz-Thompson estimator and
the concept of sample coverage. The Horvitz-Thompson estimator adjusts
for missing species in an unequal probability sampling scheme by estimat-
ing the total population. It was first introduced by Horvitz and Thompson
[1952]. The concept of sample coverage adjusts for the sample fraction of
unseen species.

Applying the Horvitz-Thompson estimator to the estimation of Shan-
non’s entropy results in equation (2.1.2.1)

ĤHT = −
S

∑
s=1

πslog(πs)

1− (1− πs)n I(As), (2.1.2.1)

where 1− (1− πs)n is the probability of the sth species being included in
the sample.
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The estimator for the modified Shannon index, which combines the
Horvitz-Thompson adjustment and the concept of sample coverage, is
given in equation (2.1.2.2)

Ĥ = −
S

∑
s=1

Ĉπ̂s log (Ĉπ̂s)

1− (1− Ĉπ̂s)N
I(As), (2.1.2.2)

where C = ∑S
s=1 πs I[Xs > 0] ≈ Ĉ = 1− f1/N and f1 = ∑S

s=1 I[Xs = 1].
Here, f1 represents the frequency of species with counts equal 1.

Further I(As) is the indicator function for the sth unit being included
in the sample, i.e. I(As) = 1 if the sth species has count Xs > 0 and
I(As) = 0 if Xs = 0. In other words, the modified index by Chao and
Shen [2003] adjusts for unseen species assuming them being equal to the
number of singletons f1.

2.1.3 Simpson’s index

The Simpson index [Simpson, 1949] measures the probability that any two
individuals in the sample are from the same species as shown in equation
(2.1.3.1)

ϕ =
S

∑
s=1

π2
s , (2.1.3.1)

where πs is the proportion of individuals in the sth species. With increas-
ing ϕ the diversity decreases. This leads to the often used expressions
1− ϕ or 1/ϕ [Magurran, 2004].

In the following I will use the corrected estimator in equation (2.1.3.2)
according to Rogers and Hsu [2001]

ϕ̂ =
n

n− 1

S

∑
s=1

π̂2
s , (2.1.3.2)

where n ist the total sample size across all species.
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The following chapter deals with the applicated statistical methods.
Main topic are the nonparametric bootstrap methods, which are later com-
pared with the asymptotic methods. I describe and analyse, among the
multiple comparison methods, several one-sample bootstrap methods. The
simulations of the one-sample methods should give a first overview of
how well bootstrap methods perform in this context. Due to this I skip
the two-sample case and come then directly to the multiple comparison
methods, which are the main topic of this thesis.

3.1 The Bootstrap Principle

The bootstrap is a data-based simulation method, which allows to produce
statistical inferences for observed data. The term bootstrap derives from
the phrase to pull oneself up by one’s bootstrap based on one of the eigh-
teenth century adventures of Baron Munchhausen written by Rudolph
Erich Raspe. The Baron had fallen to the bottom of a deep lake. Just when
it looked that all was lost, he thought to pick him up by his own bootstrap
[Efron and Tibshirani, 1993]. The common ground of this adventure and
the statistical method mentioned here, is, that both use their own base to
come up.

One can distinguish between the parametric and the nonparametric
bootstrap. In case of the parametric bootstrap, one estimates the distribu-
tion function F̂ for the given data. Next step is to draw a sample, with the
same sample size as the original sample, out of F̂ to substitute the original
sample. One repeats this step, for example 1000 times, and in every step
one estimates the statistic of interest θ̂∗, i.e. the sample mean x̄. Here and
in the following, the star (∗) indicates the bootstrapped values. This yields
a vector of sample means, which allows to construct confidence intervals
in different ways for the sample mean or any other statistic of interest.
The easiest way to construct a confidence interval is the percentile method
which takes the 25th and 975th value out of these 1000 sample means for
the lower and upper border of a 95% interval [Efron and Tibshirani, 1993].
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In contrast, the nonparametric bootstrap is applicable if one can not
make any assumptions about the underlying distribution function F̂. Here,
one draws with replacement out of the observed sample values. As before,
one repeats this step several times with estimating the statistic of interest
and constructs confidence intervals for the parameter of interest θ̂ in differ-
ent ways, nearer described in chapter 3 on page 22 [Efron and Tibshirani,
1993].

In this thesis I will use the nonparametric bootstrap methods to esti-
mate the desired biodiversity index, i.e. the Shannon H or the Simpson
ϕ index. In the following, I will substitute the biodiversity index several
times with the parameter of interest θ. In such kind of ecological trials with
replicated samples one may estimate θ̂ij for every replication j resulting in
a vector θ̂i or, alternatively, by taking the sum for every species over all
vectors of counts xi = ∑r

j=1 xij, where i indicates the ith treatment group.
Next step is to estimate π̂i = π̂i1, ..., π̂iS. On this probability vector π̂i one
may estimate the parameter of interest θ̂i with its corresponding estimated
variance σ̂θi .

I will use the second method in the following sections, where one draws
with replacement vectors of counts xij j times for every bth bootstrap step.
Then in every bootstrap step one takes the sum over all vectors of counts
x∗ij, resulting in x∗i , and estimates θ̂∗i on this vector. This yields the distribu-
tion of θ̂∗i , which one uses to construct confidence intervals for θi. I will use
the before described method of taking the sum for all confidence intervals,
except for the simultaneous confidence intervals according to Westfall and
Young [1993] in section 3.3.1 on page 30.

The different methods for constructing bootstrap confidence intervals
are presented in the following sections, where I will focus on the nonpara-
metric bootstrap, since I know no applicable distributional assumptions
for the data one observes in these kind of ecological trials. For further read-
ing about bootstrap confidence intervals see Efron and Tibshirani [1993],
Davison and Hinkley [1997] and Westfall and Young [1993].

For the simulation part of this thesis, the one-sample bootstrap con-
fidence intervals are performed with the R [R Development Core Team,



CHAPTER 3. STATISTICAL INFERENCE METHODS 25

2009] package boot [Canty and Ripley, 2009]. For the simultaneous confi-
dence intervals the basic boot function in package boot is used for drawing
with replacement.

3.2 One-Sample Bootstrap Confidence Intervals

For a better understanding of the construction of bootstrap confidence in-
tervals, I first present the Normal- and Student’s-t interval for the one-
sample problem. Upon this, I come to the theory of bootstrap confidence
intervals. The methods presented here are the bootstrap-t, the percentile
and the BCa interval.

3.2.1 Normal and Student’s-t Interval

The standard confidence interval [θ̂− z(1−α) · ŝe, θ̂− z(α) · ŝe] is constructed
under assumption

Z =
θ̂ − θ

ŝe
∼̇N(0, 1), (3.2.1.1)

whereas Student’s-t interval [θ̂ − t(1−α)
n−1 · ŝe, θ̂ − t(α)n−1 · ŝe] assumes

Z =
θ̂ − θ

ŝe
∼̇ tn−1. (3.2.1.2)

The use of the t distribution implies normal distributed data and thereby
does not adjust the confidence interval for skewness in the underlying
population or other occurring errors, when θ̂ is not the sample mean x̄
[Efron and Tibshirani, 1993]. In such cases using one of the following three
methods is more applicable.
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3.2.2 The Bootstrap-t Interval

By constructing a bootstrap-t interval it is not necessary to make normal
theory assumptions. The distribution of Z is estimated directly from the
data with

Z∗(b) =
θ̂∗(b)− θ̂

ŝe∗(b)
, (3.2.2.1)

where Z∗(b), b = 1, ..., B is estimated for every bootstrap sample one
draws x∗1, x∗2, ..., x∗B and θ̂∗(b) = s(x∗b) is the statistic of interest θ̂ = s(x)
for the bootstrap sample x∗b. Further ŝe∗(b) is the standard error for the
bootstrap sample x∗b. The αth percentile of Z∗(b) is estimated by the value
t̂(α) such that

#{Z∗(b) ≤ t̂(α)}/B = α, (3.2.2.2)

where B is the number of bootstraps and # indicates for the number. For
example, if B = 1000, the estimator for the 5% point is the 50th largest
value of the Z∗(b)s while the 95% point is the 950th largest value.

This yields to the bootstrap-t interval

(θ̂ − t̂(1−α) · ŝe, θ̂ − t̂(α) · ŝe). (3.2.2.3)

An important note is that one has to use enough bootstrap samples to
estimate the interval like 1000, while 100 or 200 is not enough. Also the
bootstrap-t interval is easier to calculate than the both in sections 3.2.3 and
3.2.4, but can give somewhat erratic results and is heavily influenced by
some outlying data points.

As a generalization of the Student’s-t method the bootstrap-t proce-
dure is applicable for location statistics as the mean, median, or a sample
quantile, which increases by a constant c, if each data value xi is increased
by constant c [Efron and Tibshirani, 1993].

3.2.3 The Percentile Interval

In case of the nonparametric percentile intervals one draws with replace-
ment a sample from the original data b times. In every bth sample one
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estimates θ̂∗. This leads to the distribution of the θ̂∗s, where one estimates
the percentiles θ̂lo and θ̂up as described in equation (3.2.3.1 and 3.2.3.2).

θ̂lo = θ̂∗(α) = 100 · αthpercentile of θ̂∗ ’s distribution (3.2.3.1)

θ̂up = θ̂∗(1−α) = 100 · 1− αthpercentile of θ̂∗ ’s distribution. (3.2.3.2)

Then the 1− 2α interval is defined by equation (3.2.3.3)

[θ̂%,lo, θ̂%,up] = [Ĝ−1(α), Ĝ−1(1− α)]. (3.2.3.3)

According to the definition G−1(α) = θ̂∗(α), the 100 · αth percentile of the
bootstrap distribution, the percentile interval is also writeable as equation
(3.2.3.4)

[θ̂%,lo, θ̂%,up] = [θ̂∗(α), θ̂∗(1−α)]. (3.2.3.4)

[Efron and Tibshirani, 1993].

3.2.4 The BCa Method

The BCa interval is an improved version of the percentile interval, which
automatically corrects for bias in the plug-in estimate θ̂. It combines good
properties in matching closely exact intervals and good coverage probabil-
ities in different situations. However, the coverage accuracy can be erratic
for small sample sizes. The abbreviation BCα stands for bias-corrected and
accelerated.

To construct the BCa interval one has to modify the percentile interval

(θ̂lo, θ̂up) = (θ̂∗(α), θ̂∗(1−α)) (3.2.4.1)

with the acceleration â and the bias-correction ẑ0, on which the percentiles
depend. In equation 3.2.4.2 is the BCa interval with intended coverage
1− 2α presented

BCa : (θ̂lo, θ̂up = (θ̂∗(α1), θ̂∗(α2)), (3.2.4.2)
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where

α1 = Φ

(
ẑo +

ẑ0 + z(α)

1− â(ẑ0 + z(α))

)
(3.2.4.3)

α2 = Φ

(
ẑo +

ẑ0 + z(1−α)

1− â(ẑ0 + z(1−α))

)
, (3.2.4.4)

with Φ(·) = the standard normal cumulative distribution function and
z(α) = the 100αth percentile point of a standard normal distribution.

If â and ẑ0 equal zero, the BCa interval is the same as the percentile
interval in 3.2.4.1 and for non-zero values the BCa interval corrects for cer-
tain deficiencies of the standard and percentile methods. The computation
of â and ẑ0 is done by 3.2.4.5 and 3.2.4.6.

ẑ0 = Φ−1

(
#{θ̂∗(b) < θ̂}

B

)
(3.2.4.5)

Here, Φ−1(·) indicates the inverse function of a standard normal cu-
mulative distribution function, e.g. Φ−1(.95) = 1.645, and #{} represents
the number of θ̂∗ values lower than θ̂. In other words, ẑ0 measures the me-
dian bias of θ̂∗, which is the discrepancy between the median of θ̂∗ and θ̂

in normal units. this means, that ẑ0 equals zero, if exactly half of the θ̂∗(b)
values are less than or equal to θ̂.

The easiest way to compute the acceleration â is done by the jackknife
values of a statistic θ̂ = s(x). Let xi be the original sample with the ith
value xi deleted and θ̂(i) = s(x(i)). Further, θ̂(·) = ∑n

i=1 θ̂(i)/n, according to
the jackknife method.

Then, the acceleration is computed by

â =
∑n

i=1(θ̂(·) − θ̂(i))
3

6{∑n
i=1(θ̂(·) − θ̂(i))

2}3/2
, (3.2.4.6)

and refers to the rate of change of the standard error of θ̂, with respect to
the true parameter θ.
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There are two important theoretical advantages of the BCa method,
which are described in the following.

The first is the transformation respecting property, meaning that the
BCa method automatically chooses the best scale. If one changes the pa-
rameter θ to a function of θ, e.g. confidence intervals for

√
θ, one obtains

the intervals by taking square roots of the endpoints. Such a parameter
change is a problem in the bootstrap t method, where one has to choose
the proper scale for the interval.

The second advantage of the BCa method is its accuracy in matching
the true parameter θ. A central 1− 2α confidence interval (θ̂lo, θ̂up) is as-
sumed to have probability α of not covering the true value θ from above
or below.

Prob{θ < θ̂lo} = α and Prob{θ > θ̂up} = α (3.2.4.7)

The BCa interval is second-order accurate, meaning, that its error in
matching goes to zero, at rate 1/n, where n is the sample size and clo and
cup are two constants.

Prob{θ < θ̂lo}
.
= α +

clo

n
and Prob{θ > θ̂up}

.
= α +

cup

n
(3.2.4.8)

In comparison to this, the standard and percentile methods are only
first-order accurate, which leads to larger errors in matching.

Prob{θ < θ̂lo}
.
= α +

clo√
n

and Prob{θ > θ̂up}
.
= α +

cup√
n

(3.2.4.9)

Here, the constants clo, cup could be different to those in 3.2.4.8. In prac-
tice, second-order accuration would lead to much better approximations
of exact endpoints, on condition, that some exist [Efron and Tibshirani,
1993].
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3.3 Simultaneous Bootstrap Confidence Intervals

In the following sections I will show three different algorithms for the con-
struction of simultaneous bootstrap confidence intervals. The first one is
constructed according to Westfall and Young [1993], while the second one
is similar to the first, except for the calculation of the groupwise diversity
indices. Westfall and Young [1993] estimated the groupwise parameters
of interest by assuming an ANOVA model. Here, the model is estimated
for the diversity indices per replication, i.e. the traps. Also, I calculate
the estimators in the second method by taking the sum over the replicated
counts per group. From the resulting count vectors I estimate the diver-
sity indices per group according to Fritsch and Hsu [1999] and Rogers and
Hsu [2001] with the corresponding variance estimators. The third method
is performed according to Besag et al. [1995] and developed in a Bayesian
context. Mandel and Betensky [2008] published simultaneous bootstrap
percentile intervals, which are similar to the one by Besag et al. [1995],
except that the intervals by Mandel and Betensky [2008] adjust for ties be-
tween ranks in every bootstrap step. This method is not analysed in this
thesis but may be of interest for the area of ecological field trials, too.

All of these three methods estimate the maximum distribution across
the estimated contrasts for every bootstrap step. This maximum distribu-
tion yields multiplicity adjusted quantiles similar to Tukey [1953] for the
first two methods. In case of the Bayesian method the maximum distri-
bution leads to an multiplicity adjusted rank, which will be transformed
back for the individual contrasts.

3.3.1 t-Statistic Based SCIs in the ANOVA Model [tmax lm]

The method of single-step simultaneous confidence intervals, as described
by Westfall and Young [1993] controls, at least asymptotically, the family-
wise error rate. Accordingly to Westfall and Young [1993] one fits an
ANOVA model

Yij = µi + εij (3.3.1.1)
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and compute simultaneous confidence intervals from the bootstrap data
sets ε̂∗ij, where the ε̂∗ij are a with replacement sample from the residuals
ε̂ij = Yij − Ȳi. Algorithm ( 1) demonstrates the construction of simultane-
ous confidence intervals in the heteroscedastic ANOVA model.

Algorithm 1 Bootstrap Simultaneous Pairwise intervals in the het-
eroscedastic ANOVA model (tmax lm)

1. Compute the index, i.e. Shannon’s H′ or Simpson’s ϕ measure, of
interest θ̂ for every replication j, j = 1, ..., r, separately. The number
of replications here represents the number of traps in a field trial.

2. Fit an ANOVA model to the parameter of interest.

3. Draw a with replacement sample ε̂∗ij out of the residuals ε̂ij with un-
stratified resampling.

4. Compute the sample means ε̄∗i = ∑r
j=1 ε̂∗ij/ri, i = 1, ..., k, as well as

the residual mean square (σ̂∗)2 from the bootstrap data.

5. Compute the statistics

t∗ii′ =
ε̄∗i − ε̄∗i′

((σ̂2
i )
∗/ni + (σ̂2

i′ )
∗/ni′)

1/2 . (3.3.1.2)

6. Compute and store max16i<i′6k | t∗ii′ | for every boostrap step.

7. Repeat steps 3− 6 B bootstrap times.

8. Q̂(α) is the 1− α empirical quantile of the B values max16i<i′6k | t∗ii′ |.

9. In case of one-sided intervals the lower Q̂(α)
min is the α empirical quan-

tile of the B values min16i<i′6kt∗ii′ and the upper Q̂(α)
max is the 1 − α

empirical quantile of the B values max16i<i′6kt∗ii′ accordingly.

The resulting two-sided simultaneous confidence intervals are constructed
in the following way

[LL; LU] = θ̂i − θ̂i′ ± Q̂(α) (σ̂2
i /ni + σ̂2

i′/ni′)
1/2, (3.3.1.3)
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and accordingly the one-sided intervals are

[LL; ] = θ̂i − θ̂i′ + Q̂(α)
min (σ̂2

i /ni + σ̂2
i′/ni′)

1/2, (3.3.1.4)

and
[ ; LU] = θ̂i − θ̂i′ + Q̂(α)

max (σ̂2
i /ni + σ̂2

i′/ni′)
1/2, (3.3.1.5)

where θ̂i is the estimated parameter of interest, i.e. the Shannon or Simp-
son index, out of the ANOVA model across all r replicates in the ith com-
munity.

3.3.2 t-Statistic Based SCIs with Summed up Counts [tmax

sum]

For the tmax sum method we used the concept of centered statistics similar
to Westfall and Young [1993], but without estimating an ANOVA model.
This allowed us to apply this approach to summed up species counts in
every treatment. Perform a non-parametric bootstrap, stratified by the
levels of communities, with B denoting the number of bootstrap data sets.
Further (∗) denotes the bootstrapped values. For each bootstrap data set,
build the column wise sums of species counts within the observations of
each treatment i, Yi = (Y1i, ..., YSi), and from those calculate the group-
wise indices θ̂i and the t-statistics

t∗ii′ =
(θ̂∗i − θ̂∗i′)− (θ̂i − θ̂i′)

((σ̂2
θ̂i
)∗ + (σ̂2

θ̂i′
)∗)1/2

(3.3.2.1)

between the group-wise diversity indices. Here, the variances σ̂2 are the
estimated variances corresponding to the Shannon or Simpson index, see
equation ( 3.4.2.3 on page 37) and ( 3.4.1.2 on page 37). The estimation of
the t-statistic based SCIs on summed up counts is presented in algorithm
( 2 on the next page).



CHAPTER 3. STATISTICAL INFERENCE METHODS 33

Algorithm 2 Bootstrap Simultaneous Pairwise intervals on the summed
up counts (tmax sum)

1. Perform a non-parametric bootstrap stratified by the levels of com-
munities.

2. Build the column wise sums of species within each treatment for
every bootstrap sample b, yielding to the vector of species counts
Y∗

i =
(
Y∗1i, ..., Y∗Si

)
.

3. Estimate the group wise indices of interest, i.e. Shannon’s Ĥi or
Simpson’s φ̂i index, denoted here with θ̂∗i .

4. In every bootstrap sample, calculate the test statistic t∗ii′ presented in
equation (3.3.2.1)

5. Compute and store max16i<i′6k | t∗ii′ | for every bootstrap step.

6. Q̂(α) is the 1− α empirical quantile of the B values max16i<i′6k | t∗ii′ |.

7. In case of one-sided intervals the lower Q̂(α)
min is the α empirical quan-

tile of the B values min16i<i′6kt∗ii′ and the upper Q̂(α)
max is the 1 − α

empirical quantile of the B values max16i<i′6kt∗ii′ accordingly.
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The resulting two-sided simultaneous confidence intervals are constructed
in the following way

[LL; LU] = θ̂i − θ̂i′ ± Q̂(α) (σ̂2
θ̂i
+ σ̂2

θ̂i′
)1/2, (3.3.2.2)

and the corresponding one-sided intervals by

[LL; ] = θ̂i − θ̂i′ + Q̂(α)
min (σ̂2

θ̂i
+ σ̂2

θ̂i′
)1/2, (3.3.2.3)

and
[ ; LU] = θ̂i − θ̂i′ + Q̂(α)

max (σ̂2
θ̂i
+ σ̂2

θ̂i′
)1/2, (3.3.2.4)

where σ̂i is the variance estimator according to the parameter of interest,
see ( 3.4.2.3 on page 37) and ( 3.4.1.2 on page 37).

3.3.3 Percentile Based SCIs with Summed up Counts [rank-

perc]

In a Bayesian context, Besag et al. [1995] describe an algorithm to derive
simultaneous intervals based on an empirical joint distribution of the pa-
rameters of interest. Although proposed for a different purpose, I use it
here to construct simultaneous percentile intervals, based on the joint em-
pirical distribution of multiple differences of diversity indices.

Perform a non-parametric bootstrap, stratified by the levels of the i
treatments, with B denoting the number of bootstrap data sets. For each
bootstrap data set, build the column wise sums of species counts within
the observations of each treatment i, Yi = (Y1i, ..., YSi), and from those
calculate the group-wise indices θi and the differences of interest between
the group-wise diversity indices. Given that there are M differences of
interest, δm, m = 1, ..., M. The results of this process can be written in
a (M × B) matrix Ψ, with elements ψbm, b = 1, ..., B, m = 1, ..., M. On
the matrix Ψ, one applies Besag et al.s algorithm, which is presented in
algorithm ( 3 on the following page). The derived region is two-sided for
each parameter δm. Analogously, one-sided regions can be constructed.
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Algorithm 3 Bootstrap Simultaneous Pairwise intervals based on an em-
pirical joint distribution (rank-perc)

1. Order each of the M columns of Ψ separately. Results are the order
statistics ψ

[b]
m , and the ranks ubm, written in an (B×M) matrix U.

2. Calculate the minimum and maximum over each of the B rows of U,
u(min)

b = min (ub1, ..., ubm, ..., ubM), u(max)
b = max (ub1, ..., ubm, ..., ubM),

and then calculate u(maxmin)
b = max

(
B + 1− u(min)

b , u(max)
b

)
, for each

b = 1, ..., B.

3. The vector u(maxmin) =
(

u(maxmin)
1 , ..., u(maxmin)

b , ..., u(maxmin)
B

)
is again

ordered, leading to order statistics u[b] and the corresponding ranks
r(b).

4. Let b∗ denote the closest integer to B(1 − α). The quantile is then
t∗ = u[b∗], i.e. taking the b∗th value from the ordered sample of the
folded empirical distribution of the maximum.

5. Finally, the confidence limits are constructed for each elementary pa-
rameter θm by taking

[
θ
[B+1−t∗]
m ; θ

[t∗]
m

]
, i.e. the B + 1− t∗th and t∗th

value from the ordered sample of the joint empirical distribution ob-
tained for δm.
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3.4 Asymptotic SCIs Considering Heterogeneous

Variances [asymSCI]

The following two asymptotic methods are created for the Shannon and
the Simpson index as well by Fritsch and Hsu [1999] and Rogers and Hsu
[2001]. They were primarily developed for multinomial distributed count
data without replications. Both methods use special variance estimators
for the indices, which should consider heterogeneous variances. The es-
timated quantile for the simultaneous confidence intervals are based on
the multivariate normal distribution. This leads to multiplicity adjusted
confidence intervals.

3.4.1 Calculation of the Simpson Index and the Correspond-

ing Variance Under Heteroscedasticity

Suppose, one observes k communities, i = 1, ..., k, where ni is the total sam-
ple size of community i, meaning the sum across all traps or replicates j,
j = 1, .., n and all species S in this community. Further, let Y is = Yi1, ..., YiS

be the vector of the column wise sums of species counts within the obser-
vation of each treatment and π̂is ≥ 0. For every i let π̂i = π̂i1, ..., π̂iS be the
proportion of the ith community constituted by the sth specie.

Rogers and Hsu [2001] used the estimator in equation (3.4.1.1) for the
Simpson index to construct simultaneous confidence intervals

ϕ̂i =
ni

ni − 1

S

∑
s=1

π̂2
is, (3.4.1.1)

where ni/ni − 1 is a correction term which leads to an unbiased estimator
for this index.
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The variance estimator for Simpson’s index considering heterogeneous
variances is provided by Rogers and Hsu [2001] and presented in equation
(3.4.1.2)

σ̂2
ϕi
= 2 ·

{
∑S

s=1(π̂is)
2 + 2(ni − 2)∑S

s=1(π̂is)
3 + (3− 2n1)

(
∑S

s=1(π̂is)
2
)2
}

ni(ni − 1)
(3.4.1.2)

3.4.2 Calculation of the Shannon Index and the Correspond-

ing Variance Under Heteroscedasticity

Fritsch and Hsu [1999] derived simultaneous confidence intervals for the
Shannon index with respect to heterogeneous variances. The situation for
the Shannon index is more difficult than for the Simpson index since the
point estimator for the Shannon index

Ĥi = −
S

∑
s=1

π̂islog (π̂is) (3.4.2.1)

is negatively biased. Fritsch and Hsu [1999] showed in a simulation study,
that introducing the bias-correction term + (Si − 1) /2ni is a sufficient rem-
edy:

H̃i = Ĥi + (Si − 1) /2ni (3.4.2.2)

with Si being the number of observed species in the ith treatment.
The variance estimator for Shannon’s index as used by Fritsch and Hsu

[1999] is given in equation (3.4.2.3). Let π̂i = (π̂i1, ..., π̂iS)
′, i.e. a matrix

with 1 column and S rows.

σ̂2
Hi

=
log(π̂i)

′ [diag(π̂i)− π̂iπ̂
′
i
]

log(π̂i)

ni
(3.4.2.3)
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Construction of the Asymptotic SCIs

Applying equation (3.4.1.1) and (3.4.1.2) on the observed values yi of all
k communities, one yields a vector of estimators ϕ̂i = (ϕ̂1, ..., ϕ̂k), and
variance estimators σ̂ϕ̂i =

(
σ̂ϕ̂1

, ..., σ̂ϕ̂k

)
.

Rogers and Hsu [2001] derived simultaneous confidence intervals for
Dunnett’s Multiple Comparisons with Control (MCC) [Dunnett, 1955] and
Tukey’s All-Pairwise Comparisons (MCA) [Tukey, 1953] based on the quan-
tiles of the multivariate normal distribution.

Simultaneous confidence intervals for the MCA for Lii′ can be calcu-
lated with equation (3.4.2.4) for the Simpson index

ϕ̂i − ϕ̂i′ ± q2, 1−α;M,R

√
σ̂2

ϕ̂i
+ σ̂2

ϕ̂i′
(3.4.2.4)

with i = 1, ..., k and i 6= i′.
In equation (3.4.2.5) I present the SCIs for MCC

ϕ̂i − ϕ̂1 ± q2, 1−α;M,R

√
σ̂2

ϕ̂i
+ σ̂2

ϕ̂1
(3.4.2.5)

with the variance estimator presented in equation ( 3.4.1.2 on the previ-
ous page) and i = 1 indicating the control group as well as i = 2, ..., k
indicating the standards. The term q2

1−α;M,R denotes the two-sided equi-
coordinate 1− α quantile of an M-variate normal distribution with corre-
lation matrix R.

For the Shannon index one can construct simultaneous confidence in-
tervals for MCA in a similar way, see equation (3.4.2.6)

Ĥi − Ĥi′ ± q2, 1−α;M,R

√
σ̂2

Ĥi
+ σ̂2

Ĥi′
(3.4.2.6)

and analogeously for MCC with equation (3.4.2.7)

Ĥi − Ĥ1 ± q2, 1−α;M,R

√
σ̂2

Ĥi
+ σ̂2

Ĥ1
(3.4.2.7)

with the variance estimator from equation ( 3.4.2.3 on the preceding page).
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Calculation of the quantiles in equation (3.4.2.4) and (3.4.2.6) is per-
formed in the statistical programming language R [R Development Core
Team, 2009] via the package mvtnorm [Genz et al., 2008]. Required inputs
are the probability 1− α, the correlation matrix R for the performed con-
trast, i.e. Tukeys MCA or Dunnetts MCC, and further the requested side
to test.

The elements of the correlation matrix R for comparisons to the control
i = 1: θi − θ1 with k− 1 rows and columns are shown in equation (3.4.2.8).
ρii′ is the correlation of θi − θ1 with θi′ − θ1

ρii′ =
1√(

1 +
σ

θ̂i
σ

θ̂1

)(
1 +

σ
θ̂i′

σ
θ̂1

) , (3.4.2.8)

where σ(θ̂) are the theoretical variances of the estimators θ̂. For the esti-
mated correlation matrix R one has to plug-in the estimated variances of
the estimators.

In case of all-pairwise comparisons, where the correlation of two arbi-
trary differences θi − θi′ with θi′′ − θi′′′ is denoted by ρ(ii′),(i′′i′′′), one has to
distinguish between two cases.

1. If there is no group common in the two differences (i.e., {i, i′} ∩
{i′′, i′′′} = ∅), then ρ(ii′),(i′′i′′′) = 0.

2. If one common group is included in both differences with equal sign,
e.g. i = i′′ and the comparison θi − θi′ with θi − θi′′′ is considered.
Then correlation is given in equation (3.4.2.9)

ρ(ii′),(i′′i′′′) = ρ(ii′),(ii′′′) =
1√(

1 +
σ

θ̂i′
σ

θ̂i

)(
1 +

σ
θ̂i′′′
σ

θ̂i

) (3.4.2.9)

• If the common group enters the two differences with different
sign, e.g. θi − θi′ with θi′′′ − θi, the correlation is negative with
absolute value given in equation (3.4.2.9).
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The correlation matrix R exhibits k(k − 1)/2 rows and columns and as
before the estimated variances of the estimators has to be plugged-in.



Chapter 4
Simulation Study
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In this chapter, I give background knowledge to the data simulation
process and further I present the simulation results.

4.1 Methods

In the following the data simulating process is described. First, I explain
the different steps in the data generating process. Thereafter, I describe
the settings for data generation, followed by several plots clarifying the
simulated data sets.

4.1.1 Simulated distribution

The simulated data is generated out of the Dirichlet-multinomial distribu-
tion, see section A.4 on page 77, with parameters for the Dirichlet distribu-
tion taken from the geometrc series, see section A.3 on page 77. The data
generating process is described in section 4.1.2.

4.1.2 Simulation steps

Data simulating an agricultural field trial with different species counted
on several traps is constructed in the following three steps.

1. Use a vector αi = αi1, ..., αiS with parameters κi | 0 < κi 6 1 and
S for the number of species out of the geometric series, see A.1 on
page 75. This vector αis represents the proportions of individuals in
the ith community.

For κi = 1 we yield no diversity, i.e. αi1 = 1 and αi2, ..., αiS equal zero.
For κi → 0 the proportions of the species are evenly distributed

2. The vector αi is for some settings multiplied with a constant c > 1,
to reduce the overdispersion. This leads to more similar data sets in
comparison with the observed example data sets.
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3. Using these vectors αi as parameters for the Dirichlet distribution
yields to the probability vectors πij = πij11, ..., πijs with j = 1, ..., r
and i = 1, ..., k

4. These probability vectors πij represent the probabilities of the multi-
nomial distribution for the jth replicate in the ith community. This
yields a mixture multinomial distribution - the Dirichlet multinomial
distribution - as described in Mosimann [1962] and in appendix A.4
on page 77.

4.1.3 Simulation settings

The first step in the data generating process is producing a vector of spe-
cies probabilities out of the geometric series. For this purpose I use four
different settings for the parameters of the geometric series. These settings
are slightly different between one-sample inference and multiple compar-
isons and are shown in tables from 4.1(a) on page 49 to 4.3(b) on page 52.
For every simulation I use 3000 bootstrap steps as well as 1000 simulation
steps. The confidence intervals are calculated with a confidence level of
95%.

4.1.4 Simulated data

In the following I will present the different settings as plots to visualize
the influence of the varying parameter settings. In figures from 4.1(a) on
the next page to 4.2(b) on page 45 I show the proportions of individuals
in a sample, determined by varying parameters of the geometric series.
The simulated samples for the multiple comparisons are shown from fig-
ure 4.3(a) on page 46 to figure 4.4(b) on page 47.

In figures 4.4(a) and 4.4(b) the αi-vector from the geometric series is
multiplied with c = 5. With this adjustment, simulated data sets are more
similar to the observed data sets, while the simulated data sets in figures
4.3(a) and 4.3(b) are extremely over-dispersed.
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(a) Parameters k = 0.4, Species = 8
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(b) Parameters k = 0.2, Species = 8

Figure 4.1: Pattern of true relative abundances of species taken from the
geometric series.
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(a) Parameters k = 0.15, Species = 50, Species probabilities
multiplied with factor 5
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(b) Parameters k = 0.10, Species = 50, Species probabilities
multiplied with factor 5

Figure 4.2: Pattern of true relative abundances of species taken from the
geometric series.
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(a) Simulation Setting 1

(b) Simulation Setting 2

Figure 4.3: Mosaicplot for species in simulated data set for simulation set-
tings 1 + 2 – Width of bars is proportional to the total count in one trap,
height of boxes within bar is proportional to the number of individuals of
one species in one trap, dashed lines indicate that the species is not ob-
served in one trap. The x-axis indicates the treatments and the y-axis the
different species
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(a) Simulation Setting 3

(b) Simulation Setting 4

Figure 4.4: Mosaicplot for species in simulated data set for simulation set-
tings 3 + 4 – Width of bars is proportional to the total count in one trap,
height of boxes within bar is proportional to the number of individuals of
one species in one trap, dashed lines indicate that the species is not ob-
served in one trap. The x-axis indicates the treatments and the y-axis the
different species
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4.2 Results

In the following, I will present the simulation results for the one-sample
methods in section 3.1 on page 23 as well as for the multiple comparison
methods in section 3.4 on page 36 and 3.3 on page 30 based on simulated
data sets nearer described in subsection 4.1.2 on page 42.

4.2.1 One sample methods

The one sample results for Shannon’s and Simpson’s index are shown in
tables 4.1(a) on the next page and 4.1(b) on the following page. Obviously,
the methods perform better for the Simpson index than for the Shannon
index, which can be explained by the biased estimator for the Shannon
index. For both indices the coverage probability is nearer the desired level
of 95% with rising sample size.

Furthermore, the coverage probabilty for the Boot-perc and the Boot-
BCa method is worth with increasing number of species and individuals
in every replication. Under these cases the number of zero counts, as well
as the number of species with small probabilities, rise up. But additionally,
with increasing number of species and individuals, the parameters κ and
c for the geometric series change. Therefore, an easy interpretation of the
results is difficult to carry out.

Both percentile based methods, the Boot-perc method and the BCa, ex-
hibits lower coverage probability than the t-statistics based bootstrap-t
method. The bootstrap-t methods comes with higher sample size nearer
the desired coverage probability of 95%.
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Table 4.1: One sample results for Shannon’s and Simpson’s index. covpl:
lower coverage probability, covpu: upper coverage probability, covpt: to-
tal coverage probability. Global settings: 95% two sided Intervals, 3000
bootstraps, 1000 simulation steps. n = nr. of traps per treatment, κ & S =
parameters for the geometric series, c = a constant, indiv = Individuals per
trap.

(a) One sample results for Shannon’s index

Shannon index

Method n κ c S indiv covpl covpu covpt

Bootstrap-t 5 0.4 1 8 100 0.95 0.85 0.80
Boot-perc 5 0.4 1 8 100 1.00 0.21 0.21
Boot-BCa 5 0.4 1 8 100 0.97 0.24 0.21

Bootstrap-t 20 0.4 1 8 100 0.96 0.94 0.90
Boot-perc 20 0.4 1 8 100 1.00 0.67 0.67
Boot-BCa 20 0.4 1 8 100 0.96 0.87 0.83

Bootstrap-t 5 0.15 5 50 1000 1.00 0.69 0.69
Boot-perc 5 0.15 5 50 1000 1.00 0.00 0.00
Boot-BCa 5 0.15 5 50 1000 1.00 0.01 0.01

Bootstrap-t 20 0.15 5 50 1000 0.98 0.85 0.83
Boot-perc 20 0.15 5 50 1000 1.00 0.17 0.17
Boot-BCa 20 0.15 5 50 1000 0.98 0.51 0.49

(b) One sample results for Simpson’s index

Simpson index

Method n κ c S indiv covpl covpu covpt

Bootstrap-t 5 0.4 1 8 100 0.88 0.93 0.81
Boot-perc 5 0.4 1 8 100 1.00 0.54 0.54
Boot-BCa 5 0.4 1 8 100 0.92 0.57 0.49

Bootstrap-t 20 0.4 1 8 100 0.94 0.97 0.91
Boot-perc 20 0.4 1 8 100 1.00 0.86 0.86
Boot-BCa 20 0.4 1 8 100 0.94 0.93 0.87

Bootstrap-t 5 0.15 5 50 1000 0.98 0.86 0.84
Boot-perc 5 0.15 5 50 1000 1.00 0.06 0.06
Boot-BCa 5 0.15 5 50 1000 0.99 0.08 0.08

Bootstrap-t 20 0.15 5 50 1000 0.95 0.96 0.91
Boot-perc 20 0.15 5 50 1000 1.00 0.59 0.59
Boot-BCa 20 0.15 5 50 1000 0.95 0.86 0.82
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4.2.2 Multiple comparison methods

The following tables from 4.2(b) on the next page to 4.3(b) on page 52 show
the simulation results for the multiple comparison methods described in
section 3.3 on page 30 and 3.4 on page 36 for the Tukey and Dunnett type
in the two-sided case.

The most noticeable result is the poor performance of the asymptotic
methods compared with the good perfomance of the bootstrap methods.
Further the results indicate a better performance of the methods, which
take the sum over the counts to estimate the Shannon index, than the
method by Westfall and Young [1993], which estimates the Shannon in-
dex for every replicate seperately. For the Simpson index all bootstrap
methods perform well. In detail, the method by Westfall and Young [1993]
shows the best coverage probability, while the other bootstrap intervals
are slightly more conservative.

In addition the tables 4.4(a) on page 53 and 4.4(b) on page 53 show
the simulation results for the Dunnett type statistic in the one-sided case.
The simulations are performed for the Shannon and the Simspon index
respectively.

As well as in the two-sided case the performance of the asymptotic
methods is very poor. Again, the coverage probability for the Shannon
index is better if the indices are estimated out of the summed up vector,
i.e. the tmax sum and the rank-perc method. These both methods give
similar results, except that the rank-perc method performs better than the
tmaxsum method with low numbers of species and individuals. The tmax

lm method only performs well for the unbiased Simpson index.
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Table 4.2: MCP results for Shannon’s and Simpson’s index – Dunnett con-
trast. covpl: lower coverage probability, covpu: upper coverage proba-
bility, covpt: total coverage probability. Global settings: 95% two sided
Intervals, 3000 bootstrap steps, 1000 simulation steps. n = no. of traps
per treatment, κ & S = parameters for the geometric series, c = a constant
reducing overdispersion, indiv = Individuals per trap.

(a) MCP results for Shannon’s index – Dunnett contrast

Shannon index

Method n i κ c S indiv covpl covpu covpt

tmax sum 5 3 0.4/0.4/0.2 1 8 100 0.97 0.96 0.93
tmax lm 5 3 0.4/0.4/0.2 1 8 100 0.99 0.96 0.95
rank-perc 5 3 0.4/0.4/0.2 1 8 100 0.98 0.97 0.95
asymSCI 5 3 0.4/0.4/0.2 1 8 100 0.53 0.41 0.07

tmax sum 20 3 0.4/0.4/0.2 1 8 100 0.97 0.97 0.94
tmax lm 20 3 0.4/0.4/0.2 1 8 100 0.99 0.56 0.55
rank-perc 20 3 0.4/0.4/0.2 1 8 100 0.97 0.97 0.94
asymSCI 20 3 0.4/0.4/0.2 1 8 100 0.49 0.47 0.07

tmax sum 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.96 0.95
tmax lm 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.88 0.88
rank-perc 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.96 0.95
asymSCI 5 3 0.15/0.15/0.1 5 50 1000 0.51 0.30 0.02

tmax sum 20 3 0.15/0.15/0.1 5 50 1000 0.98 0.94 0.92
tmax lm 20 3 0.15/0.15/0.1 5 50 1000 0.99 0.22 0.21
rank-perc 20 3 0.15/0.15/0.1 5 50 1000 0.99 0.93 0.92
asymSCI 20 3 0.15/0.15/0.1 5 50 1000 0.47 0.33 0.03

(b) MCP results for Simpson’s index – Dunnett contrast

Simpson index

Method n i κ c S indiv covpl covpu covpt

tmax sum 5 3 0.4/0.4/0.2 1 8 100 0.98 0.96 0.94
tmax lm 5 3 0.4/0.4/0.2 1 8 100 0.98 0.96 0.93
rank-perc 5 3 0.4/0.4/0.2 1 8 100 0.99 0.98 0.97
asymSCI 5 3 0.4/0.4/0.2 1 8 100 0.53 0.45 0.08

tmax sum 20 3 0.4/0.4/0.2 1 8 100 0.98 0.96 0.94
tmax lm 20 3 0.4/0.4/0.2 1 8 100 0.99 0.92 0.91
rank-perc 20 3 0.4/0.4/0.2 1 8 100 0.98 0.97 0.96
asymSCI 20 3 0.4/0.4/0.2 1 8 100 0.51 0.48 0.08

tmax sum 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.98 0.97
tmax lm 5 3 0.15/0.15/0.1 5 50 1000 0.98 0.97 0.95
rank-perc 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.99 0.99
asymSCI 5 3 0.15/0.15/0.1 5 50 1000 0.46 0.41 0.03

tmax sum 20 3 0.15/0.15/0.1 5 50 1000 0.97 0.97 0.94
tmax lm 20 3 0.15/0.15/0.1 5 50 1000 0.98 0.96 0.95
rank-perc 20 3 0.15/0.15/0.1 5 50 1000 0.98 0.98 0.97
asymSCI 20 3 0.15/0.15/0.1 5 50 1000 0.44 0.41 0.02
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Table 4.3: MCP results for Shannon’s and Simpson’s index – Tukey con-
trast. covpl: lower coverage probability, covpu: upper coverage prob-
ability, covpt: total coverage probability. Global settings: 95% two-sided
Intervals, 3000 bootstraps, 1000 simulation steps. n = no. of traps per treat-
ment, κ & S = parameters for the geometric series, c = a constant reducing
overdispersion, indiv = Individuals per trap

(a) MCP results for Shannon’s index – Tukey contrast

Shannon index

Method n i κ c S indiv covpl covpu covpt

tmax sum 5 3 0.4/0.4/0.2 1 8 100 0.96 0.94 0.92
tmax lm 5 3 0.4/0.4/0.2 1 8 100 0.99 0.93 0.93
rank-perc 5 3 0.4/0.4/0.2 1 8 100 0.98 0.96 0.94
asymSCI 5 3 0.4/0.4/0.2 1 8 100 0.36 0.27 0.06

tmax sum 20 3 0.4/0.4/0.2 1 8 100 0.94 0.97 0.91
tmax lm 20 3 0.4/0.4/0.2 1 8 100 0.99 0.45 0.45
rank-perc 20 3 0.4/0.4/0.2 1 8 100 0.97 0.96 0.93
asymSCI 20 3 0.4/0.4/0.2 1 8 100 0.32 0.29 0.06

tmax sum 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.94 0.94
tmax lm 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.86 0.86
rank-perc 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.95 0.94
asymSCI 5 3 0.15/0.15/0.1 5 50 1000 0.39 0.14 0.02

tmax sum 20 3 0.15/0.15/0.1 5 50 1000 0.98 0.94 0.92
tmax lm 20 3 0.15/0.15/0.1 5 50 1000 0.99 0.13 0.13
rank-perc 20 3 0.15/0.15/0.1 5 50 1000 0.99 0.92 0.91
asymSCI 20 3 0.15/0.15/0.1 5 50 1000 0.34 0.16 0.00

(b) MCP results for Simpson’s index – Tukey contrast

Simpson index

Method n i κ c S indiv covpl covpu covpt

tmax sum 5 3 0.4/0.4/0.2 1 8 100 0.98 0.95 0.93
tmax lm 5 3 0.4/0.4/0.2 1 8 100 0.97 0.95 0.92
rank-perc 5 3 0.4/0.4/0.2 1 8 100 0.98 0.98 0.96
asymSCI 5 3 0.4/0.4/0.2 1 8 100 0.38 0.25 0.07

tmax sum 20 3 0.4/0.4/0.2 1 8 100 0.98 0.94 0.93
tmax lm 20 3 0.4/0.4/0.2 1 8 100 0.99 0.92 0.91
rank-perc 20 3 0.4/0.4/0.2 1 8 100 0.98 0.96 0.95
asymSCI 20 3 0.4/0.4/0.2 1 8 100 0.32 0.27 0.07

tmax sum 5 3 0.15/0.15/0.1 5 50 1000 0.98 0.97 0.96
tmax lm 5 3 0.15/0.15/0.1 5 50 1000 0.98 0.96 0.95
rank-perc 5 3 0.15/0.15/0.1 5 50 1000 0.99 0.99 0.99
asymSCI 5 3 0.15/0.15/0.1 5 50 1000 0.27 0.22 0.03

tmax sum 20 3 0.15/0.15/0.1 5 50 1000 0.98 0.95 0.93
tmax lm 20 3 0.15/0.15/0.1 5 50 1000 0.99 0.98 0.95
rank-perc 20 3 0.15/0.15/0.1 5 50 1000 0.98 0.98 0.97
asymSCI 20 3 0.15/0.15/0.1 5 50 1000 0.25 0.24 0.02
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Table 4.4: MCP results for Shannon’s and Simpson’s index – Dunnett con-
trast – one-sided. covpu: upper coverage probability. Global settings: 95%
one-sided Intervals, 3000 bootstraps, 1000 simulation steps. n = no. of
traps per treatment, k & S = parameters for the geometric series, c = a
constant reducing overdispersion, indiv = Individuals per trap.

(a) MCP results for Shannon’s index – Dunnett contrast – one-sided

Shannon index

Method n i k c S indiv covpu

tmax sum 5 3 0.4/0.4/0.2 1 8 100 0.91
tmax lm 5 3 0.4/0.4/0.2 1 8 100 0.84
rank-perc 5 3 0.4/0.4/0.2 1 8 100 0.93
asymSCI 5 3 0.4/0.4/0.2 1 8 100 0.42

tmax sum 20 3 0.4/0.4/0.2 1 8 100 0.94
tmax lm 20 3 0.4/0.4/0.2 1 8 100 0.42
rank-perc 20 3 0.4/0.4/0.2 1 8 100 0.94
asymSCI 20 3 0.4/0.4/0.2 1 8 100 0.45

tmax sum 5 3 0.15/0.15/0.1 5 50 1000 0.91
tmax lm 5 3 0.15/0.15/0.1 5 50 1000 0.70
rank-perc 5 3 0.15/0.15/0.1 5 50 1000 0.91
asymSCI 5 3 0.15/0.15/0.1 5 50 1000 0.26

tmax sum 20 3 0.15/0.15/0.1 5 50 1000 0.90
tmax lm 20 3 0.15/0.15/0.1 5 50 1000 0.14
rank-perc 20 3 0.15/0.15/0.1 5 50 1000 0.87
asymSCI 20 3 0.15/0.15/0.1 5 50 1000 0.34

(b) MCP results for Simpson’s index – Dunnett contrast – one-sided

Simpson index

Method n i k c S indiv covpu

tmax sum 5 3 0.4/0.4/0.2 1 8 100 0.91
tmax lm 5 3 0.4/0.4/0.2 1 8 100 0.92
rank-perc 5 3 0.4/0.4/0.2 1 8 100 0.95
asymSCI 5 3 0.4/0.4/0.2 1 8 100 0.45

tmax sum 20 3 0.4/0.4/0.2 1 8 100 0.92
tmax lm 20 3 0.4/0.4/0.2 1 8 100 0.90
rank-perc 20 3 0.4/0.4/0.2 1 8 100 0.95
asymSCI 20 3 0.4/0.4/0.2 1 8 100 0.45

tmax sum 5 3 0.15/0.15/0.1 5 50 1000 0.95
tmax lm 5 3 0.15/0.15/0.1 5 50 1000 0.94
rank-perc 5 3 0.15/0.15/0.1 5 50 1000 0.97
asymSCI 5 3 0.15/0.15/0.1 5 50 1000 0.41

tmax sum 20 3 0.15/0.15/0.1 5 50 1000 0.94
tmax lm 20 3 0.15/0.15/0.1 5 50 1000 0.94
rank-perc 20 3 0.15/0.15/0.1 5 50 1000 0.95
asymSCI 20 3 0.15/0.15/0.1 5 50 1000 0.45
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4.2.3 Power of Bootstrap SCIs

In addition to the coverage probability, the power of the methods is an im-
portant point. Assume, a field trial is planned as a follow-up experiment
of the trial shown in Example 2. The aim of the follow-up trial could be to
prove that at least one of 3 treatments decreases biodiversity significantly
compared to the control. The statistical hypotheses are shown in equation
( 4.2.3).

H0 :
k⋂

i=2

θi − θ1 ≥ 0 (4.2.3.1)

HA :
k⋃

i=2

θi − θ1 < 0 (4.2.3.2)

One question to be solved before starting the experiment is: In what
range should the number of replications be chosen, such that a present
decrease in biodiversity can be shown with high probability, e.g. in 80%
of the cases? Based on the data of the preliminary trial in Example 2, the
following parameters are chosen to simulate power:

• Species S = 30

• Individuals per replicate = 500

• For control group κ = 0.20 and for treatments κ = 0.25

• The constant for reducing over-dispersion c = 10

Figure 4.5 on the following page shows the true relative abundances,
calculated out of the geometric series, for the two different settings. The
simulated data, which resembles the data of Example 2, shown in sec-
tion 1.2 on page 3, is illustrated as a mosaicplot with 10 replications in
figure 4.6 on page 56. In the following power analysis, the number of repli-
cations ranges from j = 3 to j = 100. Given that this single parameter
setting and the assumption of a Dirichlet-multinomial distribution closely
resembles reality, one can conclude from Figure 4.7 on page 57 that 20
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Figure 4.5: True relative abundances of species from the geometric series.

replications are sufficient, if one will analyse with the rank-perc method or
the tmax sum method. With the tmax lm method one will only reach around
50% power with 20 traps per treatment.

None the less, the power simulation for ecological trials is questinable
due to several non-influencable parameters. These are the number of spe-
cies in every treatment, as well as the number of collected individuals.
Further the relative abundance of the single species is an important factor.
As these parameters strongly influence the power of the statistical infer-
ence, it will be difficult to determine the correct sample size.
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Figure 4.6: Mosaicplot for species in power analysis. Four groups with 10
replications in each – Width of bars is proportional to the total count in
one trap, height of boxes within bar is proportional to the number of in-
dividuals of one species in one trap, dashed lines indicate that the species
was not observed in one trap
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In this chapter I will apply the before introduced multiple comparison
methods to real data sets. Both data sets were introduced in section 1.2.1
on page 3 and 1.2.2 on page 6. In the following, I will analyse them with
the Shannon and the Simpson index respectively. The hypotheses were
formulated before, but are repeated here in detail.

5.1 Application to data set No. I

In the following, I will analyse the data set no. 1 for the hypotheses in
equation (5.1). The main aim is, as mentioned before, the proof of safety
for the genetically modified organism (Bt line). This may be done with
two separate hypotheses, where only one has to be accepted to prove
safety. As these hypotheses can not be ordered a priori, one has to ad-
just for multiplicity. In detail, one hypothesis is superiority of the GM line
to the pesticide treated, isogenic line (Iso-Bay), whereas the other hypoth-
esis is non-inferiority of the GM line to the isogenic line (Iso). To prove
these hypotheses, one has to determine a superiority border as well as a
non-inferiority border.

Since it is hard to determine these borders without enough knowledge
about biodiversity indices and the ecological background, I will leave this
part open. In my opinion one has to discuss with ecologists to close this
gap.

The statistically formulated hypotheses are presented in equation (5.1).
To prove superiority of the GM line to the pesticide treated line the upper
border of the SCI for the difference (BayIso - Bt) has to lie under a given
superiority border−δ. In contrast, the upper bound of the SCI for the non-
inferiority (Iso - Bt) has to lie under a given non-inferiority border +δ. The
null hypothesis is not rejected, if both intervals cross the corresponding
borders. If one interval lies with the upper bound under the correspond-
ing superiority or non-inferiority border, the null hypothesis is rejected
according to the union-intersection principle.
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The resulting SCIs for the Shannon index are presented in figure 5.1
and the SCIs for the Simpson index are visible in figures from 5.2. In the
following, I will define the test hypotheses for example no. 1, see equa-
tions (5.1).

H0 :
k⋂

i=2

θi − θ1 ≥ δi (5.1.0.1)

HA :
k⋃

i=2

θi − θ1 < δi (5.1.0.2)

δi =

positive, if δi is the non-inferiority border,

negative, if δi is the superiority border.

Here, δi is the corresponding superiority or non-inferiority border for
the analysed contrast. Further θ1 indicates the GMO treatment and θi, i =
2, ..., k the standards (Iso, Bay-Iso). δi is positive for non-inferiority testing
and negative for superiority testing, since I substract the treatment, i.e.
GMO, from the standards, i.e. Iso or Bay-Iso. This yields the fact that
negative differences indicate the cases one seeks for.

Regarding the resulting one-sided simultaneous confidence intervals
leads to the conclusion, that superiority of GMO treatment to the pesticide
treated, isogenic line can not be proven, except maybe for the asymptotic
intervals for the Shannon index depending on the chosen superiority bor-
der. However, the simulation results showed, that the asymptotic intervals
exhibit poor coverage probability leading to wrong decisions in statistical
inference. In case of the other mcp methods no upper bound of an interval
is lower than zero indicating the impossibility of lying under a given supe-
riority border −δ. In detail, the upper bounds of the SCIs for the Shannon
index lay higher for the contrast (Iso - Bt), with estimators near zero, than
the upper bounds for the contrast (Bay-Iso - Bt) with negative estimators.
For the Simpson index the upper bounds for the contrasts are more similar,
except for the tmax lm SCIs.
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Further noticeable problems are the small intervals of the asymptotic
methods for the Shannon and the Simpson index respectively, as well as
the inverted estimators for the tmax lm SCIs in comparison to the other
SCIs. Since, this method performs well for the Shannon index and for
example no. 2, I do not assume a programming error. This abnormality
may depend on the given example in conjunction with the Simpson index.

The proof of safety based on non-inferiority may be verified depending
on the chosen non-inferiority border. As mentioned earlier I leave this
part open due to the missing knowledge about the correct interpretation
of differences for estimated diversity indices. This gap should be closed in
discussion with ecologists.
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Figure 5.1: Simultaneous confidence intervals for Shannon’s index in ex-
ample no. 1. Methods described in section 3.3.1, 3.3.2, 3.3.3 and 3.4.2
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Figure 5.2: Simultaneous confidence intervals for Simpson’s index in ex-
ample no. 1. Methods described in section 3.3.1, 3.3.2, 3.3.3 and 3.4.1
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5.2 Application to data set No. II

In the following, I will analyse the data set no. 2 for the hypotheses in
equation (5.2). The analysis of the data set no. 2 is performed as in exam-
ple no. 1 with the multiple comparison methods described in section 3.3
on page 30 and 3.4 on page 36. The resulting simultaneous confidence in-
tervals are visible in picture 5.3 on page 65 for the Shannon index and in
picture 5.4 on page 66 for the Simpson index.

As well as in example no. 1, the primary object is proving safety for
the GMO, indicated here with the GM line. Again, there are multiple hy-
potheses to formulate, which can not be ordered a priori. This leads to
the need of multiplicity adjusting methods. I will again use simultaneous
confidence intervals, which allow to perform superiority as well as non-
inferiority testing. For the following example one may use non-inferiority
testing, since there is only one GM line, which will be compared with sev-
eral isogenic lines (S1, S2, S3). The null hypothesis, i.e. the GM line is
unsafe, will be rejected if one confidence interval for the difference (Iso -
GM) lies with the upper bound under a given non-inferiority border +δ,
since a negative value for the difference indicates a higher diversity in the
GMO treatment.

Again, we follow the union-intersection principle and reject the null hy-
pothesis, if one interval lies with the upper bound under the given non-
inferiority border. As ins example no. 1 I will leave the non-inferiority
border determining part open, due to the problems discussed before. In
the following equation (5.2) I will present the statistical hypotheses for
example no.2. In this example I will only consider non-inferiority test-
ing, since all standard treatments are untreated, isogenic lines. The main
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goal is proving safety for the GMO treatment by proving non-inferiority
of GMO to isogenic treatments.

H0 :
k⋂

i=2

θi − θ1 ≥ +δi (5.2.0.3)

HA :
k⋃

i=2

θi − θ1 < +δi (5.2.0.4)

Regarding the resulting one-sided simultaneous confidence intervals
in figure 5.3 on the following page and 5.4 on page 66 leads to the con-
clusion that the t-statistic based SCIs with summed up counts are more
conservative than the other methods. The t-statistic based SCIs in the
ANOVA model are similar to the percentile based SCIs based on summed
up counts. The asymptotic methods are, as in example no. 1, highly lib-
eral yielding wrong statistical conclusions. This fact is shown as well in
the simulation part.

The proof of non-inferiority may be possible for the analyses depend-
ing on the chosen non-inferiority borders −δ. Again, I will leave the bor-
der determining part open. In detail, the upper bounds of the SCIs for
the contrasts (S1 - GM) and (S3 - GM) reach higher values than the upper
bounds for the contrast (S2 - GM). All SCIs for the Shannon index lay un-
der the difference of 0.5, except for the t-statistic based SCIs with summed
up counts. Here, the upper bound for the contrasts (S1 - GM) and (S3 -
GM) lays higher than 0.5. For the Simpson index all SCIs lay with the up-
per bound under the difference of 0.2. Again, the upper bound of the SCI
for the t-statistic based SCIs, with summed up counts, lays higher than 0.2
for the contrast (S1 - GM).
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Figure 5.3: Simultaneous confidence intervals for Shannon’s index in ex-
ample no. 2. Methods described in section 3.3.1, 3.3.2, 3.3.3 and 3.4.2
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Figure 5.4: Simultaneous confidence intervals for Simpson’s index in ex-
ample no. 2. Methods described in section 3.3.1, 3.3.2, 3.3.3 and 3.4.1
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6.1 General Discussion

It is shown, that for multiple comparisons in ecological trials with repli-
cated samples the asymptotic methods according to Fritsch and Hsu [1999]
and Rogers and Hsu [2001] are not applicable, since they do not take the
overdispersion into account. The estimated simultaneous confidence ac-
cording to Fritsch and Hsu [1999] and Rogers and Hsu [2001] exhibit the
same estimators and estimated variances as the simultaneous bootstrap
intervals acoording to the tmax sum method. The only differences, which
lead to smaller or larger intervals are the estimated quantiles. In case of
the asymptotic methods the quantile is computed using the multivariate
normal distribution and in case of the bootstrap methods the quantile is
estimated out of the bootstrapped maximum distribution. This bootstrap
maximum distribution takes the overdispersion into account and there-
fore leads to larger intervals with nearly correct coverage probability. The
asymptotic methods show much too small intervals due to the normal ap-
proximated quantiles.

Further the estimated quantiles for the Shannon index show in case
of the tmax lm method poor coverage probability. This may be explainable
due to the biasness of the Shannon estimator [Magurran, 2004]. In contrast
to the other two bootstrap methods, the estimators for the tmax lm method
are calculated for each replication seperately. If the indices are estimated
out of the summed up count vector, the estimation is more robust, since
the number of zero counts is reduced. Since the bias correction terms for
the Shannon index, see equation ( 2.1.1.2 on page 19), includes the number
of species as well as the number of individuals ı́n sample, it corrects better
with more observed species. The number of observed species increases
with summed up counts, as one observes here more individuals in every
species. In case of the row wise estimated indices the number of observed
species is lower. This may first increase the bias of the Shannon index and
second leads to a worse bias correction, due to the fact explained before.

One possibility to close this gap would be the estimation of the Shan-
non index according to Chao and Shen [2003]. But additional simulations
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(not shown here) revealed no advantages of this estimation. The coverage
probability of the simultaneous confidence intervals, studied here, was
nearly equal with the Shannon index or the modified Shannon index by
Chao and Shen [2003].

Additionally, the tmax lm method showed poorer coverage probability
for the Shannon index with increasing sample size. This may be explain-
able by the estimation of smaller variances with higher sample size lead-
ing to the situation that the bias of the estimator is revealed more clearly
in terms of insufficient coverage probability.

The assumption of Dirichlet-multinomial distributed counts in ecolog-
ical trials was one possibility to simulate data sets. Nevertheless, this as-
sumptions is also not the perfect solution, since the Dirichlet-multinomial
distribution uses a common dispersion parameter for all species as well
as an a-priori fixed number of individuals for every replication. However,
the tendency to aggregate spatially or temporally (causing overdispersion)
can be assumed to be species dependent and the total number of individ-
uals is a random variable in reality. One possibility to solve this issue may
be using the negative-binomial distribution to generate varying number
of individuals per replicate.

To sum up, I would generally recommend to use the estimation of
the indices out of the summed up counts, as this method is more robust
against biased estimators. In addition the bootstrap methods, which use
the estimation out of the summed up counts exhibit higher power, which
will lead to smaller required sample sizes.

However, none of the methods studied here allows to include a co-
variable or a random block factor. As randomized block designs are often
used in ecological trials, and covariables are often surveyed, this is a non
negligible missing function. Further bootstrap methods demand modern
computer hardware to be applied in acceptable time. But this is less prob-
lematic nowadays.
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6.2 Extension and Outlook

The studied bootstrap methods for simultaneous confidence intervals may
be applicable in a wider range of situation. For example in the field of ge-
netics, where Hsu et al. [2006] published simultaneous bootstrap methods
according to Beran [1988].

Despite the methods by Beran [1988], the simultaneous bootstrap con-
fidence intervals according to Mandel and Betensky [2008] would be in-
teresting to study in the field of diversity estimation. These intervals are
similar to the one by Besag et al. [1995], except that they are adjusted for
ties within one bootstrap step.

Further it may be of interest to extend the tmax lm method according
to Westfall and Young [1993] to multifactorial designs. This would allow
to take a block factor into account, which is often used in ecological field
trials.
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Appendix A
Applicated Distributions

A.1 Geometric series

The geometric series splits the total number of Individuals into observed
species by giving proportion k of the total number of individuals N to
the first species. The second species gets proportion κ of the left number
of individuals and the rest of the observed species are determined in the
same way.

This yields to equation A.1.0.1, where the abundances of species are
ranked from the most to the least abundant.

πs = Cκκ(1− κ)s−1, (A.1.0.1)

where κ is a constant determining the proportion of the remaining niche
space occupied by a successively colonized species. Further Cκ = [1− (1−
κ)S]−1 is a constant that insures that ∑S

s=1 πs = 1. The geometric series is
fully mathematically described in May [1975].
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A.2 Multinomial distribution

Introductory example

Long before our Christian era people were using special animal bones

to dice. These dices had four sides to lay on with corresponding prob-

abilities p1 = p2 = 0.4, p3 = p4 = 0.1. The arising question is which

distribution is applicable to model the number of throws with the

different sides of the dice under condition of n - throws [Schlittgen,

2003].

Generally S random variables are multinominal distributed if the corre-
sponding probability function reads as follows

p(n1, ..., nS) = n!
S

∏
s=1

(πns
s /ns!) (A.2.0.2)

with assumptions n1, n2, ..., nS ≥ 0 and n1 + n2 + ...+ nS = n and is written
as Multinomial(n; π1, ..., πS).

Depending on the binomial marginal distribution with k = 2, follows
for every random variable ns the expectation value and variance

E[Ns] = nπs var(Ns) = nπs(1− πs).

The random variables Xi are correlated with covariance [Kotz et al., 1997]

cov(Ns, Ns′) = −nπsπs′ for s 6= s′.

Variate relationships

• The multinomial variate corresponds to the binominal variate B(n, π)

if k = 2 variables are described. Each Ns has the binominal distribu-
tion as the marginal distribution with parameters n, πs [Merran et al.,
2000].
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A.3 Dirichlet distribution

The dirichlet distribution is the multivariate generalization of the beta dis-
tribution. Equation A.3.0.3 shows the probability density function of a
Dirichlet random variable.

p(x1, x2, ..., xS) = K

(
S

∏
s=1

xαs−1
s

)(
1−

S

∑
s=1

xs

)αS+1−1

, (A.3.0.3)

where

K =
Γ(∑S+1

s=1 αs)

∏S+1
s=1 Γ(αs)

and αs(s = 1, 2, ..., S + 1) are arbitrary positive real numbers [Kotz et al.,
2000].

The Dirichlet distribution is applicable for the probability parameter
calculation of a multinomial distribution to model the overdispersion. This
yields a Dirichlet-multinomial with higher variance than describable by
the multinomial distribution. The Dirichlet-multinomial distribution is
described in appendix A.4 and in Mosimann [1962].

A.4 Dirichlet-Multinomial distribution

The Dirichlet-multinomial distribution is a compound multivariate dis-
tribution and is formed in the same way as compound univariate distri-
butions, meaning assigning distributions to some (or all) parameters of a
multivariate distribution. Let us consider

Multinomial(n; π1, ..., πS)
∧

π1,...,πS

Dirichlet(α1, ..., αS), (A.4.0.4)

leading to the probability mass function of this compound distribution

P(n1, ..., nS) =
n!

(∑S
s=1 αs)[n]

S

∏
s=1

{
α
[ns]
s

ns!

}
, (A.4.0.5)
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where ns ≥ 0 and ∑S
s=1 ns = n. This distribution is the multivariate gen-

eralization of the Beta-Binomial distribution discussed by Johnson et al.
[2005], where

Binomial(n, π)
∧
π

Beta(α, β)

The compound Dirichlet multinomial distribution has expectation and vari-
ance

E[Ns] = nπ′s var(Ns) =

(
n + α•
1 + α•

)
nπ′s(1− π′s), (A.4.0.6)

and
cov(Ns, Ns′) = −

(
n + α•
1 + α•

)
nπ′sπ

′
s′ , (A.4.0.7)

where α• = ∑S
s=1 αs and π′s = αs/α•. Further ∑S

s=1 π′i = 1.
Due to A.4.0.6 and A.4.0.7 we can see that the variance-covariance ma-

trix of the Dirichlet-multinomial distribution is(
n + α•
1 + α•

)
× variance-covariance matrix of Multinomial(n; π′1, ..., π′S).

(A.4.0.8)
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