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Zusammenfassung

Gegenstand dieser Dissertation war die Untersuchung multipler Testprozeduren für Many-One-

Vergleiche in einem stratifizierten Design unter strikter Einhaltung der globale

Irrtumswahrscheinlichkeit auf dem Niveau α . Das Problem des simultanen Vergleichs

mehrerer aktiver Behandlungsgruppen mit einer Kontrollgruppe in jeder der verschiedenen

Schichten tritt in unterschiedlichen praktischen Situationen auf, wie die Beispiele in der

Einleitung dieser Arbeit zeigen. Ein naiver Ansatz würde darin bestehen, das Dunnett-

Verfahren innerhalb jeder Schicht anzuwenden, ohne eine weitere Fehlerkorrektur für multiples

Testen vorzunehmen.  Dies würde zu einer Inflation des multiplen Niveaus α  des

Gesamtexperiments führen. Andererseits würde eine Bonferroni-Korrektur zur Berücksichtung

der Anzahl der Strata auf einen konservativen Ansatz hinauslaufen, unter der in dieser Arbeit

getroffenen Annahme einer unbekannten gemeinsamen Varianz.

Cheung und Holland (1992) erweiterten das Dunnett-Verfahren auf die stratifizierte Situation.

Allerdings leiteten sie lediglich obere Perzentile für einen gemeinsamen

Korrelationskoeffizienten ab und schlugen vor, diese Perzentile für alle anderen Testsituationen

zu interpolieren. Die vorliegende Arbeit weist nach, daß diese Approximationen nicht mehr

erforderlich sind und daß korrekte Perzentile heute einfach mit verfügbarer Software (SAS)

berechnet werden können.

Darüberhinaus beschreibt diese Arbeit, wie Güte-Berechnungen und Fallzahlschätzungen

durchgeführt werden können, was bei Cheung und Holland nicht betrachtet worden war.

Obwohl bei den meisten Many-One-Vergleichen in praktischen Testsituationen das Interesse

darin liegt, die Überlegenheit bzw. den Unterschied einer aktiven Behandlung zu einer

Kontrollbehandlung nachzuweisen, gibt es Testsituationen, wo diese Art von Fragestellungen

nicht adäquat ist. In dieser Arbeit wird gezeigt, daß es auch möglich ist, Many-One-Vergleiche

in einem stratifizierten Design im Fall eines Nicht-Unterlegenheit-Testproblems oder globalen

Äquivalenzproblems unter Einhaltung des multiplen Niveaus α  durchzuführen.

Auch für den Fall, daß sich das Testproblem besser mittels Verhältnisraten als durch

Differenzen beschreiben läßt, wird in der vorliegenden Arbeit gezeigt, wie Many-One-

Vergleiche in einem stratifizierten Versuch durchgeführt werden können.

Alle diese Verfahren treffen die Annahme der Normalverteilung der Daten. Wenn diese

Annahme zweifelhaft ist, kann die Verwendung nichtparametrischer Verfahren eher angebracht

sein. Munzel und Hothorn (2001) diskutieren einen asymptotischen Ansatz zur Durchführung

von Many-One-Vergleichen im Ein-Weg-Design basierend auf einer paarweisen Rangvergabe-

Prozedur. Die vorliegende Arbeit illustriert, wie dieses Testverfahren auf den Fall des

stratifizierten Zwei-Weg-Designs erweitert werden kann.



Schließlich werden die Methode der stochastischen Approximation, die Bootstrap-Methode und

die Permutationsmethode als alternative Methoden diskutiert. Diese drei Methoden werden

anhand einer Situation veranschaulicht, für die diese computerintensiven Resampling-

Methoden standardmäßig innerhalb der SAS-Software verfügbar sind.

Zusammenfassend zeigt die vorliegende Arbeit, daß es möglich ist Many-One-Vergleiche in

einem stratifizierten Zwei-Weg-Design für verschiedene praktische Testsituationen

durchzuführen, und stellt den erforderlichen Programm-Code zur Analyse dieser Testprobleme

bereit.
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1 Introduction

To examine treatment effects in scientific experiments, multiple comparison procedures are

useful and popular techniques in various disciplines such as medicine and agrobiology (see for

example Hochberg and Tamhane (1987) and references therein). However, as many writers

indicate, one has to be very cautious when simultaneous inferences are implemented because

he or she may not be aware of the multiplicity effect (Westfall and Young, 1993). As explained

by Tukey (1977), when a large data set undergoes extensive data splitting without careful

control of the overall error rate, ‘false significance’ can easily result. For instance, in multiple

hypotheses testing, the probability of making at least one false rejection among all the

hypotheses being considered can be substantial even though each individual hypothesis is

tested with a small α level. Hence to tackle the multiplicity problem, some researchers prefer

multiple comparison procedures that are designed to control the familywise error rate (FWE) as

defined in Hochberg and Tamhane (1987). A multiple comparison procedure is said to control

the FWE in stronge sense if it protects the FWE under all configurations of the null hypothesis

and in the weak sense if it controls the FWE under the complete null configuration. However,

the control of the FWE may not be necessary in some cases. For a more in-depth discussion of

which error rate to control in multiple comparison problems, one can read Chapter 1 of

Hochberg and Tamhane (1987).

It is clear that no adjustment for multiple comparisons at all will result in the smallest p-value.

On the other hand adjusting for multiple comparisons and incorporating the correlation structure

results in a smaller adjusted p-value than Bonferroni style adjustments.

Dunnett (1955) mentioned the common problem in applied research of the comparison of

treatments with a control or a standard: ‘Such a situation may arise, for example, when an

agronomist tests the effects on crop yield of the addition of chemicals to the soil, or when a

pharmacologist assays drug sample to determine their potencies. In designing an experiment to

measure the effects of such treatments, it is often desirable to include in the experiment a

control in the form of either a dummy treatment, to measure the magnitude of the experimental

response in the absence of the treatments under investigation, or some recognized standard

treatment.’ In his paper, Dunnett described his well known and widely used multiple comparison

procedure for simultaneously comparing, by interval estimation or hypothesis testing, all active

treatments with a control when sampling from a distribution where the normality assumption is

reasonable. Multiple comparisons to a control (MCC) are also referred to as many-to-one

comparisons.
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The problem of multiple comparisons with a control is a special case of the more general

multiple comparisons problem considered by Tukey (1953) and Scheffé (1953). Tukey’s

procedure based on the Studentized range and Scheffé’s procedure based on the F-distribution

enables the experimenter to make any number of comparisons among a set of sample means

with the assurance that the probability of all confidence statements being correct will be equal

to or greater than a specified value. When the experimenter only wishes to make comparisons

between one of the means and each of the others, as is the case when one of the means

represents a control, use of the Tukey or Scheffé procedure would result in larger p-values and

in wider confidence limits than necessary.

Dunnett’s procedure is tailored for the one-way layout situation, i.e. a single stratum, and the

issue is how one should undertake the comparisons of active treatments with a control in a

stratified design. Direct application of Dunnett’s procedure might be inappropriate in this

situation.

The basic question to consider is how the experimenter should control the familywise error rate:

(a) for active treatments versus control averaged over all strata,

(b) for active treatments versus control separately in each stratum, or

(c) for active treatments versus control globally across all strata.

Situation (a) implies direct application of Dunnett’s original procedure.

Situation (b) implies the conduct of a separate Dunnett procedure within each stratum,

sometimes called the ‘Dunnett-within-group’ procedure. Notice that the relevant family of

hypotheses under consideration is the set of hypotheses comparing active treatments with

control within each of the strata. So there are a number of families of hypotheses in total; for

each stratum there is a family of hypotheses.

Situation (c) implies the comparisons of all active treatments with a control within each of the

strata simultaneously while controlling the FWE. The relevant family of hypotheses under

consideration is the set of all treatment versus control hypotheses in the overall experiment.

This can be seen as an extension of Dunnett’s multiple comparison procedure to a stratified

design.

Cheung and Holland (1991) extended the Dunnett procedure for comparing all active

treatments with a control for the one-way layout to instances where it is desired to make such

comparisons simultaneously within each of several strata while holding the probability of

making any Type I errors at a designated level α  in case of a common sample size for any of

the stratum-treatment combinations. In 1992 they described this procedure allowing different

sample sizes for each of the stratum-treatment categories.
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This situation occurs in the setting of a fixed effects two-way factorial layout where one factor

has one level that is a control or otherwise specially designated level, among with several

active treatment levels, and it is desired to make comparisons between all active treatments

with control at each of the levels of a second factor.

To illustrate the situation in a practical setting, some examples are considered.

Oat yield data

Steel and Torrie (1980) presented the results of an experiment to compare the yields of four oat

seed lots (strata) following three chemical seed treatments and a control. Two of the seed lots

were Vicland; once infected with H.Victoriae (1), once not (2). The experimental design was a

split-plot layout with seed lots as whole plots and treatments as subplots, incorporating a

randomized complete block design with four-blocks. Yields were measured in bushels per acre.

The data are presented in the following table.

Table 1.1 Oat yield data from Steel and Torrie

Treatment

Seed lots Control Ceresan M Panogen Agrox

Vicland (1) 36.1 50.6 45.9 37.3

Vicland (2) 50.9 55.4 53.1 54.3

Clinton 53.9 51.4 55.9 56.1

Branch 61.9 63.4 57.7 61.3

Each cell represents the mean of four observations, in bushels per acre.

The authors analyzed the data with a separate Dunnett procedure for each of the seed lots, i.e.

the ‘Dunnett within-group’ procedure. One-sided tests were used because it was expected a

priori that treatments would increase yield. The use of ‘Dunnett within-group’ procedure seems

to be justified if the purpose of the experiment was to make treatment recommendations for

many farmers, each of whom uses only one seed lots. However, if the purpose was to advise a

single farmer who uses all four seed lots which seed treatment to use with each seed lot, the

extended Dunnett procedure for the stratified design seems to be preferable.
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Animal myocardial infarction data

Jugdutt (1988) described the data of an experiment to study the effects of nitroglycerin and

ibuprofen on left ventricular topography during healing after myocardial infarction induced in

dogs. One group of dogs in which no infarction was induced served as sham and another group

of dogs in the dogs with infarction served as the control treatment group. The two strata

consisted of the group of dogs measured at one week post-occlusion and at six weeks post-

occlusion. The following table shows a part of the results of this experiment.

Table 1.2 Infarct size data from Jugdutt

Treatment

Post-occlusion Control Nitroglycerin Ibuprofen Sham

1-week 37.4 33.8 26.2 24.2

(8) (6) (6) (12)

6-week 32.5 31.6 29.1 24.2

(7) (9) (8) (10)

Each cell represents the mean of occluded bed size in percentages. The number of

observations is in brackets.

The authors analyzed the data in several ways, including the comparisons of each treatment

group at 1 week with 6 weeks and each treatment group versus the control group for both time

points separately. Despite these analyses, the data could have been analyzed by the extended

Dunnett procedure allowing different sample sizes. Depending on the research question the

control group could have been defined as the control treatment but also by the ‘sham treatment’

group.

In vivo bone marrow cell data

Morales-Ramírez and García-Rodríguez (1994) studied the radioprotective capacity of three

dosages of chlorophyllin on γ-ray-induced sister chromatid exchange (SCE) in murine bone

marrow cells in vivo. The group of mice was divided in two; one group was exposed to ionizing

radiation (stratum 1), which is capable of inducing SCE and the other group was not exposed

(stratum 2). The following table shows some pooled results of two separate identical

experiments, which were considered as one experiment by the authors.
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Table 1.3 SCE induction data from Morales-Ramírez and García-Rodríguez

Treatment

Radiation

Control Chlorophyllin

100 µg

Chlorophyllin

50 µg

Chlorophyllin

10 µg

Yes 4.5 3.5 4.0 4.5

(14) (8) (8) (7)

No 3.4 3.5 3.6 3.6

(15) (8) (8) (8)

Each cell represents the mean of SCE per cell. The number of observations is in brackets.

The authors did the statistical evaluation to compare the different dosages of chlorophyllin

against the control group with ‘Dunnett’s test for several groups and different sample sizes

(Cheung and Holland, 1992)’.

Human erythrocytes data

Trevisan et al. (1986) studied the intra-erythrocytic cation metabolism in ureamic patients on

different dialysis treatments. The patients in this study underwent two different treatments,

regular haemodialysis and continuous ambulatory peritoneal dialysis (CAPD). Also, from a

survey on cellular ion transport and hypertension, 67 persons were randomly selected as

controls. The subjects were classified according to gender. Blood was drawn from each subject

and one of the responses was the haemoglobin content (g/l) as shown in the following table.

Table 1.4 Heamoglobin content data from Trevisan et al.

Treatment

Gender Control Haemodialysis CAPD

Males 15.6 8.8 10.8

(35) (18) (14)

Females 14.2 9.4 10.2

(32) (16) (10)

Each cell represents the mean in g/l. The number of observations is in brackets.

The test of treatment by gender interaction was significant. Therefore it seems to be

appropriate to compare both active treatments with control separately for males and females

with the extended Dunnett procedure for the two-way layout allowing different sample sizes.
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These examples illustrate the topic of this thesis, to describe multiple comparisons procedures

for many-to-one comparisons in a stratified design while maintaining the FWE at a designated

level α .

The original Dunnett’s multiple comparisons procedure for simultaneously comparing all active

treatments with a control for a one-way layout assuming normal distributed data is reviewed in

Chapter 2.

Chapter 3 and Chapter 4 describe the extended Dunnett’s procedure for a stratified two-way

layout situation in case of a one-sided alternative testing problem and a two-sided alternative

testing problem respectively. The computation of adjusted p-values and simultaneous

confidence intervals is discussed as well as the calculation of the different kinds of power and

computation of sample sizes.

In practice there are also applications where the control treatment is a well-known standard

treatment or concurrent treatment instead of a real placebo. In that particular situation one

wants to test for non-inferiority instead of superiority or even to test for equivalence of the active

treatments versus the control treatment. How to perform the many-to-one comparisons in those

settings is examined in Chapter 5.

So far the testing problems are all formulated in terms of differences between the population

means of the active treatment and the control treatment. However, there are also testing

situations where it is more common to express the testing problem in proportions rather than

differences while the normality assumption for the original variable is still justified. These kind of

testing problems are considered in Chapter 6.

Chapter 7 relaxes the assumption of normality and discusses a nonparametric procedure to

perform the many-to-one comparisons in a stratified two-way layout. The procedure is based on

pairwise rankings and relies on asymptotic results.

A flavor how resampling methods can be applied is discussed in Chapter 8. The resampling

methods considered are a stochastic approximation method, the bootstrap method and the

permutation method. The methods are illustrated for situations that can be handled by standard

available software, i.e. standard procedures available within the SAS software system.

A summary and outlook is given in Chapter 9.
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The following table gives a quick reference to the corresponding chapters:

Table 1.5 Overview of chapters

Many-to-one comparisons Chapter

Original Dunnett’s procedure for a one-way layout 2

Stratified two-way layout

• Testing problem in terms of differences

assuming normality

One-sided superiority testing

Two-sided inequality testing 
Equivalence testing              







3

4

5

• Testing problem in terms of ratios

 assuming normality

6

• Nonparametric procedure based on pairwise rankings 7

• Standard resampling methods (stochastic approximation, bootstrap, permutation) 8
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2 Dunnett’s procedure

This chapter reviews the multiple comparison procedure proposed by Dunnett (1955) for

comparing several treatments with a control in the situation of a one-way design when the

observations are assumed to be independently and normally distributed with a common

standard deviation. Since each comparison has the same control in common, the procedure

incorporates the dependencies between these comparisons. Dunnett’s procedure is based on

the multivariate Student t-distribution and maintains the familywise error rate at a prespecified

level. It is useful to review the Dunnett procedure for the one-way layout before discussing the

situation of a stratified two-way layout, because a good understanding of the Dunnett procedure

for the one-way situation is helpful to understand the stratified situation. It will be illustrated in

the next chapter that the many-to-one comparisons procedure for the stratified two-way layout

situation is a rather straightforward extension of the original Dunnett procedure. Hence, the

original Dunnett procedure can be considered as a special case of the stratified Dunnett

procedure.

The first section introduces some general notation and the test statistic. The second section

points out how upper percentage points of the test statistic can be calculated. The last section

shows the derivations of multiplicity adjusted p-values and simultaneous confidence intervals

based on Dunnett’s multiple testing procedure.

2.1 Notation and test statistic

Before introducing the model, the hypothesis and the test statistic we provide the example as

used by Dunnett in his 1955 paper is provided to illustrate the approach throughout this

chapter.

The following data are blood count measurements on three groups of animals, one of which

served as a control while the other two groups were treated with active drugs. Due to accidental

losses, the numbers of animals in the three groups are unequal.
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Table 2.1 Blood counts (millions of cells per cubic millimeter)

Treatment

Control Drug A Drug B

7.40 9.76 12.80

8.50 8.80 9.68

7.20 7.68 12.16

8.24 9.36 9.20

9.84 10.55

8.32

Sum 49.50 35.60 54.39

N 6 4 5

Mean 8.25 8.90 10.88

The interest of the experimenter was to compare both drug A and drug B with the control.

Notation

Suppose the following fixed effect one-way layout model

jk j jkX µ ε= +  j = 0, 1, …, c and k = 1, …, jn  (> 0 for all j) (2.1)

where j = 0 denotes the control treatment and the other c active treatments are labeled by j = 1

to c respectively. There are 0n  observations on the control and jn  observations on active

treatment j.

Assume that the sample values { }jkX  are identically and independently normal distributed with

unknown means µ µ µ0 1, ,..., c  and an unknown common variance 2σ , i.e. 2~ ( , )jk jX N µ σ .

Let 
=

= ∑
1

jn

j jk
k

X X denotes the sample mean (j = 0, 1, …, c) and let 

2

0 12

( )
jnc

jk j
j k

X X
s

ν
= =

−
=

∑∑
 be

the usual pooled variance estimator of 2σ  based on 
0

( 1)
c

j
j

n cν
=

= − +∑  degrees of freedom,

which is independent of the sample means jX .
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The aim is to test the null hypothesis of no effect between any of the c active treatments versus

control against the one-sided alternative hypothesis that there exists an active treatment, which

is superior to control, i.e.

0 0: jH µ µ= (j = 1, …, c) (2.2)

1 0: : jH j µ µ∃ > (j = 1, …, c)

Assuming that a higher treatment mean jµ  implies an improvement.

In case a lower treatment effect implies improvement and superiority should be demonstrated

by showing that 0jµ µ< , one should use the negative values to end up with the current

settings.

Or in case of the two-sided alternative hypothesis that there exists an active treatment, which is

different from control, the test situation is as follows

0 0: jH µ µ= (j = 1, …, c) (2.3)

1 0: : jH j µ µ∃ ≠ (j = 1, …, c)

Similar to the test situation where only one active treatment is compared with control (c = 1),

Dunnett (1955) proposed to consider the statistics

0

1 1
0

j
j

j

X X
D

s n n− −

−
=

+
(j = 1, …, c). (2.4)

To test the global null hypothesis the test statistic

{ }
≤ ≤

=
1
max jj c

D D (2.5)

is proposed for the one-sided alternative hypothesis, and

{ }
≤ ≤

=
1
max j

j c
D D (2.6)

in case of a two-sided alternative hypothesis.
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As the distribution of 
− − − −

 − − 
 

+ +  

c

c

X X X X
, ... ,

n n n n
1 0 0

1 1 1 1
1 0 0

 is multivariate normal under the null

hypothesis, the joint distribution of the jD ’s is a central c-variate Student t-distribution with ν

degrees of freedom and correlation matrix { }ρ=
1 2,j jR , denoted as ( )1 2, ,..., ~ ( , )ν′

c cD D D t R .

(Cornish (1954); see also Appendix 1 for more details about the multivariate normal and

multivariate t-distribution.)

The entries of R  consist of the correlation between each pair of 
1j

D  and 
1j

D

≤ ≠ ≤j c1 1(1 j ) and is given by

1 2

1 2 1 2

1 2

,
0 0

j j
j j j j

j j

n n
b b

n n n n
ρ = =

+ +
  ≤ ≠ ≤1 2(1 j )j c (2.7)

where

=
+

j
j

j

n
b

n n0

. (2.8)

Proof:

( ) ( ) ( )
( ) ( )

ρ
− −

= = − − = =
− −

1 2

1 2 1 2 1 2

1 2

0 0
, 0 0

0 0

cov ,
, ,

var var

j j
j j j j j j

j j

X X X X
corr D D corr X X X X

X X X X

( )
( ) ( ) ( ) ( )

= =
+ +

1 2

0

0 0

var

var var var varj j

X

X X X X

{ } { }
1 2

1 2
1 1

2 1
0

2 1 1 2 1 1
0 00 0

j j

j jj j

n nn
n n n nn n n n

σ

σ σ

−

− − − −
= =

+ ++ +

A correlation matrix with the special correlation structure 
1 2 1 2,j j j jb bρ =  is said to have the so-

called product correlation structure. In the next section it becomes clear that this property

simplifies the computations. (See also Appendix 1 for further details.)
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The test procedure that rejects the global null hypothesis in favor of the alternative hypothesis if

D dα> , where dα  is chosen such that ( )
0HP D dα α> =  controls the Type I error rate.

The calculations of p-values and upper percentage points of the distribution will be shown in the

next section.

The introduction of the maximum of the jD ’s as the test statistic to test the global null

hypothesis 0H  might be somewhat artificial in first instance. However, the test statistic arises

also in a natural way if one considers the global hypothesis-testing problem as a finite

intersection of sub-hypotheses on testing each of the components.

Consider the finite family of c individual sub-hypotheses

µ µ=j jH0 0:

against the one-sided alternatives (2.9)

µ µ>j jH1 0: .

Clearly, the global null hypothesis 0H  consists of the intersection of all sub null hypotheses

0 jH , i.e. = I0 0 j
j

H H  and the alternative hypothesis 1H  is the combination or union of all sub-

hypotheses 1jH , i.e. =U1 1j
j

H H , in case of a one-sided global testing situation.

So testing the global hypothesis is now represented as what is called a ‘Union-Intersection’ (UI)

multiple testing problem.

The test statistic jD  is used for testing the sub-hypothesis jH0  versus the alternative jH1  and

jH0  is rejected if and only if jD  exceeds say αξ
j
. According to the UI method of Roy (1953),

the rejection region for 0H  is given by the union of rejection regions for the 0 jH  j ∈ I, that is, 0H

is rejected if and only if at least one jH0  j ∈ I, is rejected.

Given this, the critical constants αξ
j
 can then be determined as follows:
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( ) ( ) ( )αα α ξ α= ⇔ = ⇔ > =0 0reject reject at least one  for at least one 
jj jP H P H P D j

Notice that there are several configurations of the critical values αξ
j
 that fulfill this requirement.

However, usually the αξ
j
’s are chosen to be identical, i.e. α αξ ξ=

j
. In general the sub-testing

problems are generally treated symmetrically with regard to the relative importance of Type I

errors. This implies that the marginal levels ( )αα ξ= >
0 j jj H jP D  should be the same for all j.

Since the jD ’s have the same marginal distribution under the jH0 ’s, it follows that the αξ
j
’s

should be equal.

In addition it also simplifies the task of computing.

So by letting α αξ ξ=
j

 for all j it follows that 0H  is rejected if { } αξ>max jj
D , where αξ  should

be chosen such that { }( )αξ α> =
0

maxH jj
P D .

Similar statements hold true for the two-sided test situation.

Another way to see that the introduction of the maximum of the jD ’s is quit natural is by using

some theory: notice that the testing procedure, which rejects 0 jH  if jD αξ>  compares each

test statistic with the same common critical value. Such a testing procedure is what Gabriel

(1969) has called a simultaneous test procedure. Notice further that the testing family

( ){ }0, 1,...,j jD H j c= is joint, i.e. the distributions of the jD ’s ( )j J∈ %  is completely specified

under 0 j
j J

H
∈ %
I , where { }1,...J c⊆% . Then Gabriel showed that this simultaneous test procedure

controls the FWE strongly if αξ  is chosen such that ( )
0HP D dα α> =  and D  is defined as

{ }max jj
D . (See also Appendix 1 of Hochberg and Tamhane (1987))
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Computations of the example

For the example described above, the test situation is as follows:

µ µ µ= =0 0: A BH

µ µ µ µ> >1 0 0:  or A BH

in case of the one-sided alternative hypothesis or

µ µ µ= =0 0: A BH

µ µ µ µ≠ ≠1 0 0:  or A BH

in case of the two-sided test situation.

Using the introduced notation, the number of active treatments is c = 2, the number of

observations are 0n  = 6, 1n  = 4  (j = 1 represent drug A) and 2n  = 5 (j = 2 represents drug B)

and 2s  = 1.381 based on ν  = 12 degrees of freedom.

Easy calculations show that 1 1 1

8.90 8.25
0.86

1.381 4 6
d

− −

−
= =

+
 and

2 1 1

10.88 8.25
3.69

1.381 5 6
d

− −

−
= =

+

and ( )1 2,D D  follows a bivariate Student t-distribution with ν = 12  degrees of freedom and

correlation matrix 
ρ

ρ
 

=  
 

1,2

1,2

1
1

R  where 1,2

4 5 0.426
6 4 6 5

ρ = =
+ +

.

As will be shown in the next section, the p-value is { }( )1,2
max 3.69 0.003jp P D= > =  in case of

the one-sided alternative or { }( )1,2
max 3.69 0.006jp P D= > =  in case of the two-sided

alternative.
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2.2 Calculation of probabilities and upper percentage points

The testing problems under examination require probabilities and upper percentage points from

the distribution of the test statistic { }
≤ ≤

=
1
max jj c

D D  in case of the one-sided test situation or the

test statistic { }
≤ ≤

=
1
max j

j c
D D in case of the two-sided test situation under the null hypothesis.

The probability distribution depends on the parameters c, ν  and the correlation matrix R

characterized by the set of the c parameters { }jb .

This section describes how these probabilities and upper percentage points can be calculated.

The first method to compute the probabilities makes use of the fact that the joint distribution of

the jD ’s follows a multivariate t-distribution. The second method is based on the multivariate

normal distribution. Both these methods are general in the sense that they can be applied to a

broad class of correlation structures and not necessarily restricted to correlation structures that

follows from the many-to-one comparisons. Taking the correlation structure into account

simplifies the calculations as shown by the third method.

Percentage points

The aim is to find percentage points { }α ν( , , , )jd c b  such that { }( )α ν α≤ = −
0

( , , , ) 1H jP D d c b . If

one is able to compute the probabilities ≤( )P D t  for arbitrary t under the null hypothesis, then

the problem is mainly solved. There are several methods to compute percentage points given

an algorithm that computes probabilities. Popular methods are rejection types of algorithms as

proposed by Edwards and Berry (1987) and the class of root finding methods, like the secant

method and the bisection method.

Bretz (1999) showed that the bisection method yields good results and is simple to implement.

The SAS/IML program code can be found in Appendix 4.

Therefore the problem is reduced to the computation of the probabilities ≤( )P D t .

Tables from literature / approximate procedures

Instead of computing the probabilities, one can make use of tables available in the literature as

has been done in the past for many other problems as well. However, the percentage points

{ }α ν( , , , )jd c b  depend on α , c, ν  and on the correlations ρ j j1 2, ’s or equivalently the sample
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size ratios 0 1 0/ , ..., / cn n n n . (Note that 

−
 

= +  
 

1/2

01j
j

n
b

n
(2.8).) Thus it is not possible to

tabulate { }α ν( , , , )jd c b in general. Replacing the correlations ρ j j1 2, ’s by a common value ρ

provides natural approximations to the critical points { }α ν( , , , )jd c b , since tables are widely

available for the equicorrelated situation. Several values of ρ  are proposed based on

Bonferroni type of inequalities or on a suitable average of the ρ j j1 2, ’s like the arithmetic mean

1 2

1 2

,
1

2
( 1)

c

j j
j j cc c

ρ ρ
≤ < ≤

=
− ∑ .

Comprehensive tables of the percentage points for the equicorrelated situation are given in

Bechhofer and Dunnett (1988).

However, with the current available numerical solutions to handle unequal sample sizes, this

approach is not recommended anymore.

Computation of probabilities

Without loss of generalisability only the one-sided alternative testing situation is considered, i.e.

the calculation of probabilities ≤( )P D t  under the null hypothesis where { }
≤ ≤

=
1
max jj c

D D .

The two-sided testing situation will not be described for the one-way layout. However, in case of

a two-way layout, the two-sided testing situation will be described in Chapter 4.

1. Multivariate t-distribution

The probability ( )P D t≤  can be calculated by making use of the joint distribution of the jD ’s:

( ) { }( ) ( ) ( )
≤ ≤

≤ = ≤ = ≤ = ≤ ∧ ∧ ≤11
max ...j j cj c

P D t P D t P all D t P D t D t (2.10)

Under 0H , the joint distribution of the jD ’s follows a central c-variate t-distribution with ν

degrees of freedom and correlation matrix R  characterized by { }jb . Thus t is the equi-

percentage point of this t-distribution, i.e.

( ) ( , ; , )cP D t T ν≤ = ∞- t R (2.11)

So the problem is solved if one is able to compute probabilities of a multivariate t-distribution.
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Until recently the direct numerical evaluation of the multivariate t-probabilities for an arbitrary

correlation matrix was considered computationally infeasible. And even in case programs were

available these numerical computations were too slow to be useful for practical purposes

except for very small dimensions.

However, recent developments on the numerical evaluation of the multivariate t-integral have

solved this problem for practical settings. See for a detailed and up to date/state of the art

discussion Genz and Bretz (1999), Somerville and Bretz (2001) and Bretz, Genz and Hothorn

(2001)

Computer programs are available and for example SAS/IML code can be found on the

homepage of Bretz (the website with URL http://www.bioinf.uni-hannover.de/~bretz/).

2. Multivariate normal distribution

The multivariate normal distribution is more frequently mentioned in literature than the

multivariate t-distribution. For the calculation of the cumulative density function of a multivariate

normal distribution are more solutions available than for the cumulative density function of the

multivariate t-distribution. Therefore it might be useful to express the probability ≤( )P D t  in

terms of a multivariate normal distribution rather than a multivariate t-distribution. This can be

accomplished by making use of the relationship between the multivariate t-distribution and the

multivariate normal distribution as already described by Dunnett (1955). (See also Appendix 1

for the relationship between the multivariate normal and multivariate t-distribution.) Dunnett

showed that the distribution function of a c-variate t-distribution with ν degrees of freedom and

correlation matrix R  could be transformed into a single integral over a c-variate normal

distribution with the same matrix R  as covariance matrix, i.e.

0

( , ; , ) ( , ; , ) ( )c cT x h x dxνν
∞

∞ = Φ ∞∫- t R - t 0 R

where ( , ; , )cT ν∞- t R  and ( , ; , )cΦ ∞- x µ S  are the cumulative density functions of the multivariate

t-distribution and multivariate normal distribution, respectively and ( )h xν  is the density function

of a νχ ν2 /  distributed random variable.

And thus

0

( ) ( , ; , ) ( )cP D t x dH xν

∞

≤ = Φ ∞∫ - t 0 R (2.12)
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So the problem of calculating the probabilities from the distribution of the test statistic

{ }
≤ ≤

=
1
max jj c

D D  has been reduced to the calculation of the cumulative density function of the

multivariate normal distribution.

3. Univariate normal distribution

Both the above-mentioned approaches don’t make use of the special structure of the

correlation matrix R . As shown is formula (2.7), the correlation matrix { }ρ= ijR  satisfies the

product structure condition, i.e. ρ = ∀ ≠ ij i jb b i j  with =
+0

i
i

i

n
b

n n
.

It can be shown that given this condition, the calculation of the probability of the cumulative

density function does not involve the integration of a c-dimensional multivariate normal

distribution but can be calculated using the univariate standard normal distribution (for further

details see also Appendix 1):

2
10 0

( ) ( , ; , ) ( ) ( ) ( )
1

c
j

c
j j

b y t x
P D t x h x dx d y h x dx

b
ν ν

∞ ∞ ∞

=−∞

  +  ≤ = Φ ∞ = Φ Φ
  −  

∏∫ ∫ ∫- t 0 R (2.13)

where Φ( )y  is the cumulative density function of the univariate standard normal distribution

and ( )h xν  is the density function of a νχ ν2 /  distributed random variable.

The advantage to express the probability ≤( )P D t  in terms of the univariate standard normal

distribution due to the product correlation structure is that the computation times are reduced

considerably. In particular for increasing dimensions of c.

Dunnett (1984) described an algorithm (in FORTRAN) that computes multivariate normal

probability integrals with product correlation structure. The outer-integral could be evaluated

using an appropriate numerical integration routine.

In SAS, the function PROBMC can compute this probability ≤( )P D t , say prob, directly with

the following statement

ν= 1 2PROBMC('DUNNETT1', ,., , , , ,..., )cprob t c b b b

In addition, the PROBMC function allows computing the upper percentage points

{ }α ν( , , , )jd c b with only one statement:
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α ν= − 1 2PROBMC('DUNNETT1',.,1 , , , , ,..., )cd c b b b .

(See Appendix 2 for further details of this SAS/STAT function)

All three methods are exact in the sense that they only have a numerical error, which can be

kept under control.

Computations of the example

The computation of the one-sided p-value in case of the example can be easily computed with

the following statement

= −1 PROBMC('DUNNETT1',3.69,.,12,2,SQRT(4/10),SQRT(5/11))pval

which returns a value of pval = 0.003.

The correct upper percentage point { }α ν( , , , )jd c b  at α  = 0.05, i.e. 2,12, ;0.95t R , can be computed

with the statement

= PROBMC('DUNNETT1',.,0.95,12,2,SQRT(4/10),SQRT(5/11))d

which returns a value of d = 2.121.

2.3 Implementation for testing and estimation

In practice the test of an individual hypothesis whether a particular active treatment is superior

to the control is often more relevant than testing the global hypothesis. This section describes

how this can be achieved.

Consider the finite family of c sub-hypotheses

µ µ=j jH0 0:

against the one-sided alternatives

µ µ>j jH1 0: .
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The test statistic jD  of formula (2.4) is used for testing jH0  versus jH1  and jH0  is rejected if

and only if jD  exceeds say αξ .

As already discussed in section 2.1, = I0 0 j
j

H H  and =U1 1j
j

H H in case of the one-sided

global testing situation, where 0H  is the global null hypothesis of no effect between all of the

c+1 treatments and 1H  is the one-sided alternative hypothesis that there exists an active

treatment which is superior to control as formulated in (2.3).

The Union Intersection (UI) test rejects 0H  if { } αξ= >max jj
D D , where αξ  should be chosen

such that ( )αξ α> =
0HP D . It follows easily from the previous section that αξ  is the upper

percentage point of the c-variate t-distribution, i.e. ν α−, , ;1ct R . (See also Appendix 1 for notation.)

Roy and Bose (1953) showed that, if the single inference given by the UI test of 0H  is of level

α , then all multiple inferences, tests and confidence estimates, for the parameters on which the

hypotheses jH0  are postulated have the family wise error rate controlled at level α .

Thus all individual hypotheses 0 jH  with corresponding ν α−> , , ;1j cD t R  can be rejected if the

global hypothesis 0H  can be rejected because of ν α−> , , ;1cD t R  while strongly controlling the

FWE at level α .

Adjusted p-values

However, for most testing applications, it is more informative to determine a p-value for each

individual hypothesis than merely noting whether a specific level α  has been reached.

Therefore, in line with the definition of an unadjusted p-value for a single hypothesis test, a

multiplicity-adjusted p-value for an individual hypothesis is defined as the smallest overall

significance level at which that hypothesis can be rejected using a particular multiple testing

procedure and the observed test statistic (Wright (1992)). Sometimes these adjusted p-values

are called joint p-values; see e.g. Dunnett and Tamhane (1991).

In our testing situation, the adjusted p-value %
jp  belonging to the testing of the null hypothesis

jH0  is

{ } ( )00min    is rejected at FWE 1 ( , ; , )j j H j c jp H P D d Tα α ν= = = > = − ∞- d R% (2.14)
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where jd  is the observed value of the test statistic jD  (j = 1, …, c).

Simultaneous confidence intervals

Notice that the testing procedure is a simultaneous test procedure in the sense of Gabriel

(1969); see also Section 2.1. As a result, it has all of the desirable properties of a simultaneous

test procedure and simultaneous confidence intervals can be obtained as indicated by Gabriel

(1969). See Appendix 1 of Hochberg and Tamhane (1987) for further details of simultaneous

test procedures and simultaneous confidence regions.

Therefore, corresponding upper one-sided 100(1-α )% simultaneous confidence intervals for

µ µ− 0j  are given by

ν α
− −

−− − + ∞1 1
0 , , ;1 0( , )j c jX X t s n nR     (j = 1, ..., c). (2.15)

It is clear that the simultaneous coverage probability of these c intervals is 1 - α.

The computation of the simultaneous confidence intervals requires the correct upper

percentage point from the probability distribution of { }
≤ ≤

=
1
max jj c

D D  which, as we have seen, is

the 1 -α  upper percentage point of the central c-variate t-distribution with ν  degrees of

freedom and correlation matrix R  characterized by the set of the c parameters { }jb , denoted

as , , ;1ct ν α−R .

Computations of the example

The computations for the example are summarized in the following table.

Table 2.2 Analysis of blood count data

Contrast Difference Adjusted p-value % jp 95% Confidence interval

Low dose - Plac. 0.650 0.325 (-0.959, ∞)

High dose - Plac. 2.628 0.003 ( 1.119, ∞)
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3 Dunnett’s procedure extended to the stratified two-way layout

This chapter describes the many-to-one comparisons in the situation of a stratified two-way

layout. More specifically, it describes the comparisons of the mean of all active treatments with

the control mean within each of the strata simultaneously while controlling the familywise error

rate. As will be shown, it can be seen as an extension of Dunnett’s multiple comparison

procedure, which is discussed in Chapter 2, to the case of several strata. The examples

provided in Chapter 1 illustrated the situation of many-to-one comparisons in each of several

strata in different practical settings. This chapter is restricted to the one-sided alternative testing

situation only. The two-sided testing situation can be handled very similar to the one-sided

testing situation although the formulas are slightly more complicated. The required adaptations

to handle the two-sided situation are described in Chapter 4.

Section 3.1 and Section 3.2 outline the derivation of the probability distribution of the

appropriate test statistic and show how percentage points and simultaneous confidence

intervals can be derived as described by Cheung and Holland (1991, 1992). Power

considerations are discussed in Section 3.3 and the related issue of sample size calculations is

described in Section 3.4. The step-down procedure as proposed by Cheung and Holland (1994)

is discussed in Section 3.5.

Example

The following example of an experiment/trial will be used throughout this chapter as an

illustration. Two active dosages of a new drug, a low and a high dose, are compared against

placebo. The subjects were classified to the two gender groups. Twenty subjects in this trial

were randomly assigned to the control treatment. The outcome parameter of interest is a

continuous variable that can be assumed to be normally distributed. A high outcome indicates

improvement. The aim is to compare both active treatments with control separately for males

and females.

Table 3.1 Summary statistics of example dataset

Treatment

Placebo Low dose High dose

Stratum N Mean SD N Mean SD N Mean SD

Males 10 10.29 0.81 7 11.16 0.55 5 12.46 0.90

Females 10 14.64 0.73 6 15.22 1.26 5 15.90 0.55
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3.1 Notation and test statistic

This section introduces the test statistic using identical notation used to describe the one-way

layout situation in Section 2.1 as far as possible.

Suppose the following fixed effect two-way layout model:

µ ε= +ijk ij ijkX    i = 1, …, r ,  j = 0, 1, …, c and k = 1, …, ijn  (> 0 for all (i,j)) (3.1)

Let ijkX  denotes the k-th observation on treatment j in stratum i. Again, let j = 0 denotes the

control treatment or other designated treatment level.

Without loss of generalization the number of treatments contained in each stratum are assumed

to be equal, although the formulas will also apply in case this situation does not hold, i.e. c

varies across i. (See also Cheung and Holland (1994))

Assume that the sample values { }ijkX  are independently normal distributed with mean µij  and

an unknown common variance 2σ , i.e. µ σ 2~ ( , )ijk ijX N .

Let 
=

= ∑
1

ijn

ij ijk
k

X X  denotes the sample mean (i = 1, …, r and j = 0, 1, …, c) and let

2

1 0 12

( )
ijnr c

ijk ij
i j k

X X
s

ν
= = =

−
=

∑∑∑
 be the usual pooled variance estimator of 2σ  based on

1 0

( 1))
r c

ij
i j

nν
= =

= −∑∑  degrees of freedom, which is independent of the sample means ijX .

The global null hypothesis to be tested is the hypothesis of no effect between any of the c

active treatments versus control within each of the r strata

0 0: ij iH µ µ= (i = 1, …, r  j = 1, …, c) (3.2)

against the one-sided alternative hypothesis that there exists an active treatment which is

superior to control within at least one of the r strata

1 0: : ij iH ij µ µ∃ > (i = 1, …, r  j = 1, …, c).
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(Assuming that a higher treatment mean µij  implies an improvement. In case a lower treatment

effect implies improvement and superiority should be demonstrated by showing that 0ij iµ µ< ,

one should use the negative values to end up with the current settings.)

Similar to the test statistic as proposed by Dunnett (1955) in his original procedure, Cheung and

Holland (1991, 1992) proposed the pivotal statistics:

0

1 1
0

ij i
ij

ij i

X X
D

s n n− −

−
=

+
(i = 1, …, r  j = 1, …, c) (3.3)

and to test the global null hypothesis 0H  the test statistic

≤ ≤ ≤ ≤
=

1 ;1
max { }ij
i r j c

D D (3.4)

is defined.

The procedure that rejects the global null hypothesis 0H  in favor of the one-sided alternative

hypothesis 1H  if α>D d , where αd  is chosen such that ( )α α> =
0HP D d , controls the FWE.

Notice that this test statistic is a direct extension of the test statistic proposed by Dunnett to

perform many-to-one comparisons for a one-way layout situation, because the test statistic in

formula (3.4) reduces to the test statistic in formula (2.5) in case there is only one single

stratum, i.e. r = 1.

Similar to the one-way layout situation, it can easily be shown that under the global null

hypothesis the joint distribution of the ijD ’s follows a central rc-variate Student t-distribution with

ν  degrees of freedom and correlation matrix R , denoted as ( )11,..., ~ ( , )rc rcD D t ν′ R .

The correlation ρ
1 1 2 2( ),( )i j i j  between each pair of 

1 1i jD and 
2 2i jD  is given as follows:

if 1 2i i≠ ρ =
1 1 2 2( ),( ) 0i j i j  because the ijkX ’s of different strata are assumed to be independent,

if =1 2i i ρ ρ= =
1 1 2 2 1 2 1 2( ),( ) ( , )i j i j i j j ij ijb b ≤ ≠ ≤1 2(1 )j j c  where =

+0

ij
ij

i ij

n
b

n n
 . (3.5)
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So the correlation matrix R  is given by:

 
 =  
  

.. 0
.. .. ..
0 ..

1

r

R
R

R
 where 

ρ ρ
ρ

ρ
ρ ρ

−

−

 
 
 =  
  
 

(1,2) (1, )

(2,1)

( 1, )

( ,1) ( , 1)

1 ..
1 .. ..

.. .. 1
.. 1

i i c

i

i c c

i c i c c

iR  (i = 1,…, r) (3.6)

Thus the correlation matrix R  has a block diagonal structure that partially satisfies the product

correlation structure, which means that this condition holds within each of the strata, i.e. each

iR  satisfies the product correlation structure.

Computations of the example

For the example described, the test situation is as follows:

0 10 11 12 20 21 22:  and H µ µ µ µ µ µ= = = =

versus

µ µ µ µ µ µ µ µ> > > >1 11 10 12 10 21 20 22 20:  or  or  or H

where i = 1 and i = 2 represent the males and females respectively, and where j = 1 and j = 2

represent the low and high dose respectively.

Thus one is interested to test that any of the dosages is better than placebo.

Using the introduced notation, the number of strata is r = 2, active treatments is c = 2, 2s  =

0.671 based on ν  = 37 degrees of freedom.

Applying ANOVA on these data shows the following results:

Table 3.2 ANOVA output

Stratum Contrast Estimate Std error Df T Pr(t)*

M Plac-Low 0.864 0.404 37 2.139 0.020

Plac-High 2.163 0.449 37 4.820 <0.001

F Plac-Low 0.582 0.423 37 1.375 0.089

Plac-High 1.265 0.449 37 2.819 0.004

* one-sided unadjusted p-value
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The ijD ’s follows a 4-variate central t-distribution with ν  = 37 degrees of freedom and

correlation matrix R , i.e. ( )11 12 21 22 4, , , ~ (37, )D D D D t′ R .

The correlation matrix R  is given by 

ρ
ρ

ρ
ρ

 
 
 =  
  
 

1(1,2)

1(2,1)

2(1,2)

2(2,1)

1
1

1
1

0

R

0

 with

1(1,2) 1(2,1)

7 5 0.3705
17 15

ρ ρ= = =  and  2(1,2) 2(2,1)

6 5 0.3536
16 15

ρ ρ= = = .

3.2 Probabilities, upper percentage points and simultaneous confidence

intervals

Like the situation of a one-way layout, the one-sided testing problems under examination

require probabilities and upper percentage points from the probability distribution of

1 ;1
max { }ij
i r j c

D D
≤ ≤ ≤ ≤

=  which depends on the parameters r, c, ν  and the correlation matrix R

characterized by the set of the rc parameters { }ijb .

The upper percentage point { }α ν( , , , , )ijd r c b  such that { }( )α ν α≤ = −
0

( , , , , ) 1H ijP D d r c b  is the

1 - α  percentage point of the central rc variate t-distribution with ν  degrees of freedom and

correlation matrix R , which will be denoted as ν α−, , ;1rct R .

In principle the same algorithms to calculate the probabilities ≤( )P D t  for arbitrary t, as

described for the one-way layout model (see Section 2.2) can be applied.

The algorithms making use of the multivariate t-distribution and multivariate normal distribution

can be applied without any changes.

Only the third algorithm that makes use of the fact that the correlation matrix of the ijD ’s

satisfies the product correlation matrix to break the computations down to the integration of

univariate standard normal distributions should be slightly adapted because the block diagonal

correlation matrix R  doesn’t satisfy the product correlation structure completely, although the

iR ’s satisfy this condition. (See formula (3.5))
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Bechhofer and Tamhane (1974) already showed that a multivariate normal probability integral

over a rectangular region could be expressed as an iterated integral that is much easier to

evaluate numerically in case the covariance matrix has a certain block covariance structure.

The third algorithm can be worked out as follows:

3. Univariate normal distribution

Make use of the block diagonal structure of the correlation matrix R , where each of the iR ’s

satisfies the product correlation structure.

Then:

( ) ϕ
∞ ∞

= =−∞

  +  ≤ = Φ
  −  

∏ ∏∫ ∫ 2
1 10

( ) ( )
1

r c
ij

i j ij

b y t u
P D t y dy h u du

b
(3.7)

where σ= 2 2/u s , ( )h u  is the density function of a νχ ν2 /  distributed variable, i.e.

ν ν ν

ν

ν
ν

− −

=
Γ

/ 2 / 2 / 2 1

/ 2( )
( /2)2

ue u
h u  and Φ( )y  and ϕ( )y  are the standard cumulative distribution function

and probability density function respectively.

Proof:

( ) { }( ) 2
0

21 11 ;1 1 ;1
0 0

max max ; ( )ij i
ij

i r j c i r j c
ij i

X X s
P D t P D t P t u u h u du

n n σσ

∞

− −≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

  −  ≤ = ≤ = ≤ = =  +   
∫

0 0

1 1 1 11
1 10 00 0

max ( )  ;  ( )
r r

ij i ij i

j c
i iij i ij i

X X X X
P t u h u du P t u j h u du

n n n nσ σ

∞ ∞

− − − −≤ ≤
= =

    − −    = ≤ = ≤ ∀ =    + +     
∏ ∏∫ ∫

( ) ϕ
∞ ∞ ∞

= = =−∞

  +  = Φ −∞ = Φ
  −  

∏ ∏ ∏∫ ∫ ∫ 2
1 1 10 0

, ; , ( ) ( ) ( )
1

r r c
ij

c i
i i j ij

b y t u
h u du y dy h u du

b
t u 0 R

where ( ), ; ,c iΦ ∞- t u 0 R  is the c-variate normal integral with expectation 0 , correlation matrix

iR  over the rectangular region with upper integration bounds t u .



28

Notice that the inner integrand

ϕ
∞

=−∞

 + = Φ
 − 

∏∫ 2
1

( )
1

c
ij

i
j ij

b y t u
prob y dy

b
(3.8)

is the probability provided by the original Dunnett procedure applying infinite degrees of

freedom.

The probability iprob  can directly be computed using the PROBMC function, which is available

within SAS with the following statement:

= 1 2PROBMC('DUNNETT1', ,.,., , , ,..., )i i i icprob t u c b b b
(See Appendix 2 for further details of this SAS/STAT function)

The probability ≤( )P D t  can be calculated within SAS by using the subroutine QUAD available

within PROC IML to perform the required numerical integration in one dimension.

The complete SAS program code to compute these probabilities can be found in Appendix 3.

Adjusted p-values

Analogue to the testing situation with a single stratum, the adjusted p-value %
ijp  corresponding

to the sub-hypothesis µ µ=0 0:ij ij iH versus the alternative µ µ>1 0:ij ij iH  is defined as

{ } ( ) ( )00min    is rejected at FWE 1 , ; ,ij ij H ij rc ijp H P D d Tα α ν= = = > = − ∞- d R% (3.9)

where ijd  is the observed value of the test statistic ijD  (i = 1, …,  r and j = 1, …, c).

(See Sections 2.1 and 3.3 for the relationship between these sub-hypotheses and the global

hypothesis.)

Upper one-sided 100(1-α)% simultaneous confidence intervals

The derivation of simultaneous confidence intervals in case of the two-way situation is identical

to the one-way situation as described in Section 2.3.
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Therefore, upper one-sided 100(1-α)% simultaneous confidence intervals for µ µ− 0ij i  are

given by

( )α
− −− − + ∞1 1

0 0 ,ij i ij iX X d s n n     for all i = 1, …, r and j = 1, …, c (3.10)

where

{ }α ν αα ν −= = , , ;1( , , , , )ij rcd d r c b t R .

(For further details see Section 2.3.)

Computations of the example

The computation of the p-value for the example by making use of the univariate normal

distribution results in a p-value of <0.001.

The program code to compute the adjusted p-values, the upper-percentage point and the one-

sided 95% simultaneous confidence intervals in the setting of the example is shown in program

Ch3_12.sas of Appendix 3. Running this program provides an upper percentage point of

{ }0.05 4,37, ;0.95(0.05,2,2,37, ) 2.306ijd d b t= = =R  and the results presented in the following table.

Table 3.3 Adjusted p-values and simultaneous confidence intervals

Stratum Contrast Estimate Adjusted p-value ijp% 95% Confidence interval

M Plac-Low 0.864 0.072 (-0.067, ∞)

Plac-High 2.163 <0.001 ( 1.128, ∞)

F Plac-Low 0.582 0.286 (-0.394, ∞)

Plac-High 1.265 0.015 ( 0.230, ∞)

Looking at the points estimates, the low and the high dosage seems to show improvement over

placebo in both genders. But only the high dosage shows a statistically significant (p<0.05)

improvement in both genders. For the males, the improvement is highly significant (p<0.001)

and estimated as 2.163, with at least an improvement of 1.128 with 95% confidence. For the

females, the effect is less pronounced; with 95% confidence the effects is at least 0.230 and

estimated as 1.265, which is statistically significant (p = 0.015). Noticing that the lower bound of

the 95% confidence interval is larger than 0 can also conclude this.
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3.3 Power

The power can be defined analogue to the definition of the power for a univariate test. In

univariate testing applications, the power of a test is defined as

( )= 0 0reject |  is falsePower P H H .

To perform this calculation, the condition ‘ 0  is falseH ’ should be specified precisely. For

example when testing µ µ=0 1 2:H , the condition ‘ 0  is falseH ’ must be specified by giving a

particular non-null value for µ µ−1 2 .

To test the global null hypothesis

0 0: ( 1,..., 1,..., )ij iH i r j cµ µ= = =

against the one-sided alternative hypothesis that there exists an active treatment which is

superior to control within at least one of the r strata

1 0: , : ( 1,..., 1,..., )ij iH i j i r j cµ µ∃ > = =

using the statistic

≤ ≤ ≤ ≤
=

1 ;1
max { }ij
i r j c

D D

the power can be defined similarly to the univariate testing situation as

( )α= > 1|Power P D d H (3.11)

where the configuration of the ijµ ’s should be specified under the alternative.

This power is often referred to as the global power, i.e. the power of the global hypothesis.
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A closed formed expression of the power can be derived as described by Genz and Bretz

(1999):

( ) ( ) ( )α α α≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
= > > = − ≤ =1 1 11 ;1 1 ;1

| max { } | 1 max { } |ij iji r j c i r j c
Power P D d H P D d H P D d H

α α− − − −

 − − = − ≤ ∧ ∧ ≤ =
 + + 

11 10 0
11 1 1 1

11 10 0

1 ... |rc r

rc r

X X X X
P d d H

s n n s n n
(3.12)

α α

µ µ µ µ µ µ µ µ

σ σ σ σ
σ σ

− − − − − − − −

 − − − − − − − −+ + 
+ + + + = − ≤ ∧ ∧ ≤ 

 
  

11 11 10 10 11 10 0 0 0

1 1 1 1 1 1 1 1
11 10 11 10 0 0

( ) ( ) ( ) ( )

1 ...
/ /

rc rc r r rc r

rc r rc r

X X X X

n n n n n n n n
P d d

s s

It can be shown that the joint distribution of the ijD ’s under the alternative hypothesis 1H

follows a noncentral rc-variate t-distribution with correlation matrix R , ν  degrees of freedom

and noncentrality vector ( ) µ µ
δ

σ≤ ≤ ≤ ≤ − −

≤ ≤ ≤ ≤

 − = =
 + 

0

1 ;1 1 1
0 1 ;1

ij i
ij i r j c

ij i i r j c
n n

d .

So the power can be calculated if the values of µ µ− 0ij i  are specified and if one is able to

compute probabilities of a noncentral multivariate t-distribution. Like the evaluation of the

central multivariate t-distribution, no algorithm was available, until recently, to numerically

compute this probability directly.

Nowadays, computer programs are available to compute the probabilities of a noncentral

multivariate t-distribution; see Genz and Bretz (1999) and Bretz, Genz and Hothorn (2001). For

example SAS/IML code can be found on the homepage of Bretz (the website with URL

http://www.bioinf.uni-hannover.de/~bretz/).

Making use of the relationship between the multivariate t-distribution and multivariate normal

distribution a different expression of the power can be derived. (See for further details also

Section 2.2 and Appendix 1)

Assume that Z is a standardized k-variate normal distribution random variable with correlation

matrix R  and independently U  is a νχ ν2 /  distributed random variable with density ( )h u , i.e.

ν ν ν

ν

ν
ν

− −

=
Γ

/ 2 / 2 / 2 1

/ 2( )
( /2)2

ue u
h u .
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Then the power can be expressed as:

( ) ( )α α α

∞+ 
= − ≤ = − ≤ = − + ≤ = 

 
∫1
0

1 | 1 1 ( )Power P D d H P P u h u du
U

Z d
d Z d d

( ) ( )α α

∞ ∞

=

= − Φ −∞ − = − Φ −∞ − =∏∫ ∫
10 0

1 , ; ; ( ) 1 , ; ; ( )
r

rc c i i
i

u h u du u h u dud d 0 R d d 0 R

α δ
ϕ

∞ ∞

= =−∞

  + −  = − Φ
  −  

∏ ∏∫ ∫ 2
1 10

1 ( ) ( )
1

r c
ij ij

i j ij

b y d u
y dy h u du

b
(3.13)

where ( )αΦ −∞ −, ; ;rc ud d 0 R  is the rc-variate normal integral with expectation 0 , correlation

matrix R  over the rectangular region with upper integration bounds α δ−d u , Φ(.)  and ϕ(.)

are the univariate standard cumulative distribution function and probability density function

respectively and =
+0

ij
ij

i ij

n
b

n n
 (3.5).

So the power can be computed by using similar algorithms as those applied to compute the

upper percentage points αd .

This definition of global power, i.e. ( )= 0 0reject |  is falsePower P H H , is in line with the

definition given by Hayter and Liu (1992). They define the power as the probability of rejecting

the overall hypothesis µ µ µ= = =0 0 1: ... kH , if µ µ σ δ
≤ ≤

− ≥01
max| | /jj k

 for preassigned δ . So

0H  is rejected if Dunnett’s test rejects at least one of the sub-hypotheses µ µ=0 0:j jH  (j = 1,

…, k), no matter which one. That is, a rejected 0 jH  doesn’t need to belong to a treatment with

µ µ σ δ− ≥0| | /j . However, the hypothesis belonging to the largest difference from the control

will have the greatest chance of being rejected.

Therefore another way to define the power is to look at the single global null hypothesis 0H  that

all rc treatment means are equal to the control means and the one-sided alternative hypothesis

1H  as a finite family of rc individual sub-hypotheses:
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µ µ=0 0:ij ij iH ,

against (3.14)

µ µ>1 0:ij ij iH .

Notice that 0 0ij
ij

H H= I  and 1 1ij
ij

H H=U .

In the situation of multiple hypotheses testing power can be defined in many different ways. The

most common used definitions include the so-called all-pairs power and any-pair power

definitions introduced by Ramsey (1978) and the so-called per-pair power. The all-pairs power

is the probability of detecting all true differences, the any-pair power is the probability of

detecting at least one true difference and the per-pair power is the probability of detecting a

particular difference:

All-pairs power = P(reject all 0ijH  that are false),

Any-pair power = P(reject at least one 0ijH  that is false), (3.15)

Per-pair power = P(reject a particular 0ijH  that is false).

In general the all-pairs power appears to be attractive because obviously one would like to

reject all false hypotheses. However, this is a stringent definition, since reasonable practical

designs often have low power to obtain rejections for all false hypotheses.

In contrast the any-pair power is the probability that at least one significant result will be found

in the experiment. The any-pair power is most compatible with multiple testing methods that

aim to control the FWE at α , since the power function approaches the nominal FWE level α  as

the parameters approach the complete null configuration.

The per-pair power is most closely related to the power definition in the univariate testing

situation. The difference is that the test uses the multiplicity-adjusted critical value instead of the

unadjusted critical value. Notice however, that it seems unnatural to be interested in only one

particular selected hypothesis while in a multiple comparison setting.

Thus which power definition one wants to apply in the experiment should be considered

carefully.

(See Westfall, Tobias, et al. (1999) for further details and alternative names of these power

definitions.)
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Suppose that S  is the subset of { }ij  such that the null hypotheses 0ijH  are false when

∈ij S and all remaining null hypotheses are true. Assume that k is the dimension of S , i.e.

there are k false null hypotheses 0ijH .

Then the all-pairs power can be written as

( )α α− − −

 − = > ∀ ∈ = > ∀ ∈ =
 + 

0

1 1
0

ij i
all pairs ij

ij i

X X
Power P D d ij S P d ij S

s n n

α

µ µ µ µ

σ σ

σ

− − − −

 − − − −
+ 

+ + 
= > ∀ ∈ 

 
 
 

0 0 0

1 1 1 1
0 0

( ) ( )

/

ij ij i i ij i

ij i ij i

X X

n n n n
P d ij S

s
(3.16)

which is the probability of a k-variate noncentral t-distribution with correlation matrix kR , ν

degrees of freedom and noncentrality vector 
µ µ

σ − −

∈

 − =
 + 

0

1 1
0

ij i

ij i ij S
n n

d , where

{ }1 1 2 2
1 1 2 2

( ),( ) ( ),( )k i j i j i j i j S
ρ

∈
=R  is the correlation matrix R  restricted to the subset of ∈ij S .

Note that the computation of the all-pairs power requires that the alternatives be specified

precisely.

The all-pairs power can also be expressed in terms of the univariate standard normal

distribution:

α δ
ϕ

∞ ∞

−
= ∈−∞

  − − +  = Φ
  −  

∏ ∏∫ ∫ 2
1 :0

( ) ( )
1

r
ij ij

all pairs
i j i j S ij

b y d u
Power y dy h u du

b
(3.17)

where Φ(.)  and ϕ(.)  are the univariate standard cumulative distribution function and probability

density function and h(u) is the density function of a νχ ν2 /  distributed variable.
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Proof:

Define ij ij
ij ij

X
Y n

µ

σ

−
= , 0 0

0
i i

i ij

X
Y n

µ
σ
−

=  and 
σ

=
2

2

s
U . The ijY ’s and 0iY ’s are i.i.d.

standard normal random variables being independent of U  which is νχ ν2 /  distributed.

Notice that 
− −

= −
+

2

1 1
0

1 1
1 ij

ij ij i

b
n n n

 and 
− −

=
+1 1

0 0

1 1
ij

i ij i

b
n n n

, where =
+0

ij
ij

i ij

n
b

n n
 (3.5).

Then:

( )α α

δ
−

 − − + = > ∀ ∈ = > ∀ ∈ =
 
 

2
01 ij ij ij i ij

all pairs ij

b Y b Y
Power P D d ij S P d ij S

U

( )αδ
∞

= − − + > ∀ ∈ =∫ 2
0

0

1  ( )ij ij ij i ijP b Y b Y d u ij S h u du

( )αδ ϕ
∞ ∞

−∞

 
= − + > + ∀ ∈ = 

 
∫ ∫ 2

0

1  ( ) ( )ij ij ij ijP b Y b y d u ij S y dy h u du

α δ
ϕ

∞ ∞

−∞

  + −  = > ∀ ∈ =
  −  

∫ ∫ 2
0

 ( ) ( )
1

ij ij
ij

ij

b y d u
P Y ij S y dy h u du

b

α δ
ϕ

∞ ∞

= ∈−∞

  − − +  = Φ
  −  

∏ ∏∫ ∫ 2
1 :0

( ) ( )
1

r
ij ij

i j ij S ij

b y d u
y dy h u du

b

A similar proof can be given by making use of the relationship between the multivariate t-

distribution and normal distribution and the partial product correlation structure of kR . But this

proof is not valid in the situation of only one false null hypothesis, i.e. k = 1.

( ) ( )α α

∞

− = > ∀ ∈ = Φ − ∞ =∫
0

, ; ; ( )all pairs ij k kPower P D d ij S u h u dud d 0 R

 α δ
ϕ

∞ ∞

= ∈−∞

  − − +  = Φ
  −  

∏ ∏∫ ∫ 2
1 :0

( ) ( )
1

r
ij ij

i j ij S ij

b y d u
y dy h u du

b

where ( )αΦ − ∞, ; ;k kud d 0 R  is the k-variate normal integral with expectation 0 , correlation

matrix kR  over the rectangular region with lower integration bounds α δ−d u .
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Similarly the any-pair power can be expressed as

( ) ( )α α− = > ∃ ∈ = − ≤ ∀ ∈ =1any pair ij ijPower P D d ij S P D d ij S

α− −

 − = − ≤ ∀ ∈ =
 + 

0

1 1
0

1 ij i

ij i

X X
P d ij S

s n n

α

µ µ µ µ

σ σ

σ

− − − −
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+ 

+ + 
= − ≤ ∀ ∈ 

 
 
 

0 0 0

1 1 1 1
0 0

( ) ( )

1
/

ij ij i i ij i

ij i ij i

X X

n n n n
P d ij S

s
 (3.18)

which can also be computed as the probability of a k-variate noncentral t-distribution with

correlation matrix kR , ν  degrees of freedom and noncentrality vector 
µ µ

σ − −

∈

 − =
 + 

0

1 1
0

ij i

ij i ij S
n n

d .

Alternatively, the any-pair power can also be expressed in terms of univariate distributions:

α δ
ϕ

∞ ∞

−
= ∈−∞

  + −  = − Φ
  −  

∏ ∏∫ ∫ 2
1 :0

1 ( ) ( )
1

r
ij ij

any pair
i j i j S ij

b y d u
Power y dy h u du

b
. (3.19)

(The proof is similar to the proof of the all-pairs power.)

Notice that in the global power can be considered as a special case of the any-pair power by

assuming that all null hypotheses 0ijH  are false, such that S  has a dimension of rc.

Suppose that one is interested in detecting only one particular difference corresponding with

the sub-hypothesis %%0ij
H . Then the per-pair power can be expressed as follows

( )α α

µ µ µ µ

σ σ

σ

− − − −

−

 − − − −
+ 

+ + 
= > = > 

 
   

%% %% % % %% %

%% % %% %

%%

0 0 0

1 1 1 1
0 0

( ) ( )

/

ij ij i i ij i

ij i ij i
per pair ij

X X

n n n n
Power P D d P d

s
(3.20)
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which is the probability of a univariate noncentral Student t-distribution with ν  degrees of

freedom and noncentrality parameter 
µ µ

δ
σ − −

−
=

+

%% %
%%

%% %

0

1 1
0

ij i
ij

ij in n
.

Notice that the per-pair power can be considered as a special case of the all-pairs power or of

the any-pair power in the situation that there is only one false null hypothesis, i.e. k = 1.

Computations of the example

Assume that the trial described in the example was planned with 10 subjects on placebo, 7 on

the low dosage and 5 on the high dosages for both males and females. (Thus one female in the

low dose group resulted in a missing value at the end of the trial.) And that the variance is

assumed to be 2σ  = 0.70.

These settings determine the correlation matrix { }ijb=R R  ( 11 12 515b b= =  and

21 22 7/17b b= = ) such that the critical value dα  can be calculated as 4,38, ;0.95 2.304d tα = =R

for α  = 0.05.

Suppose that one assumes that both dosages are superior to placebo in males and females,

i.e. all sub-hypotheses 0ijH ’s are assumed to be false and S  consists of all indices:

{ }(11),(12),(21),(22)S = .

Then the all-pairs power and any-pair power can be computed by using formulas (3.16) and

(3.18) respectively, if one specifies the differences 0ij iµ µ−  for S , because these differences

determine the noncentrality vector d . Program Ch3_3.sas of Appendix 3 shows how these

probabilities of a noncentral multivariate t-distribution can be computed applying the SAS/IML

code of Bretz available on his homepage (website with URL http://www.bioinf.uni-

hannover.de/~bretz/).

The following table shows the results for several configurations of the vector of differences

( )11 10 22 20,...,µ µ µ µ∆ = − −µ :
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Table 3.4 All-pairs and any-pair power for the complete set of indices

∆µ All-pairs power Any-pair power

(0.5, 1   , 0.5, 1   ) 0.014 0.739

(1   , 1   , 1   , 1   ) 0.113 0.895

(1   , 1.5, 1   , 1.5) 0.263 0.982

(1.5, 1.5, 1.5, 1.5) 0.604 0.998

(1   , 2   , 1   , 2   ) 0.312 >0.999

(2   , 2   , 2   , 2    ) 0.945 >0.999

(The error in the computations is less than 0.0001)

Thus with an improvement of 1 point of all four dosages compared to placebo, the probability to

reject all four sub-hypotheses is somewhat more than 11% and the probability to reject at least

one of the sub-hypotheses is almost 90%.

Another scenario would be that one assumes that only the high dosage in both males and

females is superior to placebo.  So S  is now a real subset consisting of { }(12),(22)S = .

The critical value remains the same, i.e. 4,38, ;0.95 2.304d tα = =R  but the correlation matrix R

should be restricted to S . It turns out that 2 2=R I  the identity matrix of dimension 2, because

there is only active treatment to compare with the control treatment for each of the two strata.

The noncentrality vector d  is specified by the vector ( )12 10 22 20,µ µ µ µ∆ = − −µ .

The all-pairs power and any-pair power for several configurations of the vector ∆µ  are shown

in the following table.

Table 3.5 All-pairs and any-pair power for a subset of indices

∆µ All-pairs power Any-pair power

(0.5,  0.5) 0.018 0.229

(1   , 1   ) 0.223 0.698

(1.5, 1.5) 0.693 0.967

(2   , 2    ) 0.956 >0.999

(The error in the computations is less than 0.0001)

Comparing the results of both sets of indices S  gives an idea of the impact of the choice of S .

For example comparing the power of ( )1 , 1 , 1 , 1∆ =µ  for the complete set of indices with
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( )1 , 1∆ =µ  for the subset of indices shows that the all-pairs power is increased from 0.113 to

0.223 and that the any-pair power is decreased from 0.895 to 0.698.

Intuitively, this is obvious. Assume that the true effects are equal, then it is harder to reject all

false hypotheses if the number of false hypotheses is increasing, i.e. a smaller all-pairs power,

but it is easier to reject at least one false hypothesis if the number of false hypotheses is

increasing, i.e. a higher any-pair power.

3.4 Sample size

An important aspect in the design of studies and the planning of experiments is to know how

large the sample size must be in order to detect certain relevant differences with a preassigned

probability.

Horn and Vollandt (1998, 2000) showed how sample size formulas could be derived in the

single-stratum situation for any of the three types of power, the all-pairs, the any-pair and the

per-pair power. This section expands these formulas for the stratified situation under

consideration.

The determination of sample sizes demands that a minimum difference ∆  ( ∆  > 0) between the

active treatment and the placebo group in their population means should be preassigned which

is worth detecting. For example, in a clinical trial, ∆  may represent the minimum clinical

relevant difference.

Similar to the discussion of how to calculate the power in the situation of multiple hypotheses

testing as stated in the previous section, one should decide whether all hypotheses 0ijH  with

differences between µij  and µ 0i  of at least ∆  should be rejected with a given probability β−1 ,

or whether at least one hypothesis 0ijH  with a difference between µij  and 0iµ  of at least ∆

should be rejected with a given probability β−1  or whether a particular single hypothesis 0ijH

should be rejected with a given probability β−1  if the difference between µij  and 0iµ  is at

least ∆ .

Denote the difference between µij  and 0iµ  as µ −, 0i j , i.e. µ µ µ− = −, 0 0i j ij i  for shortening the

notation, then the following power definitions can be added:
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The all-pairs ∆  power is defined as the probability of rejecting all hypotheses with µ − ≥ ∆, 0i j ,

the any-pair ∆  power is defined as the probability of rejecting at least one hypothesis with

µ − ≥ ∆, 0i j  and the per-pair ∆  power is the probability of rejecting a particular single hypothesis

with µ − ≥ ∆, 0i j  i.e.

All-pairs ∆  power = P(reject all 0ijH  with µ − ≥ ∆, 0i j ),

Any-pair ∆  power = P(reject at least one 0ijH  with µ − ≥ ∆, 0i j ), (3.21)

Per-pair ∆  power = P(reject a particular 0ijH  with µ − ≥ ∆, 0i j ).

Using the expressions of different kind of powers as derived in the previous section and filling in

=
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ij
ij

i ij

n
b

n n
 (3.5) and 
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σ
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− −
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+
, 0
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ij in n
 (Section 3.3) result in the following expressions for

the all-pairs ∆  power, any-pair ∆  power and the per-pair ∆  power:
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where again ( )h u  is the density function of a νχ ν2 /  distributed variable and Φ( )y  and ϕ( )y

are the standard cumulative distribution function and probability density function respectively.

The per-pair ∆  power can be considered as a special case of the all-pairs ∆  power or of the

any-pair ∆  power, which is also mentioned in the previous section. Therefore, it is sufficient to

deal with the all-pairs ∆  power and the any-pair ∆  power. The per-pair ∆  power won’t be

discussed in the sequel of this section.
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Notice that the effect size worthwhile to be detected is supposed to be identical across all

strata, i.e. ∆  does not depend on i. However, it might be that one wants to detect different

effect sizes within each of the strata. In that situation ∆  should be replaced by ∆ i . The

formula’s used throughout this section can be easily extended but are somewhat more complex

and won’t be considered here further.

In addition, sample sizes ijn  are only determined in the case of = = = =1 2 ...i i ic in n n n , for

every i, i.e. all active treatment arms have the same sample size within each stratum. However

0in  may be different from in . Notice that the power expressions are monotone increasing in

in .

The power expressions depend on the ratios 
0

i
i

i

n
l

n
= . In the sequel il  is supposed to be

constant, i.e. il l= . Two common values for l  are 1l =  and 
1

l
c

= . Where the latter value

represents the well-known square root allocation that was shown to be nearly optimal by

Dunnett (1955). See also Spurrier and Nizam (1990) for optimal sample size allocation in

comparing several treatments with a control in a one-way layout.

Furthermore, these expressions depend on the real and unknown number of differences

µ − ≥ ∆, 0i j . Denote the unknown number of differences µ − ≥ ∆, 0i j  by ik . Notice that this number

ik  is not restricted to be the same for all strata. In most cases ik  is completely unknown, i.e. it

is only known that ≤ ≤0 ik c  with at least one ≥ 1ik . However, it is easy and useful to

consider the more general case where a priori knowledge states that ≤ ≤i i ig k h  for some

lower bound integers ig  and upper bound integers ih  with ≤ ≤ ≤0 i ig h c  and at least one

≥ 1ig . Thus, the most common situation where no a priori knowledge is available is regarded

as the special case = 1g  (at least one treatment has a true difference of at least ∆ ) and

=ih c  (all treatments have a true difference of at least ∆ ), where 
=

= ∑
1

r

i
i

g g .

The task is to determine the minimal integers in , which guarantee that the ∆  power is not

smaller than a preassigned probability β−1  for any values µ −, 0i j  provided that ≤ ≤i i ig k h   (i

= 1, …, r  j = 1, …, c). For that reason in  is determined for the least favorable configurations

(LFC) of µ −, 0i j  with ≤ ≤i i ig k h  that provide minima of the ∆  power.
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For the all-pairs ∆  power it can be shown that
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which means that µ µ µ µ− − + − −= = = ∆ = = =,1 0 , 0 ,( 1) 0 , 0... , ... 0
i ii i h i h i c  (i = 1, …, r) is a LFC for the

all-pairs ∆  power if ≤ ≤i i ig k h  (i = 1, …, r). Notice that there are many LFC ‘s.

Thus assuming that the unknown number of differences between µij  and µ 0i  of at least ∆  is

equal to the upper bound ih  guarantees a minimum of the all-pairs ∆  power. Without any a

priori knowledge, i.e. =ih c  (i = 1, …, r), the LFC is given by µ µ− −= = = ∆,1 0 , 0...i i c  (i = 1, …,

r).

This LFC for the all-pairs ∆  power is also intuitively clear. A true difference of , 0i jµ − = ∆  is

harder to detect than a true difference of , 0i jµ − > ∆ . And an increasing number of true

differences µ − ≥ ∆, 0i j  decreases the probability to detect them all; the maximum number of true

differences within each stratum equals ih .

So, the smallest integers in  have to determined such that the probability

( )α α µ µ− −> > = = = ∆11 1,1 0 , 0,..., ...
r rrh r hP D d D d  is at least β−1 , for given α , ∆ , l  and ih  (i =

1, …, r).

This power probability can be calculated by noticing that ( )
111 1 1,..., ,..., ,...,

rh r rhD D D D  follows a

noncentral h-variate t-distribution with correlation matrix hR , ( )ν −

=

= + − −∑ 1

1

1
r

i i i
i

n l cn c

degrees of freedom and noncentrality vector 
1

in

lσ

 ∆
=   + 

d , where 
=

= ∑
1

r

i
i

h h . The correlation
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matrix hR  has a block-diagonal structure, with correlation coefficients 
1 2( , )

0 1
i

i j j
i i

n l
n n l

ρ = =
+ +

( 1 21 ij j h≤ ≠ ≤ ) and zero’s elsewhere.

The degrees of freedom ν  depends on the sample sizes in . Therefore no explicit expression

of in  can be obtained if the variance σ 2  is unknown and the determination of in  should be

performed iteratively. Notice that the critical value α ν α−= , , ;1hhd t R  also depends on the sample

sizes through the degrees of freedom. However, in the situation that the variance 2σ  is known

explicit formulas of in  can be obtained in some situations as will be shown later on.

Similarly for the any-pair ∆  power it can be shown that
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This implies that µ µ µ µ− − + − −= = = ∆ = = =,1 0 , 0 ,( 1) 0 , 0... , ... 0
i ii i g i g i c  (i = 1, …, r) is a LFC for the

any-pair ∆  power if ≤ ≤i i ig k h  (i = 1, …, r). So assuming that the unknown number of

differences between µij  and µ 0i  of at least ∆  is equal to the lower bound ig  guarantees a

minimum of the any-pairs ∆  power. In case no a priori knowledge is available, i.e.

=

= =∑
1

1
r

i
i

g g , a LFC is given by any configuration were exactly one of the differences µ −, 0i j

equals ∆  and all others are smaller than ∆ , for example µ µ µ− − −= ∆ = = =1,1 0 1,1 0 1, 0, ... 0c  and

µ µ µ− − −= ∆ = = =,1 0 ,1 0 , 0, ... 0i i i c  (i = 2, …, r).

The LFC for the any-pair ∆  power is also intuitively clear by noticing that the probability to

detect at least one true difference is smaller with a lower number of true differences of

µ − ≥ ∆, 0i j ; the minimum number of true differences within each stratum equals ig .
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In general, it is not uncommon to assume that the variance σ 2  is known, i.e. assuming infinite

degrees of freedom, in order to perform sample size calculations.

In that case the test statistics have the simple form:

0

1 1
0

ij i
ij

ij i

X X
D

n nσ − −

−
=

+
 (i = 1, …, r  j = 1, …, c)

Under that assumption the minimal all-pairs ∆  power can be written as

( ) 1 ,1 0 , 0Minimal ,..., ...
i iall pairs i ih i i hPower P D d D d i iα α µ µ− ∆ − −= > > ∀ = = = ∆∀ =

α α
σ σ− − − −
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 + + 

1 1 1 1 1
0 0

,...,  
ii ih

i i i i

P Z d Z d i
n n n n
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1 1i
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i ih

n n
P Z d Z d i

l l
α α

σ σ

 ∆ ∆
= ≤ − ≤ − ∀  + + 

(3.27)

where the ijZ ’s are jointly distributed as a standardized h-variate normal random variable with

correlation matrix hR .

Therefore, the smallest integers in  have to be determined for which

1 ,...,  1
1 1i

i i
i ih

n n
P Z d Z d i

l l
α α β

σ σ

 ∆ ∆
≤ − ≤ − ∀ ≥ −  + + 

, (3.28)

where β−1  is the preassigned minimal required all-pairs ∆  power.

However, there are many h-vectors ( )1 1,..., , ... , ,...,r rb b b b ′=b , with 
1

i
i

n
b d

l ασ

∆
= −

+
 (i = 1,

…, r) such that ( , , , ) 1h h βΦ ∞ ≥ −- b 0 R . Thus no unique solution for the sample sizes in  can be

derived, unless the ratio of the sample sizes between the strata is defined upfront.

For example in the situation that the sample sizes are equal across all strata, i.e. in n= , and

treating the problem symmetrically with regard to all hypotheses with µ − ≥ ∆, 0i j , the solution is

the smallest integer n  for which
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( ) ( )2 2 2
, , ;11 /

hhn l dα βξ σ−≥ + + ∆0 R (3.29)

where , , ;1hh βξ −0 R  is the β−1  percentage point of an h-variate standardized normal distribution

with correlation matrix hR . Notice that , , ;1rcrcdα αξ −= 0 R  (see also Appendix 1 for notation).

Without any a priori knowledge about the unknown number of differences µ − ≥ ∆, 0i j , h has to

be replaced by rc.

Similarly for the any-pair ∆  power, the smallest in  have to be determined for which

11 ,...,  1
1 1i

i i
i ig

n n
P Z d Z d i

l l
α α β

σ σ

 ∆ ∆
− < − < − ∀ ≥ −  + + 

, (3.30)

where β−1  is the preassigned minimal required any-pair ∆  power.

Under the same assumptions it follows that the solutions are the smallest n  for which

( ) ( )2 2 2
, , ;1 /

ggn l dα βξ σ≥ + − ∆0 R (3.31)

Without any a priori knowledge about the unknown number of differences µ − ≥ ∆, 0i j , g  has to

be replaced by 1, which in that case leads to 
11,0, ; 1u uβ β βξ −= = −R .

The sample size requirements in this section are formulated in terms of power considerations,

which is consistent with hypothesis testing. Another way to determine sample sizes is based on

confidence intervals. Though this will not be discussed here any further. For more details see

for example Pan and Kupper (1999) who showed sample size calculations for several multiple

comparison procedure, including the one-way Dunnett’s procedure, treating the confidence

width as random. They illustrated that ignoring the underlying stochastic nature of the

confidence width could lead to serious underestimation of the required sample sizes.
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Computations of the example

Some sample size calculations are illustrated in the context of the example.

Suppose for a moment that a clinical relevant difference is represented by an improvement of at

least 1.5, i.e. ∆  = 1.5 and that the square-root rule is used to allocate the sample sizes

between the active and control treatment, i.e. 
1

l
c

= = 0.707. Furthermore, assume that there

is no a-priori knowledge concerning the real but unknown number of differences µ − ≥ ∆, 0i j ,

which implies that g =  1 and h rc= =  4.

Then 1,1 0 1,2 0 2,1 0 2,2 0 1.5µ µ µ µ− − − −= = = =  is a LCF for the all-pairs ∆  power (see (3.25)) and

1,1 0 1,2 0 2,1 0 2,2 01.5, 0µ µ µ µ− − − −= = = =  is a LFC for the any-pair ∆  power (see (3.26)).

In addition, assume that the variance is known, say 2σ  = 0.70.

Then the minimal all-pairs ∆  power can be expressed as the probability of a standardized

multivariate normal random vector with a correlation matrix R , which has a block-diagonal

structure with correlation coefficients 
1

1 1
l

l c
ρ = = =

+ +
 0.414. (see also (3.27))

Given the variance the critical value is given by 4, , ;0.95dα ξ= =0 R  2.215 (α  = 0.05).

Program Ch3_4.sas of Appendix 3 shows how the probability of a standardized multivariate

normal distribution can be computed applying the SAS/IML code of Bretz available on his

homepage (website with URL http://www.bioinf.uni-hannover.de/~bretz/).

Assume that the required all-pairs ∆  power is at least 80%, i.e. β  = 0.20. Then according to

formula (3.28) the sample sizes 1n  and 2n  have to be determined as the minimal integers for

which 4 1 1 2 2( ,( , , , ) , , ) 0.80b b b b ′Φ ∞ ≥- 0 R  where 
1.5

2.215
1.093

i
i

n
b = −  (i = 1, 2).

There is no unique solution, for example 1n  = 9 and 2n  = 7 results in a probability of 0.817, and

1n  = 2n  = 8 results in a probability of 0.834; so both solutions fulfill the requirement.

But restricting the sample sizes to be equal for males and females, the sample sizes is given by

formula (3.29). Filling in 4, , ;0.80ξ =0 R 1.563 results in 1 2n n=

( )2 21.7071 2.215 1.563 0.7/1.5 7.581≥ + = .

Thus 8 subject in each of the two dosages groups and 11 subject in the control group for both

males and females are required to have a probability of at least 80% that all dosages that are

superior to placebo by at least 1.5, will be detected at an α  level of 5%. Assuming that no a-
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priori knowledge is available about how many treatments are superior to placebo by at least

1.5.

Similarly the any-pair ∆  power can be determined. For example, under the same assumptions

and equal sample sizes for both males and males, the sample sizes can be calculated by

formula (3.29) and filling in 1, , ;0.80 0.80uξ = − =0 R -0.842:

 1 2n n=  ( )2 21.7071 2.215 0.842 0.7/1.5 9.118≥ + = .

3.5 Step-down procedure

The extended Dunnett procedure discussed in the previous sections is a so-called single-step

procedure. In general performing them in a stepwise manner can increase the power of single-

step procedures. However, these stepwise procedures do have their drawbacks. For example,

the application of stepwise procedures is mainly restricted to hypothesis testing problems,

because it is only known for a few situations how to invert them to obtain simultaneous

confidence.

Stepwise procedures can be divided into step-down and step-up types of procedures. A step-

down procedure starts by testing the overall intersection hypothesis and then steps down

through the hierarchy of implied hypotheses. If any hypothesis is not rejected, then all implied

hypotheses are retained without any further testing. So a hypothesis is tested if and only if all of

its implying hypotheses are rejected. The step-up procedure starts the other way around: it

begins by testing all minimal hypotheses and then steps up through the hierarchy of

hypotheses. If any hypothesis is rejected, then all implied hypotheses are rejected without any

further testing. So a hypothesis is tested if and only if all of its implying hypotheses are retained.

The closure method proposed by Marcus, Peritz and Gabriel (1976) provides a general

theorem for constructing step-down procedures. Any multiple comparison procedure based on

this closure principle is called a closed testing procedure. An analogous theory to construct

step-up procedures does not exist.

This section discusses the step-down procedure described by Cheung and Holland (1994). But

first the closure principle is explained. At the end of the section some words are said about a

step-up procedure.
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Closed testing procedure

The closed testing procedure based on the closure method by Marcus et.al. (1976) works as

follows:

Let { }≤ ≤,1jH j k  be a finite family of hypotheses.

Form the ‘closure’ of this family by taking all nonempty intersection hypotheses 
∈

=IP jj P
H H

for { }1,2,...,P k⊆ .

Suppose that an appropriate α -level test of each hypothesis PH  is available. This test might

be any test that is valid for the given intersection. Each method results in a different closed

testing procedure.

Then, any hypothesis PH  is rejected if and only if PH  and every intersection hypothesis that

includes PH  is rejected by its associated α -level test (i.e. PH  is rejected ⇔ QH is rejected

∀ ⊇Q P ).

This closed testing procedure strongly controls the FWE at α .

(Proof: see for example pages 54-55 of Hochberg and Tamhane (1987))

In general the number of tests in a closed testing procedure increases rapidly with increasing c.

Therefore it makes sense to consider a shortcut version of the closed testing situation that can

be applied in a particular setting.

Suppose there are k hypotheses 1H  to kH  which have the free combination property as

defined by Holm (1979); i.e. the partition of the k hypotheses into any subset of m hypotheses

{ }
1
,...,

mj jH H  which are true and a subset of all remaining k-m hypotheses which are

simultaneously false is a plausible event. (Or in other words, each of the 2k  outcomes of the k

hypothesis problem is possible.) Note that this condition is satisfied for the many-to-one

comparisons in a stratified two-way layout.

Consider a closed testing procedure that uses a UI statistic (see also section 2.1) for testing all

intersection hypotheses 
∈

=IP jj P
H H . Then this closed testing procedure can be applied in a

shortcut manner because the UI tests have the property that whenever any intersection

hypothesis PH  is rejected at least one of the jH ’s implied by PH  is rejected. Thus it is

sufficient to make a rejection decision on jH  only, instead of testing all the intersections PH

containing that jH . However, the jH ’s must be ordered to ensure that a hypothesis is

automatically retained if any intersection hypothesis implying that hypothesis is retained.
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In the special situation that the UI test T  is of the form { }= max jj
T T , in particular this is true if

the rejection regions of the individual hypotheses jH ’s are of the form ξ>jT , this requirement

can be ensured by testing the jH ’s in the order of the corresponding test statistics jT ’s, starting

with the hypothesis with the largest jT .

Thus the hypothesis with the largest jT  is tested first. Notice that rejecting this hypothesis

implies rejecting any intersection hypothesis containing this hypothesis, including the overall

hypothesis as well. Next the hypothesis with the second largest jT  is tested. This procedure is

continued until some jT  is found to be not significant. At that point all the hypotheses whose

test statistic values are less than or equal to the current jT  are automatically retained. (See

also Grechanovsky and Hochberg (1999))

Holm’s (1979) well-known sequentially rejective Bonferroni procedure is a shortcut version of

the closed testing procedure based on the Bonferroni inequality that can be applied for multiple

testing problems with arbitrary correlation structures. Even if the free combination property

doesn’t hold, this method strongly controls the FWE, but then it can be modified to give more

powerful tests. (Shaffer, 1986)

The shortcut version of the closed testing procedure in the situation of many-to-one

comparisons in a stratified one-way layout was already proposed by Naik (1975) and also by

Marcus et al (1976).

In most testing applications, it is more informative to determine p-values for each hypothesis

than simply recording whether a specific level α  has been reached. Therefore Dunnett and

Tamhane (1991) showed a p-value version of the step-down procedure for comparing

treatments with a control in unbalanced one-way layouts. Their method computed adjusted or

so called ‘joint’ p-values associated with the observed treatment versus control mean

differences. (See also Section 2.3) They showed that this procedure is more powerful than the

sequentially rejective Bonferroni procedure of Holm (1979) and the single-step procedure of

Dunnett (1955).

Cheung and Holland (1994) presented an extension of this step-down procedure to the

stratified situation. This procedure is now discussed in more detail using the notation introduced

in Section 3.1.
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Consider the finite family of rc individual sub-hypotheses:

µ µ=0 0:ij ij iH ,

against the upper one-sided alternatives

µ µ>1 0:ij ij iH .

Then the shortcut version of the closed testing procedure can be applied as follows:

• Order all observed test statistics ijd ’s from smallest to largest, say ≤ ≤ ≤(1) (2) ( )... rcd d d .

Let 0(1)H , 0(2)H , …, 0( )rcH  be the corresponding null-hypotheses and let ( )mE  be the subset

of indices ij’s corresponding to the m smallest ijd ’s (m = 1, …, rc). Thus ( )rcE  is the set of all

indices and (1)E  refers to the indices corresponding to (1)d .

Denote with ( )mR  the sub-matrix of the correlation matrix R  restricted to ( )mE

(m = 1, …, rc).

• Start with testing 0( )rcH  and reject 0( )rcH  if ν α−>
( )( ) , , ;1rcrc rcd t R ; otherwise retain all sub-

hypotheses without further tests.

• The general step m is, reject 0( )mH  if 0( )rcH , …, +0( 1)mH  are rejected and 
( )( ) , , ;1mm md t ν α−> R . If

0( )mH  is not rejected, then also retain −0( 1)mH , …, 0(1)H  without any further testing

(m = 1, …, rc).

(Notice that the notation is slightly different than Cheung and Holland (1994), because they

ordered the ijd ’s within each stratum).

It can easily be shown that the critical constants ν α−( ), , ;1mmt R  are monotonically increasing in m.

The single-step procedure of Cheung and Holland (1992) uses the largest critical constant

ν α−( ), , ;1rcrct R  for testing all the hypotheses (see Section 3.2), regardless of the order, and hence

the single-step procedure is less powerful than its step-down counterpart.
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The p-value version, which provides adjusted p-values, can be described as follows.

Compute

{ }( ) { }( )( ) ( ) ( ) ( ) ( )at least one ,  1 , m ij m m ij m mp P D d ij E P D d ij E= > ∈ = − ≤ ∈% (3.32)

(m = 1, …, rc)

Then define the adjusted p-value for 0( )mH  as

{ }( ) ( ) ( 1) ( )max , ,...,m m m rcp p p p+= % % %  (m = 1, …, rc). (3.33)

Once these p-values are determined, hypothesis testing can be conducted at any fixed

specified level α , if desired, by comparing any ( )mp  with α  and rejecting 0( )mH  if α≤( )mp

(m = 1, …, rc). In other situations it may be more useful to simply report the adjusted p-values

and perhaps use them as inverse measures of the strength of evidence in favor of 1( )mH .

Notice that these adjusted p-values are monotonically ordered. Thus if α>( )mp  and hence

0( )mH  is accepted, then monotonicity ensures acceptance also of −0( 1) 0(1),...,mH H .

Therefore the classical version based on critical constants for a specified α  level and the p-

value version are in accordance with each other.

The implementation of the step-down procedure requires the computation of either the critical

constants 
( ), , ;1mmt ν α−R  or the adjusted p-values ( )mp . These can be computed using the same

algorithms to compute the critical constants or p-values for the single-step procedure as

described in Section 3.2. However, the step-down procedure is more computer intensive then

the single step procedure, because the critical constants ν α−( ), , ;1mmt R  and the p-values ( )mp have

to be computed at each step. Basically the critical constants have to be computed only for the

first steps, until one retain a hypothesis in which case one retain all remaining hypotheses

without any further testing.

Appendix 3 contains the program code to illustrate the step-down algorithm for the example

shown at the end of this Chapter.

It was though that stepwise procedures didn’t have corresponding confidence sets in contrast to

the single-step procedures. Stefansson, Kim and Hsu (1988) and Hayter and Hsu (1994)
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showed that common stepwise procedures, like the single-step procedure, do have

corresponding confidence sets. In particular the step-down procedure described above does

have corresponding confidence sets. Here ‘correspond’ is taken to mean that the decision that

a treatment is superior to the control based on the stepwise procedure occurs only when the

generated confidence interval for that treatment difference is contained within ( )∞0, . This

confidence bounds version is not presented here. (See Hsu (1996) Chapter 3 for details in the

situation of many-to-one comparisons for a one-way layout, which can be easily extended to

the stratified two-way situation.)

The other type of stepwise procedures is the step-up procedure. The step-up procedure starts

by testing the hypothesis corresponding to the treatment that appears to be least significant

from the control group. If the hypothesis is retained the procedure proceeds towards the

hypothesis with the most significant difference until the first time a hypothesis is rejected.  The

procedure stops and also all other remaining hypotheses are rejected without any further

testing. Dunnett and Tamhane (1992, 1995) described a step-up multiple test procedure, which

cover the situation of many-to-one comparisons in the single stratum setting for the equal

correlated and unequal correlated situation. They showed that the proposed step-up procedure

is more powerful than the single-step procedure except when only one hypothesis is false, in

which case it is slightly less powerful. Similarly, it can be shown that the step-up procedure is

slightly less powerful than the step-down procedure when a few hypotheses are false, but it is

more powerful when most or all of the hypotheses are false.

However, this procedure does not control the FWE at the pre-specified α  level; see for

example Liu (1997a). In addition, Liu (1997a) stated that the computation of the critical

constants is very time consuming even under the equal correlation assumption and with

moderate number of active treatment groups.

Finner and Roters (1998) showed the closeness of the critical constants for the step-up and

step-down procedures based on asymptotic results.

The determination of sample sizes for the single-step procedure was discussed in the previous

section, section 3.4. It was an adaptation of the sample size formula derived by Horn and

Vollandt (1998). Similar to the determination of sample sizes for the single-step procedure it is

possible to determine sample sizes for the step-down and step-up procedures as shown by

Dunnett, Horn and Vollandt (2001). Although it will not be shown here, these formulas can also

be extended to derive sample sizes for the may-to-one comparisons in a stratified two-way

layout.
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Computations of the example

The closed testing procedure in the settings of the example is as follows:

11, 12, 21, 22H

11, 12, 21H 11, 12, 22H 11, 21, 22H 12, 21, 22H

11, 12H 11, 21H 11, 22H 12, 21H 12, 22H 21, 22H

µ µ− =11 11 10: 0H µ µ− =12 12 10: 0H µ µ− =21 21 20: 0H µ µ− =22 22 20: 0H

where , ..., ij lmH  denotes the null hypothesis µ µ µ µ− = = − =, ..., 0 0: ... 0ij lm ij i lm lH .

To reject, for example, the null hypothesis 11H , all hypotheses that include the indices (11)

have to be rejected. Those hypotheses are all indicated in the figure above.

Notice that:

The global null hypothesis 11, 12, 21, 22H  is rejected at the significance level of 5% if and only if

the test statistic { }= >11 12 21 22 4,37, ;0.95max , , ,D D D D D t R .

The null hypothesis 11, 12, 21H  is rejected if and only if the test statistic

{ }= > %
%

11 12 21 3,37, ;0.95max , ,D D D D t R , where 

ρ
ρ

 
 =  
  

%
1(1,2)

1(1,2)

1 0
1 0

0 0 1
R . Etc…

The calculation of the shortcut version of the closed testing procedure goes as follows:

Ordering the observed test statistics ( ) ( )11 12 21 22, , , 2.139, 4.820, 1.375, 2.819d d d d =  from

smallest to largest results in ≤ ≤ ≤ = ≤ ≤ ≤(1) (2) (3) (4) 21 11 22 12d d d d d d d d . Thus the

corresponding null-hypotheses 0(1)H , 0(2)H , 0(3)H  and 0(4)H  are 21H , 11H , 22H  and 12H

respectively.

• Start with testing the null hypothesis 12H  and reject 12H  if >12 4,37, ;0.95d t R , because

12 4,37, ;0.954.820 2.306d t= > = R  the null hypothesis µ µ=12 12 10:H  is rejected.

• Next, tests the null hypothesis 22H .  Also µ µ=22 22 20:H  is rejected because

(3)22 3,37, ;0.952.819 2.187d t= > = R .
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• The null hypothesis µ µ=11 11 10:H  is now tested and rejected because

(2)22 2,37, ;0.952.139 2.019d t= > = R .

• The last hypothesis to be tested is 21H . The null hypothesis µ µ=21 21 20:H  is rejected if

and only if > =
(1)21 1,37, ;0.95 37;0.95d t tR . Notice that 21 37;0.951.375 1.688d t= < =  and therefore

21H  is retained.

The p-value version, provides the following results:

First compute the ( )mp% ’s: ( ) ( )(1) (2) (3) (4 ), , , 0.089, 0.039, 0.011, <0.001p p p p =% % % % ;

for example { } { }( )(3) (3) 22at least one 2.819, ij (11),(21),(22) 0.011ijp P D d d= > = = ∈ =% .

Then the adjusted p-values are

{ }11 (2) (2) (3) (4) (2)max , , 0.039p p p p p p= = = =% % % %  for the null hypothesis 11H ,

12 (4) (4 ) 0.001p p p= = <%  for the null hypothesis 12H ,

{ }21 (1) (1) (2) (3) (4) (1)max , , , 0.089p p p p p p p= = = =% % % % %  for the null hypothesis 21H ,

{ }22 (3) (3) (4) (3)max , 0.011p p p p p= = = =% % %  for the null hypothesis 22H .

(Notice that in this example the ( )mp% ’s are already ordered by accident.)

The single-step adjusted p-values (see also Section 3.2) and the step-down adjusted p-values

are presented in the following table.

Table 3.6 Single-step and step-down adjusted p-values

Stratum Contrast Estimate Single-step

adjusted p-value

Step-down

adjusted p-value

M Plac-Low 0.864 0.072 0.039

Plac-High 2.163 <0.001 <0.001

F Plac-Low 0.582 0.286 0.089

Plac-High 1.265 0.015 0.011

This table shows that the step-down adjusted p-values are smaller than the single-step

adjusted p-values. Using the step-down adjusted p-values, the low dose for the males is

statistically significant superior to placebo at the 5% level.

The SAS program code can be found in Appendix 3.
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4 Two-sided testing situation

There is long and ongoing debate in the literature concerning the use of one-sided or two-sided

tests in experiments. Some claim that when the research question expects a change in one

direction only, the hypothesis test should reflect this by using a one-sided test. Others insist on

the use of a two-sided test in case the treatment effect might be in the opposite direction than

the expected direction. In particular in the conduct of clinical trials this topic has been heavily

discussed. When to use one-sided tests or two-sided tests will not be discussed in this chapter

any further. For a discussion of the pros and cons of both approaches see for example Peace

(1991), Dubey (1991), Fisher (1991), Overall (1991), Dunnett and Gent (1996) and Senn

(1997).

This chapter illustrates how the many-to-one comparisons in the situation of a stratified two-way

layout for the one-sided alternative hypothesis, as described in Chapter 3, works out in the

situation of a two-sided alternative hypothesis.

Section 4.1 introduces the problem of making an incorrect directional decision by rejecting a

null hypothesis in case of a two-sided testing situation.

Section 4.2 illustrates step-by-step all the adaptations needed in the procedures applicable to

the testing situation with a one-sided alternative hypothesis in order to make them suitable for

the testing situation with a two-sided alternative hypothesis.

Section 4.3 shows how the two-sided testing problems can be approached as one-sided testing

problems.

4.1 Directional decisions and Type III errors

The two-sided testing situation is slightly more complex than the one-sided testing situation as

will be illustrated in this section.

Consider the family of rc individual sub-hypotheses

µ µ=0 0:ij ij iH

against the two-sided alternatives (4.1)

µ µ≠1 0:ij ij iH .
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Rejecting the null hypothesis µ µ=0 0:ij ij iH  in favor of the two-sided alternative hypothesis

µ µ≠1 0:ij ij iH  allows the conclusion that µ µ− ≠0 0ij i . Additionally, in practical applications it

seems to be meaningful to conclude that 0 0ij iµ µ− >  if α>2 2ijD d  and to conclude that

µ µ− <0 0ij i  if α< −2 2ijD d . Of course, such a directional decision may be wrong, e.g. it is

possible that α>2 2ijD d  despite µ µ− <0 0ij i . Such an incorrect directional decision is called

Type III error. The Type III FWE is the probability that the sign of any tested effect is

misclassified by a multiple comparisons procedure.

Suppose that the multiple comparison procedure allows the following three decisions:

µ µ− >0 0ij i  if α>2 2ijD d ,

µ µ− <0 0ij i  if α< −2 2ijD d  and (4.2)

no directional decision if α<2 2ijD d .

Then it can be shown that this single-step multiple testing procedure controls both the Type I

and Type III FWE, i.e. ( )   I   III P any one Type or Type error α≤ , if the test procedure controls

the Type I FWE. (For a proof and further details see Chapter 2.2 of Hochberg and Tamhane

(1987))

However, with stepwise procedures it is possible that ( )   I   III P any one Type or Type error α> ,

as shown in Shaffer (1980) and Liu (1997b). Dunnett, Horn et. al. (2001) stated ‘It is an

unsolved problem in the two-sided SD and SU testing of treatments vs. a control whether the

combined type I and III FWE is controlled to be α≤  (as it is in the single-step test). …; Bauer

(1991) speculated that for most closed test procedures applied to practical problems the

combined types I and III errors do not go out of control to a noticeable extent.’.

For more details about this topic see Finner (1999), who provides an overview of the current

state of knowledge.
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4.2 Adaptations for the two-sided testing situation

The topics of the many-to-one comparisons in a stratified two-way layout for a one-sided

alternative testing situation as described in Chapter 3 are re-discussed in this section to make

the procedures suitable for the two-sided alternative testing situation.

It is assumed that the same standard conditions remain true: the sample values { }ijkX  are

independently normal distributed with mean ijµ  and unknown but common variance 2σ , i.e.

2~ ( , )ijk ijX N µ σ , and 2s  is the usual pooled variance estimator of 2σ  based on ν  degrees of

freedom and there are c active treatments within each of the r strata.

Notation and test statistic

In the two-sided testing situation, the global null hypothesis of no effect between any of the c

active treatments versus control within each of the r strata

0 0: ij iH µ µ= (i = 1, …, r  j = 1, …, c) (4.3)

is tested against the two-sided alternative hypothesis that at least one of the active treatments

is different from control within any of the r strata

1 0: : ij iH ij µ µ∃ ≠ (i = 1, …, r  j = 1, …, c).

In line with Dunnett’s statistic for the situation of a single stratum, Cheung and Holland (1991,

1992) proposed the test statistic

{ }
≤ ≤ ≤ ≤

=2 21 ;1
max iji r j c

D D    with    
− −

−
= = =

+

0
2 1 1

0

( 1,..., 1,..., )ij i
ij

ij i

X X
D i r j c

s n n
(4.4)

to test the global null hypothesis 0H  against the two-sided alternative hypothesis 1H .

(To distinguish the two-sided test situation from the one-sided test situation, a subscript 2 is

added.)

The global null hypothesis 0H  is rejected in favor of the two-sided alternative hypothesis 1H  if

α>2 2D d  where α2d is chosen such that ( )α α> =2 2P D d .
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Percentage points

Percentage points { }α ν2( , , , , )ijd r c b  such that { }( )0 2 2( , , , , ) 1H ijP D d r c bα ν α≤ = −  can be

calculated by applying the same algorithms to compute the upper percentage points for the

one-sided testing situation (see Sections 2.2 and 3.2). Notice that

( ) ( )
0 02 2 211 2 2 2,...,H H rcP D d P D d D d≤ = ≤ ≤ .

This percentage point is called the two-sided 1 - α  equi-percentage point of the central rc

variate t-distribution with ν  degrees of freedom and correlation matrix R  (see formula (3.6)),

which is denoted as 
, , ;1rc

t
ν α−R

, i.e. ( ), , ;1 , , ;1
, ; , 1rc rc rc

T t t
ν α ν α

ν α
− −

= −
R R

- R .  (More about this

notation in Appendix 1.)

Formula (4.5) below expresses the probability ≤2( )P D t , with t > 0, in terms of univariate

normal distributions by making use of the block diagonal structure of the correlation matrix R ,

of which each iR  satisfies the product correlation structure (see (3.6)):

( )2 2 2
1 10

( ) ( )
1 1

r c
ij ij

i j ij ij

b y t u b y t u
P D t y dy h u du

b b
ϕ

∞ ∞

= =−∞

     + −     ≤ = Φ − Φ
     − −      

∏ ∏∫ ∫ (4.5)

where ( )h u  is the density function of a νχ ν2 /  distributed variable and Φ( )y  and ϕ( )y  are the

standard cumulative distribution function and probability density function respectively.

Proof:

( ) { }( ) σ

∞

− −≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

  −  ≤ = ≤ = ≤ = =  +   
∫

2
0

2 2 21 11 ;1 1 ;1
0 0

max max ; ( )
ij i

ij
i r j c i r j c

ij i

X X s
P D t P D t P t u u h u du

s n n

∞ ∞

− − − −≤ ≤
= =

    − −    = ≤ = ≤ ∀ =    + +     
∏ ∏∫ ∫

0 0

1 1 1 11
1 10 00 0

max ( )  ( )
r r

ij i ij i

j c
i iij i ij i

X X X X
P t u h u du P t u j h u du

s n n s n n

( )
∞

=

= Φ =∏∫
10

, ; , ( )
r

c i
i

h u du-t u t u 0 R

ϕ
∞ ∞

= =−∞

     + −     = Φ − Φ     − −      
∏ ∏∫ ∫ 2 2

1 10

( ) ( )
1 1

r c
ij ij

i j ij ij

b y t u b y t u
y dy h u du

b b
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where ( )Φ , ; ,c i-t u t u 0 R  is the c-variate normal integral with expectation 0 , correlation

matrix iR  over the rectangular region with lower and upper integration bounds −t u  and t u

respectively.

The computation of this expression within the SAS system can be simplified, like in the one-

sided test situation. Thereto, notice that the inner integrand

ϕ
∞

=−∞

    + −    = Φ − Φ
    − −    

∏∫2 2 2
1

( )
1 1

c
ij ij

i
j ij ij

b y t u b y t u
prob y dy

b b
(4.6)

is the probability provided by the original Dunnett procedure for two-sided inference applying

infinite degrees of freedom.

The probability 2iprob  can again directly be computed with the function PORBMC using the

statement:

=2 1 2PROBMC('DUNNETT2', ,.,., , , ,..., )i i i icprob t u c b b b

(See Appendix 2 for further details of this SAS/STAT function)

Notice that this probability can also be computed by means of the multivariate t-distribution, by

making use of the relationship between the multivariate t-distribution and multivariate normal

distribution. (See also Appendix 1) Although the ijD ’s themselves are not simultaneously

multivariate t-distributed like in the one-sided testing situation.

( ) ( ) ( )ν ν
∞

= =

Φ = =∏ ∏∫
1 10

, ; , ( ) , ; , , ; ,
r r

c i c i rc
i i

h u du T T-t u t u 0 R -t u t u R -t u t u R (4.7)

where ( )ν, ; ,c iT -t u t u R  is the central c-variate t-integral with ν  degrees of freedom and

correlation matrix iR  over the rectangular region with lower and upper integration bounds of

−t u  and t u  respectively.
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Adjusted p-values

Analogue to the one-sided testing situation (formula (3.9)), the adjusted p-value 2ijp%

corresponding to the sub-hypothesis 0ijH  is defined as

{ } ( )02 0 2 2min    is rejected at FWEij ij H ijp H P D dα α= = = > =% (4.8)

( )2 21 , ; ,rc ij ijT ν= − -d d R

where 2 ijd  (> 0) is the observed value of the two-sided test statistic 2ijD  (i = 1, …, r and

j = 1, …, c).

Two-sided 100(1-α)% simultaneous confidence intervals

Two-sided 100(1-α)% simultaneous confidence intervals can be calculated for the two-sided

test situation analogue to the one-sided test situation (formula (3.10)). However, now the

percentage point { }2 2( , , , , )ijd d r c bα α ν=  should be used instead. Then two-sided 100(1-α)%

simultaneous confidence intervals for µ µ− 0ij i  are given by

1 1
0 2 0ij i ij iX X d s n nα

− −− ± +  (i = 1, …, r   j = 1, …, c) (4.9)

Power

Whether Type III errors should generally be controlled only together with Type I errors, or better

together with Type II errors as both Type II and Type III errors occur with false hypotheses is

still under discussion. (See e.g. Hayter and Tamhane (1991) and Horn and Vollandt (2000).)

Here it is decided that the power with a two-sided test should include the requirement of a

correct directional decisions, i.e., power includes the probability that α>2 2ijD d  if µ µ− >0 0ij i

and α< −2 2ijD d  if µ µ− <0 0ij i .

Let +S  be the subset of { }ij  such that the null hypotheses 0ijH  are not true and such that

µ µ− >0 0ij i  and let −S  be the subset of { }ij  of false null hypotheses 0ijH  with µ µ− <0 0ij i .



61

Then the all-pairs power for two-sided comparisons with correct directional decisions can be

expressed in terms of the univariate normal distribution:

− =all pairsPower (4.10)

α αδ δ
ϕ

− +

∞ ∞

= ∈ ∈−∞

     − − − − +     = Φ Φ
     − −      

∏ ∏ ∏∫ ∫ 2 2

2 2
1 : :0

( ) ( )
1 1

r
ij ij ij ij

i j i j S j i j Sij ij

b y d u b y d u
x y dy h u du

b b
.

Proof:

The proof is very similar to the proof for the one-sided situation (see Section 3.3).

Define ij ij
ij ij

X
Y n

µ

σ

−
= , 0 0

0
i i

i ij

X
Y n

µ
σ
−

=  and 
σ

=
2

2

s
U . Then, the ijY ’s and 0iY ’s are i.i.d.

standard normal random variables being independent of U  which is νχ ν2 /  distributed.

Then:

( )α α
− +

− = < − ∀ ∈ ∩ > ∀ ∈ =2 2 2 2all pairs ij ijPower P D d ij S D d ij S

α α

δ δ− +
 − − + − − + = < − ∀ ∈ ∩ > ∀ ∈ =
 
 

2 2
0 0

2 2

1 1ij ij ij i ij ij ij ij i ijb Y b Y b Y b Y
P d ij S d ij S

U U

( )α αδ δ
∞

− += − − + < − ∈ ∩ − − + > ∈ =∫ 2 2
0 2 0 2

0

1  1  ( )ij ij ij i ij ij ij ij i ijP b Y b Y d u ij S b Y b Y d u ij S h u du

( ) ( )α αδ δ ϕ
∞ ∞

− +

−∞

 
= − + < − ∈ − + > + ∈ 

 
∫ ∫ 2 2

2 2
0

1  1  ( )ij ij ij ij ij ij ij ijP b Y b y d u ij S P b Y b y d u ij S y dy

=( )h u du

α αδ δ
ϕ

∞ ∞
− +

−∞

    − − + −    = < ∀ ∈ > ∀ ∈ =
    − −    

∫ ∫ 2 2

2 2
0

  ( ) ( )
1 1

ij ij ij ij
ij ij

ij ij

b y d u b y d u
P Y ij S P Y ij S y dy h u du

b b

α αδ δ
ϕ

− +

∞ ∞

= ∈ ∈−∞

     − − − − +     = Φ Φ
     − −      

∏ ∏ ∏∫ ∫ 2 2

2 2
1 : :0

( ) ( )
1 1

r
ij ij ij ij

i j i j S j i j Sij ij

b y d u b y d u
x y dy h u du

b b
.

Analogue the any-pair power can be expressed as
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α α
− +

−
∈ ∈

 
= ≤ − ∪ ≥ =  

 
U U2 2 2 2any pair ij ij

ij S ij S

Power P D d D d (4.11)

( )α α
− += − ≥ − ∀ ∈ ∩ ≤ ∀ ∈ =2 2 2 21   ij ijP D d ij S D d j S

α αδ δ
ϕ

− +

∞ ∞

= ∈ ∈−∞

     − + + + −     = − Φ Φ
     − −      

∏ ∏ ∏∫ ∫ 2 2

2 2
1 : :0

1 ( ) ( )
1 1

r
ij ij ij ij

i j ij S j ij Sij ij

b y d u b y d u
x y dy h u du

b b
.

Suppose that one is interested in detecting only one particular difference corresponding with

the sub-hypothesis %%0ij
H .

The per-pair power corresponding to the sub-hypothesis %%0ij
H  with µ µ− >%% %0

0
ij i

 is described in

Section 3.3, formula (3.20). In case the sub-hypothesis %%0ij
H  is assumed to have µ µ− <%% %0

0
ij i

the per-pair power can be expressed as:

( )
0 0

1 1
0

2 22

( ) ( )

/

ij ij i i
ij

ij i
per pair ij

X X

n n
Power P D d P d

sα α

µ µ
δ

σ

σ

− −

−

 − − −
+ 

+ 
= < − = < − 

 
   

%% %% % %
%%

%% %

%% (4.12)

which is the probability of a univariate noncentral Student t-distribution with ν  degrees of

freedom and noncentrality parameter 
µ µ

δ
σ − −

−
=

+

%% %
%%

%% %

0

1 1
0

ij i
ij

ij in n
.

Sample size

To perform the sample size determinations, the all-pairs ∆  power and any-pair ∆  power have

to be defined. As with the definition of the all-pairs power and any-pair power discussed above,

it includes the requirement of a correct directional decision:

All-pairs ∆  power = P(reject all false 0ijH  with µ − ≥ ∆, 0i j  with

correct directional decision), (4.13)

Any-pair ∆  power = P(reject at least one false 0ijH  with µ − ≥ ∆, 0i j with

correct directional decision),
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where µ −, 0i j  denotes again µ µ µ− = −, 0 0i j ij i .

Then the following expressions can be derived:

α
µ

µ

σ
−

∞ ∞
−

− ∆
= ≤−∆−∞

  
  = Φ − + −

   
∏ ∏∫ ∫

, 0

, 0
 2

1 : 0 00

1
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r
ij i jij ij

all pairs
i j i i

nn n
Power y d u x

n n
(4.14)

α
µ

µ
ϕ

σ
−

−

≥∆

 
 Φ − − + +

    
∏

, 0

, 0
2

: 0 0

1 ( ) ( )
i j

ij i jij ij

j i i

nn n
x y d u y dy h u du

n n

α
µ

µ

σ
−

∞ ∞
−

− ∆
= ≤−∆−∞

  
  = − Φ − + + +

   
∏ ∏∫ ∫

, 0

, 0
 2

1 : 0 00

1 1
i j

r
ij i jij ij

any pair
i j i i

nn n
Power y d u x

n n
(4.15)

α
µ

µ
ϕ

σ
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 
 Φ + + −

    
∏

, 0
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: 0 0

1 ( ) ( )
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ij i jij ij

j i i

nn n
x y d u y dy h u du

n n

(Proof: similar to the proof of the all-pairs power given above; see also formula (3.22) and

(3.23))

Like in the one-sided test situation, the sample sizes ijn  are only determined in case of

= = = =1 2 ...i i ic in n n n . Again, let 
0

i

i

n
l

n
=  and denote the unknown number of differences

µ − ≥ ∆, 0i j  by ik , where i i ig k h≤ ≤  for some lower bound integers ig  and upper bound

integers ih  with 0 i ig h c≤ ≤ ≤  and at least one 1ig ≥ . In addition, denote the unknown

number of differences µ − ≤−∆, 0i j  by im  and the unknown number of differences µ − ≥ ∆, 0i j  by

−i ik m .

Then the configuration [ ] [ ]µ µ µ µ− −− + −= = = −∆ = = = ∆,1 0 , 0, / 2 0 ,( / 2 1) 0... , ...
ii ii i hi h i h  (i = 1, …, r) is a

LFC of the all-pairs ∆  power where [ ]/ 2ih  denotes the smallest integer not smaller than / 2ih .

Proof:
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[ ] [ ]( 2 1 2 2 2 2 22 / 2 2 / 2 1,..., , ,...,
ii ii ihi h i hP D d D d D d D d iα α α α+= < − < − > > ∀

[ ] [ ] )µ µ µ µ− −− + −= = = − ∆ = = = ∆ ∀,1 0 , 0, / 2 0 ,( / 2 1) 0... , ...
ii ii i hi h i h i

(4.16)

( )* It can be shown that the expression attains its minimum at [ ]/ 2i im k=  and its maximum at

0im =  or i im k= ; see Appendix 2 of Horn and Vollandt (1998).

This power probability can also be calculated as the equi-percentage point of a noncentral t-

distribution. To see this, rewrite

[ ] [ ]( 2 1 2 2 2 2 22 / 2 2 / 2 1,..., , ,...,
ii ii ihi h i hP D d D d D d D d iα α α α+< − < − > > ∀

[ ] [ ] )µ µ µ µ− −− + −= = = − ∆ = = = ∆ ∀,1 0 , 0, / 2 0 ,( / 2 1) 0... , ...
ii ii i hi h i h i  as

[ ] [ ]( 2 1 2 2 2 2 22 / 2 2 / 2 1,..., , ,...,
ii ii ihi h i hP D d D d D d D d iα α α α+< − < − − < − − < − ∀
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[ ] [ ] )µ µ µ µ− −− + −= = = − ∆ = = = ∆ ∀,1 0 , 0, / 2 0 ,( / 2 1) 0... , ...
ii ii i hi h i h i .

Then notice that [ ] [ ] [ ] [ ]( )11 1211 21 2 1 221 / 2 1 / 2 1 2 / 2 2 / 2 1,..., , ,..., ,..., ,..., , ,...,
rr rh r rhh h r h r hD D D D D D D D+ +− − − −

follows an h-variate noncentral t-distribution with correlation matrix hH ,

( )1

1

1
r

i i
i

n l cn cν −

=

= + − −∑  degrees of freedom and noncentrality vector 
1

in

lσ

 −∆
=   + 

d , where

=

= ∑
1

r

i
i

h h . The correlation matrix hH  has a block-diagonal structure, with correlation matrices

ihH  (i = 1, …, r) on the diagonal and zero’s elsewhere.

The correlation matrices 
ihH  have coefficients depending on the different signs of the

components:

[ ] [ ]

[ ] [ ] [ ] [ ]
1 2

1 2 1 2

( , ) 1 2

1 2 1 2

/(1 ) / 2  or /2 1                 
1                                                                
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i j j

i i i i

l l j j h j j h
j j

l l j h j h j h j h
ρ

+ ≠ ≤ ≠ ≥ +
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− + ≤ ≥ ≥ ≤

(i = 1,…,r) (4.17)

Similarly it can be shown that

, 0

, 0
 2

1 :0

1 1
i j

r
i i j

any pair
i j

n
Power l y ld u xα

µ

µ
σ

−

∞ ∞
−

− ∆
= ≤ − ∆−∞

  
= − Φ − + + +    

∏ ∏∫ ∫

, 0

, 0
2

:

1 ( ) ( )
i j

i i j

j

n
x l y ld u y dy h u duα

µ

µ
ϕ

σ
−

−

≥∆

 
Φ + + −     

∏

2
10

1 1 ( ) ( )i

r
k i

i

n
l y ld u y dy h u duα ϕ

σ

∞ ∞

= −∞

  ∆
≥ − Φ + + −      

∏∫ ∫

2
10

1 1 ( ) ( )i

r
g i

i

n
ly ld u y dy h u duα ϕ

σ

∞ ∞

= −∞

  ∆
≥ − Φ + + −      

∏∫ ∫

( )2 1 2 2 2 ,1 0 , 01 ,..., : 1 ... : 1
i ii ig i i i g iP D d D d i g i gα α µ µ− −= − < < ∀ ≥ = = = ∆ ∀ ≥ . (4.18)

Therefore, µ µ µ µ− − + − −= = = ∆ = = =,1 0 , 0 ,( 1) 0 , 0... , ... 0
i ii i g i g i c  (i = 1, …, r) is a LFC for the any-

pair ∆  power in the two-sided testing situation. This is exactly the same LFC as in the one-

sided testing situation. (see also formula (3.26))
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Under the assumption that the variance σ 2  is known, i.e. assuming infinite degrees of freedom,

explicit formulas of in  can again be obtained.

[ ] [ ]( 2 1 2 2 2 2 22 / 2 2 / 2 1,..., , ,...,
ii iall pairs i ihi h i hPower P D d D d D d D d iα α α α− ∆ +≥ < − < − − < − − < − ∀

[ ] [ ] ),1 0 , 0, / 2 0 ,( / 2 1) 0... , ...
ii ii i hi h i h iµ µ µ µ− −− + −= = = − ∆ = = = ∆ ∀ =

[ ] [ ]2 2 2 21 to /2 ,  / 2 1 to ; 
1 1

i i
ij i ij i i

n n
P Z d j h Z d j h h i

l l
α α

σ σ

 ∆ ∆
= < − = − < − = + ∀  + + 

(4.19)

where the vector [ ] [ ] [ ] [ ]( )11 1211 21 2 1 221 / 2 1 / 2 1 2 / 2 2 / 2 1,..., , ,..., ,..., ,..., , ,...,
rr rh r rhh h r h r hZ Z Z Z Z Z Z Z+ +− − − −

is distributed as a standardized h-variate normal random variable with correlation matrix hH  as

defined above (4.17).

Similar to the one-sided testing situation, it is easy to see that under the condition of equal

sample sizes across all strata, i.e. in n= , and treating the problem symmetrically with regard to

all hypotheses with µ − ≥ ∆, 0i j , n  is the smallest integer with

( )( )2 2 2
2 , , ;11 /

hhn l d α βξ σ−≥ + + ∆0 H (4.20)

where , , ;1hh βξ −0 R  is the β−1  equi-percentage point of an h-variate standardized normal

distribution with correlation matrix hH . Notice that 2d α  is the critical value based on an infinite

number of degrees, i.e. 2 , , ;1rc
d tα α∞ −

=
R

; in fact it is the two-sided 1 - α  equi-percentage point

of the rc-variate standard normal distribution with correlation matrix R , denoted as

2 , , ;1rc
d α α

ξ
−

=
0 R

.

Without any a priori knowledge about the unknown number of differences µ − ≥ ∆, 0i j , h has to

be replaced by rc.

The LFC for the any-pair ∆  power in case of the two-sided testing situation is identical to the

LFC of the one-sided testing. Therefore the same formula (3.31) applies here to determine the

smallest n  such that
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( )( )2 2 2
2 , , ;1 /

ggn l d α βξ σ≥ + − ∆0 R (4.21)

However, notice that the percentage point dα  has been replaced by 2d α .

Hsu (1989) used a simultaneous confidence interval method to determine the sample sizes.

Horn and Vollandt (2000) noted that his requirements are more strict because he required that

all simultaneous 1 - α  confidence intervals should cover their corresponding parameter

differences with probability ≥ 1 - β  and are sufficiently narrow to ensure that zero is not

included. The power definition used here requires this only for those differences worth

detecting, which results in smaller sample sizes.

Step-down procedure

The step-down procedure proposed by Cheung and Holland (1994) and described in Section

3.5 for the one-sided testing situation can easily be adapted to the two-sided test situation.

Instead of ordering the observed one-sided test statistics ijd , the observed two-sided test

statistics 2 ijd  should be ordered and the upper percentage points 
( ), , ;1mmt ν α−R  have to be

replaced by 
( ), , ;1mm

t
ν α−R

.

This results in the following step-down testing procedure for the two-sided testing situation:

• Order all observed test statistics 2 ijd ’s from smallest to largest, say 2(1) 2(2) 2( )... rcd d d≤ ≤ ≤ .

Let 0(1)H , 0(2)H , …, 0( )rcH  be the corresponding null-hypotheses and let ( )mE  be the subset

of indices ij’s corresponding to the m smallest 2 ijd ’s (m = 1, …, rc). Thus ( )rcE  is the set of

all indices and (1)E  refers to the indices corresponding to 2(1)d .

Denote with ( )mR  the sub-matrix of the correlation matrix R  restricted to ( )mE

(m = 1, …, rc).

• Start with testing 0( )rcH  and reject 0( )rcH  if 
( )

2( ) , , ;1rc
rc rc

d t
ν α−

>
R

; otherwise retain all sub-

hypotheses without further tests.

• The general step m is, reject 0( )mH  if 0( )rcH , ..., +0( 1)mH  are rejected and 
( )

2( ) , , ;1m
m m

d t
ν α−

>
R

.

If 0( )mH  is not rejected, then also retain −0( 1)mH , …, 0(1)H  without any further testing

(m = 1, …, rc).



68

The p-value version can also easily be adapted to the two-sided testing situation by defining the

adjusted p-value for 0( )mH  as

{ }2( ) 2( ) 2( 1) 2( )max , ,...,m m m rcp p p p+= % % %  (m = 1, …, rc). (4.22)

where

{ }( ) { }( )2( ) 2 2( ) ( ) 2 2( ) ( )at least one ,  ij 1 , ijm ij m m ij m mp P D d E P D d E= > ∈ = − ≤ ∈% (4.23)

 (m = 1, …, rc)

(Remember the note of controlling both the Type I and Type III FWE given in the last paragraph

of Section 4.1.)

Computations of the example

The analysis described in Section 3.2, using the same example, is now illustrated for the two-

sided testing situation

The two-sided testing situation for the example is as follows:

0 10 11 12 20 21 22:  and H µ µ µ µ µ µ= = = =

versus

1 11 10 12 10 21 20 22 20:  or  or  or H µ µ µ µ µ µ µ µ≠ ≠ ≠ ≠

where i = 1 and i = 2 represent the males and females respectively, and where j = 1 and j = 2

represent the low and high dose respectively.

The results of the analysis are presented in the following table.

Table 4.1 Two-sided adjusted p-values and simultaneous confidence intervals

Stratum Contrast Estimate Adjusted p-value 2ijp% Two-sided

95% Confidence interval

M Plac-Low 0.864 0.140 (-0.187, 1.914)

Plac-High 2.163 <0.001 ( 0.996, 3.330)

F Plac-Low 0.582 0.516 (-0.519, 1.682)

Plac-High 1.265 0.029 ( 0.098, 2.433)
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The program code can be found in program Ch4.sas of Appendix 3, which also computes the

two sided upper percentage point { }2,0.05 2 4,37, ;0.95
(0.05,2,2,37, ) 2.601ijd d b t= = =

R
.

Basically, the conclusions drawn from this table are identical to the conclusions found treating

the testing problem as a one sided testing problem. The high dosage in both genders is

statistically significantly (p<0.05) different from placebo.  Because 11d = 2.163 2,0.05d>  and

22d = 1.265 2,0.05d>  it is allowed to say that high dosage is superior to placebo in both genders

while controlling the Type I and Type III FWE (see formula (4.3)).

However, it is obvious that the two-sided adjusted p-values are larger than the one-sided p-

values. (See the next section as well.) Also, the lower bounds of the two-sided simultaneous

confidence intervals are closer to zero than the lower bounds of the one-sided simultaneous

confidence intervals, which is the price to be paid for obtaining upper bounds in addition. But

this is expected and well known from the univariate testing situation.

4.3 Two-sided tests considered as one-sided tests

An alternative way to consider the two-sided testing situation is to express the two-sided test as

a pair of one-sided tests. In this way the two-sided testing problem can be formulated as a

Union Intersection (UI) multiple testing problem.

Consider the test of the global null hypothesis

0 0: ij iH µ µ= (i = 1, …, r  j = 1, …, c)

versus the two-sided alternative hypothesis

1 0: : ij iH ij µ µ∃ ≠ (i = 1, …, r  j = 1, …, c)

This is equivalent to the simultaneous testing of the pair of one-sided hypotheses:

01 0: ( 1,..., 1,..., )ij iH i r j cµ µ= = =  versus 11 0: : ( 1,... 1,..., )ij iH ij i r j cµ µ∃ > = =

and (4.24)
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02 0: ( 1,..., 1,..., )ij iH i r j cµ µ= = =  versus 12 0: : ( 1,... 1,..., )ij iH ij i r j cµ µ∃ < = = .

The two-sided testing problem can be represented as a UI multiple testing problem by writing

0 01 02H H H= I  versus 1 11 12H H H= U .

As stated in Section 2.1, the rejection region for 0H  is given by the rejection regions for 01H

and 02H , so 0H  is rejected if and only if at least 01H  or 02H  is rejected.

Suppose an error rate 1α  for 01H  and a separate error rate 2α  for 02H  has been chosen. If the

two alternatives 11H  and 12H  were disjoint, i.e. cannot be rejected simultaneously, then the

error rate of the two-sided test of 0H  would be equal to 1 2α α α= + . Notice that this is true for a

univariate two-sided test written as a pair of one-sided tests. Unfortunately, the alternatives 11H

and 12H  are not disjoint. However, using the same error rate for both one-sided tests and

applying the Bonferroni method provides a conservative solution for the two-sided situation.

Thus multiplying an one-sided adjusted p-value < 0.5 by two results in a conservative two-sided

adjusted p-value. See for example Dunnett and Gent (1996) for more details.

This is also illustrated by the example used in the previous section. The adjusted one-sided p-

values computed in Section 3.2 multiplied by two are close but larger than the adjusted two-

sided p-values.

There are attempt in literature to bridge the gap between one-sided procedures and two-sided

procedures. For example Hayter, Miwa and Liu (2000) proposed a procedure that combines the

advantages of the one-sided and two-sided procedures for comparing several treatments with a

control for the situation of a one-way layout. It has the advantage of the two-sided procedure to

provide both upper and lower limits on the differences between each treatment and control. In

addition it declares treatments better than control based on the sharper inferences of the one-

sided procedure.

This procedure can be extended to the stratified two-way layout, though this won’t be discussed

here any further.
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5 Non-inferiority and equivalence testing

The multiple comparison procedure of Chapter 3 describes the many-to-one comparison

situation that at least one of the active treatments is superior to control in any of the strata and

Chapter 4 discusses the two-sided testing situation that at least one active treatment is different

from control. These so called 'superiority' type of trials are most convincingly to establish

efficacy according to the recent International Conference of Harmonization (ICH) guidance

document ‘E9 Statistical Principles for Clinical Trials’. The control treatment is usually a real

placebo. For serious illnesses, a placebo may be considered unethical if a therapeutic

treatment exists which has proven efficacious in relevant superiority trial(s). In that case, the

scientifically sound use of an active treatment as a control should be considered. Then the

superiority type of trial is not always appropriate or feasible.

Active control trials designed to show that the efficacy of an investigational product is not

relevantly worse than that of the active comparator are called 'non-inferiority' trials.

Another type of trial is the ‘equivalence‘ trail, which is designed to confirm the absence of a

meaningful difference between the treatments. This kind of trial is very common to investigate

the bioavailability and pharmacokinetic properties of the active substance from a

pharmaceutical product.

This short chapter illustrates how to perform many-to-one comparisons in a stratified two-way

layout for some of these types of trials. Section 5.1 describes the non-inferiority setting and

Section 5.2 describes the equivalence setting.

5.1 Non-inferiority

The non-inferiority testing situation looks similar to the one-sided superiority testing situation as

described in Chapter 3. Instead of showing that an active treatment is superior to the control

treatment, one should show that the active treatment is not relevantly worse or so called non-

inferior than the control treatment.

It is assumed that the standard assumptions of Chapter 3 are still valid, i.e. the sample values

{ }ijkX  are independently normal distributed with mean ijµ  and variance 2σ , 2s  is the usual

pooled variance estimator of 2σ  based on ν  degrees of freedom, there are c active treatments

within each of the r strata and a positive value of the difference between the active and control

treatment occurs when the active treatment is superior to the control treatment.
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Then the global null hypothesis to be tested is that all treatments are inferior to the control

treatment

0 0: ( 1,..., 1,..., )ij iH i r j cµ µ∆ − ≤ − ∆ = = (5.1)

versus the alternative hypothesis that at least one of the treatments in any of the strata is non-

inferior to control

1 0: : ( 1,..., 1,..., )ij iH ij i r j cµ µ∆ ∃ − > − ∆ = =

where 0∆ >  represents the minimum difference considered to be relevant.

The symbol ∆  has also been used in the determination of the sample sizes for the one-sided

superiority testing problem in Section 3.4. Although both symbols have a similar interpretation,

they play a slightly different role. In the sample size calculations it is used to introduce a

difference that is worthwhile to detect up-front, i.e. to determine the power. Here it represents a

difference that should really be exceeded by the treatment effect compared to placebo.

Notice that the one-sided superiority testing situation can be considered as a special case of

the non-inferiority testing problem by taking 0∆ =  (see formula (3.2)).

The proposed test statistic for the non-inferiority many-to-one multiple testing problem is

{ }
1 ;1

max iji r j c
D D∆ ∆

≤ ≤ ≤ ≤
=  with 0

1 1
0

ij i
ij

ij i

X X
D

s n n
∆

− −

− + ∆
=

+
 (i = 1,…,r  j = 1,…,c) (5.2)

It can be shown that the joint distribution of the ijD∆ ’s follows a rc-variate central t-distribution

with ν  degrees of freedom and correlation matrix R  under the null hypothesis and an rc-

variate noncentral t-distribution with the same degrees of freedom and correlation matrix R  and

noncentrality vector ( ) 0

1 ;1 1 1
0 1 ;1

ij i
ij i r j c

ij i i r j c
n n

µ µ
δ

σ
∆ ∆

≤ ≤ ≤ ≤ − −

≤ ≤ ≤ ≤

 − + ∆ = =
 + 

d  under the alternative

hypothesis. The correlation matrix R  is the same block diagonal correlation matrix defined in

formula (3.6) for the one-sided superiority testing problem.
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Therefore, results such as the computation of adjusted p-values, simultaneous confidence

intervals and sample sizes as discussed in Chapter 3 for the one-sided superiority setting are

easily derived for the non-inferiority situation as well. Simply use the statistics ijD∆ ’s instead of

the statistics ijD ’s as defined in formula (3.3). For this reason they are not discussed here any

further.

Notice that in contrast to the superiority testing problem the value of ∆  is required in the test

statistic and therefore should be explicitly known beforehand. In case it is impossible to define

∆  a-priori, the use of one-sided simultaneous confidence intervals based on the statistics ijD ’s

might be an option: the sub-hypothesis 0 0:ij ij iH µ µ∆ − ≤−∆  is rejected in favor of

1 0:ij ij iH µ µ∆ − > −∆  at level α  if and only if the lower bound of the 100(1-α )% simultaneous

confidence interval for 0ij iµ µ−  exceeds −∆ .

So it is clear that there exists a close relationship between non-inferiority testing problems and

superiority testing problems. Dunnett and Gent (1996) utilized this relationship as well. They

illustrated that in case of comparing one active treatment against a control treatment, when

non-inferiority of the active treatment was shown, a conditional analysis could be performed to

establish superiority of the active treatment without any multiple comparison adjustment. This

can also be demonstrated by making use of a confidence interval for the true difference

between the active and control treatment means. When the lower bound exceeds −∆ , non-

inferiority can be concluded and when the lower bound also exceeds 0, superiority can be

concluded.

Kieser (1995) and Bauer and Kieser (1996) investigated this relationship in a much broader

context. Among other families, they considered the family of null hypotheses with elements 0H ∆ ,

where ∆  falls in a relevant interval, say between -L < 0 and -U > 0, and defined a multiple

testing procedure for this family of hypotheses based on the closed testing principle (Marcus et.

al. (1976); Section 3.5) using the test statistics D∆ .

For practical details about superiority and non-inferiority see for example the document ‘Points

to Consider on Switching between Superiority and Non-inferiority’ of the Committee for

Proprietary Medicinal Products (CPMP).
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5.2 Equivalence

In equivalence trials the issue is no longer to detect a difference between the treatments but to

demonstrate that the treatments are equivalent within an a priori stipulated equivalence range

defining acceptance values for the differences between the treatments. Keep in mind that failing

to reject the null hypothesis in a trial designed to detect significant differences doesn’t show

equivalence; ‘absence of evidence is not evidence of absence’ as expressed by Altman and

Bland (1995). See for example Chapters 15 and 22 of Senn (1997) for an introduction

concerning other issues of equivalence studies.

Hauschke (1999) described the many-to-one comparison for global equivalence testing in the

situation of a one-way layout. Global means that all active treatments should be equivalent to

the control treatment. This section demonstrates how to proceed in the stratified two-way

layout. Such a testing problem is not purely hypothetical but may occur for example in a dose

ranging carcinogenicity study conducted in both male and female animals were one should

proof that all experimental dosages are safe, i.e. equivalent to the standard/control treatment.

The global null hypothesis to be tested is

12
0 0 1 0 2: :  or ij i ij iH ij µ µ µ µ∆ ∃ − ≤ ∆ − ≥ ∆ (i = 1, …, r  j = 1, …, c) (5.3)

against the alternative hypothesis that all active treatments in any of the strata are equivalent to

control

12
1 1 0 2: ij iH µ µ∆ ∆ < − < ∆ (i = 1, …, r  j = 1, …, c)

where ( )1 2,∆ ∆ ,  1 20∆ < < ∆  describes the area of irrelevant differences.

Notice that any of the rc two-sided sub-hypotheses

12
0 0 1 0 2:  or ij ij i ij iH µ µ µ µ∆ − ≤ ∆ − ≥ ∆

against (5.4)

12
1 1 0 2:ij ij iH µ µ∆ ∆ < − < ∆
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can be expressed by two one-sided sub-hypotheses:

1
0 0 1:ij ij iH µ µ∆ − ≤ ∆ against 1

1 0 1:ij ij iH µ µ∆ − > ∆

and (5.6)

2
0 0 2:ij ij iH µ µ∆ − ≥ ∆ against 2

1 0 2:ij ij iH µ µ∆ − < ∆

Note that the global null hypothesis 12
0H ∆  is the hypothesis that there exists at least an active

treatment in any of the strata, which is superior to the control treatment by at least 2∆  or

inferior to the control treatment by at least 1∆ . Thus the global null hypothesis 12
0H ∆  is the union

of all one-sided sub-hypotheses 1
0ijH ∆  and 2

0 ijH ∆ , i.e.

 12

2

0 0
1 1 1

k

r c

ij
i j k

H H∆ ∆

= = =

= UUU . (5.7)

Similarly, the alternative hypothesis 12
1H ∆  is the intersection of all one-sided sub-hypotheses

1
1ijH ∆  and 2

1ijH ∆ , i.e.

 12

2

1 1
1 1 1

k

r c

ij
i j k

H H∆ ∆

= = =

= III . (5.8)

The one-sided null sub-hypothesis 1
0ijH ∆  and 2

0 ijH ∆  can be tested using test statistics (5.2) as

proposed for the non-inferiority testing problem in the previous section.

The null sub-hypothesis 1
0ijH ∆  is rejected at level α  if

1 0 1
1 ,1 1

0

ij i
ij

ij i

X X
D t

s n n
α ν

∆
−− −

− − ∆
= ≥

+
(5.9)

and the null sub-hypothesis 2
0 ijH ∆  is rejected at level α  if
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2 0 2
1 ,1 1

0

ij i
ij

ij i

X X
D t

s n n
α ν

∆
−− −

− − ∆
= ≤ −

+
. (5.10)

According to the Intersection-Union (IU) principle described by Berger (1982), the global null

hypothesis 12
0H ∆  can be rejected at level α  in favor of the alternative hypothesis 12

1H ∆  if and

only if all one-sided sub-hypotheses 1
0ijH ∆  and 2

0 ijH ∆  are rejected at level α .

Thus the global hypothesis 12
0H ∆  is rejected if and only if 1

1 ,ijD t α ν
∆

−≥  and 2
1 ,ijD t α ν

∆
−≤ −  for all ij’s.

Equivalently, one can make use of simultaneous confidence intervals. As mentioned in the

previous section, it avoids the use of 1
ijD∆  and 2

ijD∆  that requires the specification of the 1∆  and

2∆ beforehand.

The global null hypothesis 12
0H ∆  is rejected in favor of the alternative hypothesis 12

1H ∆  at level α

if all two-sided 100(1-2α )% confidence intervals for the differences µ µ− 0ij i  are contained in

the equivalence interval ( )1 2,∆ ∆ :

( ) ( )1 1 1 1
0 1 , 0 0 1 , 0 1 2, ,ij i ij i ij i ij iX X t s n n X X t s n nα ν α ν

− − − −
− −− − + − + + ⊂ ∆ ∆ (5.11)

for all i = 1, …, r  and j = 1, …, c.
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6 Ratio testing situation

In the previous chapters the testing situations are all formulated in terms of differences between

the population means of the active treatment and the control treatment. However there are

testing situations where it is more appropriate to express the testing problem in terms of

proportions of the population means rather than differences. In particular in equivalence testing

situations it is more common to express the equivalence limits as proportions of the population

means. If the observations follow a lognormal distribution, then there is international consensus

that equivalence should be assessed on the logarithmic scale. Taking logarithms transforms the

ratio testing situation back to the testing situation expressed in differences.

Nevertheless, there are also many situations for which the normality assumption for the original

variable is justified. Hauschke, Kieser et al. (1999) showed the example of the assessment of

therapeutic equivalence for two inhalers applied for the relief of asthma attacks using the

morning peak expiratory flow rate as a measure of airflow obstruction and the example of

pharmacokinetic characteristic AUC for topical dermatological corticosteriods where the

assumption of normality is acceptable without log-transforming the original data.

Hauschke, Kieser et al. (1999) and Kieser and Hauschke (1999) described the problem of

equivalence testing based on the ratio of two means and Hauschke (1999) described the

equivalence testing situation of many-to-one comparisons for a one-way layout.

This chapter describes the many-to-one comparisons for the stratified two-way layout based on

ratios. The one-sided testing situation is discussed in the first section and the two-sided testing

situation is discussed in the second section.

6.1 One-sided testing situation

The standard assumptions are maintained: there are c active treatments within each of the r

strata, 2~ ( , )ijk ijX N µ σ  and 2s  is the usual pooled variance estimator of 2σ  based on ν

degrees of freedom.

Then the many-to-one comparisons for the stratified situation in terms of ratios can be

formulated for the one-sided testing problems as:
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θ µ
θ

µ
=0

0

: ij

i

H (i = 1, …, r  j = 1, …, c)

versus (6.1)

1
0

: : ij

i

H ijθ µ
θ

µ
∃ > (i = 1, …, r  j = 1, …, c)

where 0θ > .

Notice that this formulation covers both non-inferiority testing as well as superiority testing.

Assume that a higher value of the ratio 
0

ij

i

µ

µ
 occurs when the active treatment is better then the

control treatment. Then for non-inferiority testing, the value 1θ <  represents the smallest value

of the ratio still to be considered as relevant. (See also Section 5.1) To perform superiority

testing, the value 1θ =  can be taken. Although Kieser and Hauschke (1999) mentioned that it

is suggested not to perform a test against perfect equality but to use a threshold value 1θ >

expressing a relevant improvement of the active treatment over the control treatment.

To see the similarity between the testing problem phrased in terms of ratios and the testing

problem phrased in terms of differences, the above testing problem can also be written as:

θ µ θµ− =0 0: 0ij iH (i = 1, …, r  j = 1, …, c)

versus (6.2)

θ µ θµ∃ − >1 0: , : 0ij iH i j (i = 1, …, r  j = 1, …, c),

under the assumption that 0iµ  > 0.

The sign symbol ‘>’ should be changed into ‘<’ if 0iµ  < 0 is assumed. Without such a restriction

on 0iµ  it is not possible. In the remainder of this section it is assumed that 0iµ  > 0. This

assumption is not a real burden in practical problems, because if it is unclear whether 0iµ  > 0

or 0iµ  <  0, then is seems more logical to test against a two-sided alternative hypothesis. This

will be described in Section 6.2.
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Sasabuchi (1988) proposed to define test statistics ijT θ , which are in a way similar way to the

test statistics ijD  for the testing problem defined in terms of differences:

0

1 2 1
0

ij i
ij

ij i

X X
T

s n n
θ θ

θ− −

−
=

+
(i = 1, …, r  j = 1, …, c) (6.3)

Notice that in the situation of 1θ = , the test statistics ijT θ ’s are identical to the test statistics

ijD ’s (3.3).

Then to test the global null-hypothesis θ
0H  the test statistic T θ  can be used, where T θ  is

defined as:

1 ;1
max { }iji r j c

T Tθ θ

≤ ≤ ≤ ≤
= . (6.4)

Sasabuchi (1988) showed that the test statistic ijT θ  follows a Student t-distribution under the

null-hypothesis.

Similar to showing that the ijD ’s are jointly multivariate t distributed (see Sections 2.1 and 3.1) it

can be shown that the vector ( )11,..., `rcT Tθ θ  follows under the null-hypothesis θ
0H  a central rc-

variate t-distribution with correlation matrix θR and ν  degrees of freedom.

The correlation matrix θR  is a block diagonal matrix with the following structure:

1 .. 0

.. .. ..
0 .. r

θ

θ

θ

 
 

=  
 
 

R

R
R

 where 

(1,2) (1, )

(2,1)

( 1, )

( ,1) ( , 1)

1 ..
1 .. ..

.. .. 1
.. 1

i i c

i
i

i c c

i c i c c

θ θ

θ
θ

θ

θ θ

ρ ρ
ρ

ρ
ρ ρ

−

−

 
 
 =  
   

R     (i = 1, …, r) (6.5)

The correlation coefficients between each pair of 
1ij

T θ  and 
2ijT θ  within the same stratum i is given

by
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1 2 1 2( , )i j j ij ijb bθ θ θρ =  ≤ ≠ ≤1 2(1 j )j c  where θ θ

θ
=

+ 20
ij

i

ij

b
n
n

. (6.6)

Thus each matrix i
θR  satisfies the product correlation structure.

These factors  ijbθ  can be derived as:

θ θ
θ

θ θ

θ θ
ρ

θ θ

− −
= = =

− −
1 12 1 2

1 2

1 2 1 2

0 0
( , )

0 0

cov( , ) cov( , )

var( ) var( ) var( ) var( )

ij ij ij i ij i
i j j

ij ij ij i ij i

T T X X X X

T T X X X X

θ θ

σ
θ

θ θ

σ σ σ σ θ θθ θ

= = =
+ ++ +

1 2

1 21 2

2
2

0

2 2 2 2
2 20 02 2

0 0

i
ij ij

i i

ij ijij i ij i

n
b b

n n
n nn n n n

Notice that in the situation of 1θ = , the correlation coefficients 
1 2( , )i j j

θρ  coincide with the

correlation coefficients 
1 2( , )i j jρ  defined for the testing problem in terms of differences (see

formula (3.5)).

Percentage points

The upper percentage point { }( , , , , )ijd r c bθα ν  such that { }( )0
( , , , , ) 1H ijP T d r c bθ θα ν α≤ = −  is

the 1 α−  percentage point of the central rc-variate t-distribution with correlation matrix θR and

ν  degrees of freedom which is denoted as 
, , ;1rc

t θν α−R
.

The same algorithms as described for the testing problem defined in terms of differences can

be used to calculate these upper percentage points by simply replacing R  by θR  or

equivalently by replacing 
0

ij
ij

i ij

n
b

n n
=

+
 by θ θ

θ
=

+ 20
ij

i

ij

b
n
n

.

And thus, the upper percentage points can be easily computed within SAS using the PROBMC

function and the subroutine QUAD within PROC IML. (See Section 3.2).
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Notice for example that ( )P T tθ ≤  can be written as:

( ) { }( ) 0

1 2 11 ;1 1 ;1
0 0

max max ( )ij i
ij

i r j c i r j c
ij i

X X
P T t P T t P t u h u du

n n
θ θ θ

σ θ

∞

− −≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

  −  ≤ = ≤ = ≤ =  +   
∫

0 0

1 2 1 1 2 11
1 10 00 0

max ( )  ; ( )
r r

ij i ij i

j c
i iij i ij i

X X X X
P t u h u du P t u j h u du

n n n n

θ θ

σ θ σ θ

∞ ∞

− − − −≤ ≤
= =

    − −    = ≤ = ≤ ∀ =    + +     
∏ ∏∫ ∫

( )2
1 10

( ) ( )
1

r c
ij

i j
ij

b y t u
y dy h u du

b

θ

θ
ϕ

∞ ∞

= =−∞

  
+  = Φ  

  −  

∏ ∏∫ ∫ (6.7)

where h(u) is the density function of a νχ ν2 /  distributed variable and Φ( )y  and ϕ( )y  are the

standard cumulative distribution function and probability density function respectively.

This is identical to formula (3.7) using the ijbθ ’s instead of the ijb ’s.

Adjusted p-values

Define the null sub-hypothesis 0ijHθ  as

0
0

: ij
ij

i

Hθ µ
θ

µ
=

and the alternative sub-hypothesis 1ijHθ  as (6.8)

1
0

: ij
ij

i

Hθ µ
θ

µ
> .

Obviously, the global null hypothesis 0Hθ  can be written as the intersection of the sub null

hypotheses 0 0ij
ij

H Hθ θ=I  and the global alternative hypothesis 1Hθ  can be written as the union

of the sub alternative hypotheses 1 1ij
ij

H Hθ θ= U . Thus the problem of testing the global

hypothesis can also be seen as a Union-Intersection multiple testing problem.
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Then analogue to the testing problem in terms of differences, adjusted p-values ijpθ%

corresponding to the sub-hypothesis 0ijHθ  can be computed as:

{ } ( ) ( )00min    is rejected at FWE 1 , ; ,ij ij H ij rc ijp H P T t Tθ θ θ θ θ θα α ν= = = > = − ∞- t R% (6.9)

where ijtθ  is the observed value of the test statistic ijT θ  (i = 1, …, r and j = 1, …, c) and

( ), ; ,rc ijT θ θν∞- t R  is the cumulative density function of a central rc-variate t-distribution with

correlation matrix θR and ν  degrees of freedom.

In case of 1θ = , the test statistic ijT θ  and correlation matrix θR  coincide with the test statistic

and correlation matrix defined for the testing problem in terms of differences. Hence the

adjusted p-values ijpθ%  are identical to the adjusted p-values ijp%   defined for the testing problem

in terms of differences (see formula (3.9)).

100(1-α)% simultaneous confidence intervals

The derivation of simultaneous confidence intervals for the ratios 
0

ij

i

µ

µ
 is more complicated than

expected in first instance. The reason why is illustrated below.

Fieller (1954) derived a two-sided confidence interval for the ratio X

Y

µ
θ

µ
=  of mean values of

two independent normal distributed random variables X  and Y  with a common variance 2σ .

Let X  and Y  denote the observed means based on Xn  and Yn  observations respectively and

let 2s  be the estimate of 2σ  based on ν  degrees of freedom. Then Fieller showed that the

bounds of the two-sided 100(1-α)% confidence interval for X

Y

µ
µ

 are given by

( )2 2 1 2 1 2 2 2 1 1
;1 / 2 ;1 / 2

2 2 2 1
;1 / 2

Y X X Y

Y

XY t s n X n Y t s n n

Y t s n
ν α ν α

ν α

− − − −
− −

−
−

± + −

−
, (6.10)
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under the restriction that 2 2 2 1
;1 0Yd Y t s nν α

−
−= − > .

In his proof Fieller made use of the theorem that the set of values of 0θ , which are not rejected

testing the null hypothesis 0 0: X

Y

H
µ

θ
µ

=  against the two-sided alternative hypothesis

1 0: X

Y

H
µ

θ
µ

≠  at level α , provides just a two-sided 100(1-α)% confidence interval for the ratio

X

Y

µ
θ

µ
= .

The intention is to use this approach for the multiple testing situation as well in order to

compute one-sided simultaneous confidence intervals, i.e. the set of values of

( )011 0,..., rcθ θ=0?  that are not rejected testing 0 0
0

: ij
ij ij

i

Hθ µ
θ

µ
=  against 1 0

0

: ij
ij ij

i

Hθ µ
θ

µ
>

simultaneously at level α  should provide a one-sided 100(1-α)% confidence interval for the

ratios 
0

ij

i

µ

µ
 (i = 1, …, r  j = 1, …, c). This would translate into the problem to compute upper-

percentage points of the joint distribution of the test statistics 0 ij

ijT θ
 and although it is a

multivariate t-distribution, its correlation matrix depends on 0? , and thus the percentage points

depend on 0?  as well. The vector 0?  is not necessarily restricted to a subspace of rc¡  and

therefore even no worst-case situation can be found which could be used.

This problem hasn’t received much attention in literature and therefore might be an interesting

topic for further research in future.

The proposal at the moment is to use the conservative Bonferroni adjustment procedure.

(See Hauschke (1999) p.70 and also Jensen (1989) who used the Sidák inequality to provide

simultaneous confidence intervals for the two-sided testing situation.)

Doing so, conservative approximated one-sided 100(1-α )% simultaneous confidence intervals

for 
0

ij

i

µ

µ
 (i = 1, …, r  j = 1, …, c) are given by

2 2
0 0 0 0

2
0 0

,ij i i ij ij i i ij

i i

X X a X a X a a

X a

 − + − ∞
 −
 

(i = 1, …, r  j = 1, …, c) (6.11)
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 where 2 1 2
0 0 1 / ,i i rca s n t α ν

−
−=  and 2 1 2

1 / ,ij ij rca s n t α ν
−

−= , under the condition that 2
0 0i iX a> .

Power

Similar to the problem phrased in terms of differences (Section 3.4) it can be shown that under

the alternative hypothesis θ
1H  the joint distribution of the ijT θ ’s is an rc-variate noncentral t-

distribution with correlation matrix θR , ν  degrees of freedom and noncentrality vector

( ) 0

1 ;1 1 2 1
0 1 ;1

ij i
ij i r j c

ij i i r j c
n n

µ θµ
ϑ ϑ

σ θ≤ ≤ ≤ ≤ − −

≤ ≤ ≤ ≤

 − = =
 + 

.

Therefore the global power, the all-pairs power and the any-pair power can be expressed

directly in terms of probabilities of multivariate noncentral t-distributions with ν  degrees of

freedom and noncentrality vectors characterized by the appropriate ijϑ ’s. The per-pair power

can be expressed in terms of probabilities of a univariate noncentral Student t-distribution with

ν  degrees of freedom and noncentrality parameter ijϑ .

On the other hand, the different kind of powers can also be expressed in terms of univariate

normal distribution functions.

Let S  be the subset of ij ’s such that the null hypotheses 0ijHθ  are false when ∈ij S and all

remaining null hypotheses are true. Suppose there are k false null hypotheses 0ijHθ , i.e. the

dimension of S  is equal to k.

Then the following expressions can be derived for the all-pairs power and the any-pair power:

( )
2

1 :0

 ( ) ( )
1 ( )

r
ij ij

all pairs ij
i j i j S ij

b y d u
Power P T d ij S y dy h u du

b

θ θ
αθ θ

α θ

ϑ
ϕ

∞ ∞

−
= ∈−∞

  − − +  = > ∀ ∈ = Φ
  −  

∏ ∏∫ ∫ (6.12)

( )
2

1 :0

 1 ( ) ( )
1 ( )

r
ij ij

any pair ij
i j i j S ij

b y d u
Power P T d ij S y dy h u du

b

θ θ
αθ θ

α θ

δ
ϕ

∞ ∞

−
= ∈−∞

  + −  = > ∃ ∈ = − Φ
  −  

∏ ∏∫ ∫ (6.13)
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where Φ(.)  and ϕ(.)  are the univariate standard cumulative distribution function and probability

density function and h(u) is the density function of a νχ ν2 /  distributed variable.

Notice that these expressions are identical to the expressions derived for the testing problem

defined in terms of differences (formulas (3.17) and (3.19)) if one replace dθ
α  by dα ,

θ θ

θ
=

+ 20
ij

i

ij

b
n
n

 by 
0

ij
ij

i ij

n
b

n n
=

+
 and ijϑ  by ijδ .

The global power and the per-pair power are not considered here because they can be seen as

special cases of the any-pair power and all-pairs power.

Sample size calculations

To perform the sample size calculation in a ratio testing problem, requirs the determination of a

pre-assigned minimum ratio, say Θ  (with θΘ > ), that expresses a relevant improvement of

the active treatment over the control treatment.

For example, in the ‘classical’ superiority testing situation with 1θ = , a value of 1.2Θ =

expresses that an improvement of 20% is considered to be a relevant improvement.

The role that Θ  plays, is identical to the role of ∆ , which indicates the minimum relevant

difference, in the situation of a testing problem in terms of differences.

Analogue to the definition of the all-pairs ∆  power and any-pair ∆  power given in Section 3.4

define the all-pairs Θ  power and any-pair Θ  power as:

All-pairs Θ  power = P(reject all 0ijHθ  with 
0

ij

i

µ

µ
≥ Θ ), (6.14)

Any-pair Θ  power = P(reject at least one 0ijHθ  with 
0

ij

i

µ

µ
≥ Θ ).

Like before the sample sizes ijn  are only determined in the situation that all active treatment

arms have the same sample size within each stratum, i.e. = = = =1 2 ...i i ic in n n n , although 0in

may be different from in  but the ratio is supposed to be constant for all strata, i.e. 
0

i

i

n
l

n
= .

Denote the unknown number of ratios 
0

ij

i

µ

µ
≥ Θ  by ik  and assume that a priori knowledge
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learns that ≤ ≤i i ig k h  for some lower bound integers ig  and upper bound integers ih  with

≤ ≤ ≤0 i ig h c  and at least one ≥ 1ig . The situation of no a priori information at all is

represented as the special case 
1

1
r

i
i

g g
=

= =∑  and =ih c .

Least favorable configuration (LFC) can be determined by deriving the following lower bounds

for the all-pairs Θ  power and any-pair Θ  power respectively:

1
 1

0 0

,..., ... i

i

ihi
all pairs i ih

i i

Power P T d T d i iθ θ θ θ
α α

µµ
µ µ− Θ

 
≥ > > ∀ = = = Θ ∀ 

 
(6.15)

1
 1

0 0

1 ,..., : 1 ... : 1i

i

igi
any pair i ig i i

i i

Power P T d T d i g i gθ θ θ θ
α α

µµ
µ µ− Θ

 
≥ − < < ∀ ≥ = = = Θ ∀ ≥ 

 
(6.16)

Proof:

Remember that 
20

ij
i

i

b
n
n

θ θ

θ
=

+
, 0

1 2 1
0 0

ij i
ij

i i in n

µ µ θ
ϑ

σ µ θ− −

−
=

+
and 

0

i

i

n
l

n
= , then it follows that:

0

 2
1 :0

( ) ( )
1 ( )ij i

r
ij ij

all pairs
i j ij

b y d u
Power y dy h u du

b

θ θ
α

θ
µ µ

ϑ
ϕ

∞ ∞

− Θ
= ≥Θ−∞

  − − +  = Φ =
  −  

∏ ∏∫ ∫

( )
0

02

1 : 00

1 ( ) ( )
ij i

r
i ij i

i j i

n
l y ld u y dy h u duθ

α
µ µ

µ µ θ
θ θ ϕ

σ µ

∞ ∞

= ≥Θ−∞

  −
  = Φ − − + + ≥

    
∏ ∏∫ ∫

( )
0

2

1 : 00

1 ( ) ( )
ij i

r
i

i j i

n
l y ld u y dy h u duθ

α
µ µ

θ
θ θ ϕ

σ µ

∞ ∞

= ≥Θ−∞

  Θ −
 ≥ Φ − − + + ≥     

∏ ∏∫ ∫

( )2

1 00

1 ( ) ( )i

r
ih

i i

n
l y ld u y dy h u duθ

α

θ
θ θ ϕ

σ µ

∞ ∞

= −∞

  Θ −
 ≥ Φ − − + + =     

∏∫ ∫

1
1

0 0

,..., ... i

i

ihi
i ih

i i

P T d T d i iθ θ θ θ
α α

µµ
µ µ

 
= > > ∀ = = = Θ ∀ 

 

The proof of the any-pair Θ  power is very similar and is not given here.
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These expressions imply that , 11

0 0 0 0

... , ... 0i iih i h ici

i i i i

µ µ µµ
µ µ µ µ

+= = = Θ = = =  (i = 1, …, r) is a LFC

for the all-pairs Θ  power and that , 11

0 0 0 0

... , ... 0i iig i g ici

i i i i

µ µ µµ
µ µ µ µ

+= = = Θ = = =  (i = 1, …, r) is a

LFC for the any-pair Θ  power, if ≤ ≤i i ig k h  (i = 1, …, r).

Again, no explicit expression of in  can be obtained if the variance σ 2  is unknown and the

determination of in  should be performed iteratively. Assuming that the variance 2σ  is known a

priori, the formulas of in  can be simplified. The probabilities of the LFC’s can then be

expressed in terms of standardized multivariate normal distributions, e.g.

1
1

0 0

,..., ... i

i

ihi
i ih

i i

P T d T d i iθ θ θ θ
α α

µµ
µ µ

 
> > ∀ = = = Θ ∀ = 

 
(6.17)

( ) ( )
1 2 2

0 0

,...,
1 1i

i i
i ih

i i

n n
P Z d Z d i

CV l CV l
θ θ θ θ

α α

θ θ

θ θ

 Θ − Θ −
= > − > − ∀  + + 

where the ijZθ ’s are jointly distributed as a standardized 
1

r

i
i

h h
=

= ∑ -variate normal random

variable with correlation matrix h
θR , 

, , ;1rcrc
d θα α

ξ
−

=
0 R

 is the 1 α−  percentage point of this

distribution and 0 0i iCV σ µ=  is the coefficient of variation of the control treatment in stratum i.

There is no unique solution because there are many h-vectors ( )1 1,..., , ... , ,...,r rb b b b ′=b , with

( )
2

0 1
i

i

i

n
b d

CV l
θ
α

θ

θ

Θ −
= −

+
 (i = 1, …, r) such that ( , , , ) 1h h

θ βΦ ∞ ≥ −b 0 R . But assuming a certain

relation between the ib ’s, for example assuming that all sample sizes are equal across all

strata, i.e. in n= , the solution is unique and can easily be found iteratively, because all

parameters are known except n . The sample size n  is the smallest n  such that

( ( ), , , ) 1h hn θ βΦ ∞ ≥ −b 0 R .

Although the assumption of equal sample sizes seems to be reasonable at first instance, it

doesn’t treat all alternative hypotheses equally. Assume that the mean control level in stratum

1i  is lower than the mean control level in stratum 2i , i.e. 
1 1i iµ µ< . Then the coefficient of
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variation of the control treatment in stratum 1i  is larger than in stratum 2i , which results in a

higher value of 
1i

b  compared to 
2i

b . But then if follows from formula (6.17) that the hypotheses

in stratum 1i  are less likely to be rejected than in stratum 2i .

Under the assumption that 
0

i

i

n
CV

should be constant, explicit formulas for the sample size can

be derived. Then the sample sizes are the smallest integers in  that fulfill the inequality:

( ) ( ) ( )
2 222

0, , ;1 , , ;1
1 /

rc h
i irc h

n l CVθ θα β
θ ξ ξ θ

− −
≥ + + Θ −

0 R 0 R
    (i = 1, .., r) (6.18)

if a minimal all-pairs Θ  power of β−1  is required and the smallest integers in  that fulfill the

inequality:

( ) ( ) ( )
2 222

0, , ;1 , , ;
1 /

rc h
i irc h

n l CVθ θα β
θ ξ ξ θ

−
≥ + − Θ −

0 R 0 R
    (i = 1, .., r) (6.19)

if a minimal any-pair Θ  power of β−1  is required.

Step-down procedure

The step-down procedure based on the closed testing procedure as discussed in Section 3.5

for the testing situation formulated in terms of differences can also be applied for the testing

problem phrased in terms of ratios.

Consider the finite family of rc individual sub-hypotheses as defined in formula (6.8) with

corresponding test statistics ijT θ  and observed values ijtθ  (i = 1, …, r and j = 1, …, c).

Then the step-down procedure to test the hypotheses is as follows:

• Order all observed test statistics ijtθ ’s from smallest to largest, say (1) (2) ( )... rct t tθ θ θ≤ ≤ ≤ .

Let 0(1)Hθ , 0(2)Hθ , …, 0( )rcHθ  be the corresponding null-hypotheses and let ( )mE  be the subset

of indices ij’s corresponding to the m smallest ijtθ ’s (m = 1, …, rc). Thus ( )rcE  is the set of all

indices and (1)E  refers to the indices corresponding to (1)tθ .
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Denote with ( )mR  the sub-matrix of the correlation matrix R  restricted to ( )mE  (m = 1, …,

rc).

• Start with testing 0( )rcHθ  and reject 0( )rcHθ  if 
( )( ) , , ;1rcrc rct tθ

ν α−> R ; otherwise retain all sub-

hypotheses without further tests.

• The general step m is, reject 0( )mHθ  if 0( )rcHθ , …, 0( 1)mHθ
+  are rejected and 

( )( ) , , ;1mm mt tθ
ν α−> R . If

0( )mHθ  is not rejected, then also retain 0( 1)mHθ
− , …, 0(1)Hθ  without any further testing (m = 1,

…, rc).

An adjusted p-value for 0( )mHθ  can be computed as

{ }( ) ( ) ( 1) ( )max , ,...,m m m rcp p p pθ θ θ θ
+= % % % (6.20)

where

{ }( ) { }( )( ) ( ) ( ) ( ) ( )at least one , 1 , m ij m m ij m mp P T t ij E P T t ij Eθ θ θ θ θ= > ∈ = − ≤ ∈% . (6.21)

6.2 Two-sided testing situation

Chapter 4 discusses the required adaptations to transform the results from the one-sided

testing problem to the two-sided testing problem in case the problem is formulated in terms of

differences. Similar adaptations can be applied to the results of Section 6.1 to derive results for

the two-sided testing problem in terms of ratios. These adaptations are rather straightforward.

For example, the global null hypothesis

θ µ
θ

µ
=0

0

: ij

i

H (i = 1, …, r  j = 1, …, c)

is tested against the two-sided alternative hypothesis (6.22)

1
0

: : ij

i

H ijθ µ
θ

µ
∃ ≠ (i = 1, …, r  j = 1, …, c)
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where 0θ > , by using the test statistic

2 21 ;1
max { }iji r j c

T Tθ θ

≤ ≤ ≤ ≤
=  where 

0
2 1 2 1

0

ij i
ij

ij i

X X
T

s n n
θ

θ

θ− −

−
=

+
 (i = 1, …, r  j = 1, …, c). (6.23)

See also Sasabuchi (1988).

Percentage points can be calculated by using the following formula for the probability

( )2P T tθ ≤ :

( )
( ) ( )

2 2 2
1 10

( ) ( )
1 1

r c
ij ij

i j
ij ij

b y t u b y t u
P T t y dy h u du

b b

θ θ
θ

θ θ
ϕ

∞ ∞

= =−∞

     
+ −     ≤ = Φ − Φ     

     − −     

∏ ∏∫ ∫ (6.24)

where θ θ

θ
=

+ 20
ij

i

ij

b
n
n

, h(u) is the density function of a νχ ν2 /  distributed variable and Φ( )y

and ϕ( )y  are the standard cumulative distribution function and probability density function

respectively.

Adjusted p-values 2ijpθ%  corresponding to the sub-hypothesis 0
0

: ij
ij

i

Hθ µ
θ

µ
=  can be computed as:

{ } ( )02 0 2 2min    is rejected at FWEij ij H ijp H P T tθ θ θ θα α= = = > =% (6.25)

( )2 21 , ; ,rc ij ijT θ θ θν= − -t t R

where 2ijtθ  (> 0) is the observed value of the test statistic 2ijT θ  (i = 1, …, r and j = 1, …, c).

The other results can also be derived rather easily but the adaptations are not discussed any

further in this section.
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The testing problem of showing global equivalence as discussed in Section 5.2 in terms of

differences can also be formulated for ratios. (See also Hauschke (1999))

The global null hypothesis to be tested is

12
0 1 2

0 0

: :  or ij ij

i i

H ijθ µ µ
θ θ

µ µ
∃ ≤ ≥ (i = 1, …, r  j = 1, …, c)

versus (6.26)

12
1 1 2

0

: ij

i

Hθ µ
θ θ

µ
< < (i = 1, …, r  j = 1, …, c)

where ( )1 2,θ θ , 1 21θ θ< <  describes the area of irrelevant proportions.

This situation can be handled by considering the following:

- the null sub-hypothesis 1
0 1

0

: ij
ij

i

Hθ µ
θ

µ
≤  is rejected at level α  in favor of the alternative

sub-hypothesis 1
1 1

0

ij
ij

i

Hθ µ
θ

µ
>  if 1 1 0

1 ,21 1
1 0

ij i
ij

ij i

X X
T t

s n n

θ
α ν

θ

θ
−

− −

−
= ≥

+
 and

- the null sub-hypothesis 2
0 2

0

: ij
ij

i

Hθ µ
θ

µ
≥  is rejected at level α  in favor of the alternative

sub-hypothesis 2
1 2

0

ij
ij

i

Hθ µ
θ

µ
<  if 2 2 0

1 ,21 1
2 0

ij i
ij

ij i

X X
T t

s n n

θ
α ν

θ

θ
−

− −

−
= ≤ −

+
 and

- the Intersection-Union principle can be applied by writing the global hypotheses as

12

2

0 0
1 1 1

: k

r c

ij
i j k

H Hθ θ

= = =
UUU  and 12

2

1 1
1 1 1

: k

r c

ij
i j k

H Hθ θ

= = =
III  respectively.

Computations of the example

The same example as used in Chapter 3 and 4 will be used to illustrate the many-to-one

comparisons in a stratified two-way layout in case the problem is phrased in terms of ratios

rather than in differences.
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In case of testing equality, the two-sided testing situation is as follows:

11 12 21 22
0

10 10 20 20

: 1H
µ µ µ µ
µ µ µ µ

= = = =

versus

11 12 21 22
1

10 10 20 20

: 1 or 1 or 1 or 1H
µ µ µ µ
µ µ µ µ

≠ ≠ ≠ ≠

where i = 1 and i = 2 represent the males and females and j = 1 and j = 2 represent the low and

high dose respectively.

The results of the analysis are presented in the following table.

Table 6.1 Analysis of example expressed as ratio testing problem

Stratum Contrast Estimate Adjusted p-value 2ijpθ%

M Plac-Low 1.084 0.140

Plac-High 1.210 <0.001

F Plac-Low 1.040 0.516

Plac-High 1.086 0.029

The program code can be found in program Ch6.sas of Appendix 3, which also computes the

two sided upper percentage point { }2,0.05 2 4,37, ;0.95
(0.05,2,2,37, ) 2.601ijd d b t θ

θ= = =
R

.

This table shows for example that the best improvement is seen for the high dosage in the

males. The estimated improvement is 21% and with a p-value of p<001, the effect is highly

significant.

Notice that because of testing 1θ = , the adjusted p-values are identical to the adjusted p-

values computed for the two-sided testing situation in terms of differences as shown in Chapter

4.

The estimated effect of the low dose in males (8.4%) is almost equal to the estimated effect of

the high dose in females (8.6%). Hence, at first instance, it seems strange that the adjusted p-

values are quite different, while the sample sizes are similar. The explanation is that the level of

the group means for the females is higher than for the males, which results in higher observed

values for the test statistics in the females.
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7 Nonparametric Procedure

So far the data are assumed to be normally distributed. In practice, there are situations where

this assumption is suspect. Then the use of a distribution-free or so-called nonparametric

approach might be appropriate. For example the use of a general nonparametric approach

based on pairwise rankings. Many-to-one comparisons based on pairwise rankings was already

published by Steel (1959), although this required a continuous distribution. Joint ranking

procedures are not discussed because they do not control the Type I FWE as shown by Oude

Voshaar (1980) and Fligner (1984). See also the discussion in Chapter 9 of Hochberg and

Tamhane (1987) and Chapter 3 of Hsu (1996).

Akritas and Brunner (1997) derived an asymptotic approach to rank tests for continuous as well

as tied data and Munzel and Hothorn (2001) applied their approach to describe as a special

case the many-to-one comparisons for the one-way layout based on a pairwise ranking

procedure. A nice overview of rank procedures in factorial designs can be found in Brunner and

Puri (1996).

This chapter describes a single-step asymptotic test procedure based on pairwise rankings to

perform many-to-one comparisons for a stratified two-way layout. This procedure is an

extension of the method proposed by Munzel and Hothorn (2001). Although it will not be

discussed any further, a step-down asymptotic test procedure can be derived in analogue to the

derivation of the step-down test procedure assuming normal distributed data as described in

Section 3.5 and Section 4.2.

Section 7.1 describes the general setting of the testing problem. Characteristics of the

asymptotic distribution of the relative pairwise effects are presented in Section 7.2 and the test

procedures are derived in Section 7.3.

7.1 Distribution functions, relative effects and hypotheses

This section introduces the hypotheses to be tested in terms of arbitrary distribution functions

instead of normal distribution functions only.

Let the random variable ijkX denotes the k-th observation on treatment j (where again j = 0

denotes the control treatment) in stratum i, and let ijkX be independently distributed according

to an arbitrary distribution function ( )ijF x , i.e.
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~ ( ) 0.5 ( ) ( )ijk ij ij ijX F x P X x P X x = ≤ + <  (7.1)

i = 1, …, r,  j = 0, 1, …, c and k = 1, …, ijn

This definition of the distribution function is the so called normalized version (Ruymgaart

(1980)) that includes both continuous as well as discontinuous data as long as the scale level of

the observations is at least ordinal. It only excludes the trivial case of a one-point distribution.

The relative (pairwise) effect of active treatment j with respect to the control treatment within

each of the r groups can be expressed as:

0 0 0( ) 0.5 ( )ij ij i ijk i k ijk i kp F dF P X X P X X= = < + =∫ (i = 1, …, r ,  j = 1, …, c) (7.2)

Notice that this is a generalization of the effect of the Wilcoxon-Mann-Whitney (1947) rank test

in case of ties.

If the space of possible distribution functions is reduced to a certain one-dimensional subspace,

e.g. in shift models where ( ) ( )F x F x µ= −  or by assuming non-crossing distribution functions,

the relative effect ijp  defines a stochastic order by 0ij iF F< , 0ij iF F= or 0ij iF F> , according to

ijp <  0.5, ijp =  0.5 or ijp > 0.5.

In the general situation that only the distribution functions are specified, such an ordering does

not exist and no natural parameters are available that measure differences between the

treatment groups. Therefore the hypothesis of no treatment effect may be formulated either in

terms of the distribution functions ( )ijF x  or in terms of the relative treatment effects ijp .

Consider the family of rc sub-hypotheses

0 0:F
ij ij iH F F=

against the two-sided alternatives (7.3)

1 0:F
ij ij iH F F≠

with the corresponding global null hypothesis
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0 0
1 1

r c
F F

ij
i j

H H
= =

= II . (7.4)

Each of these hypotheses is expressed in terms of distribution functions and tests whether the

distribution function of the active treatment is equal to the distribution function of the control

treatment. It can be considered as a test of homogeneity.

The family of sub-hypotheses expressed in terms of the relative treatment effects

0 : 0.5p
ij ijH p =

against the two-sided alternatives (7.5)

1 : 0.5p
ij ijH p ≠

and corresponding global null hypothesis

0 0
1 1

r c
p p

ij
i j

H H
= =

= II (7.6)

tests whether the active treatment effects are equal to the effect of the control treatment for

each of the r strata. It tests whether the relative treatment effects are equal to 0.5.

Notice that 0 0:F
ij ij iH F F=  implies 0 : 0.5p

ij ijH p = , whereas the other way around is not true in

general. However, if it is assumed, e.g. that the possible distribution functions are non-crossing,

i.e. 0( ) ( )ij iF x F x≤  or 0( ) ( )ij iF x F x≥  for all x , the hypotheses 0
F
ijH  and 0

p
ijH  coincide.

Moreover, in a shift model are both hypotheses 0
F
ijH  and 0

p
ijH  equivalent to the hypothesis that

tests equality of the location parameters 0 0:ij ij iH µ µ µ= .

The problem of testing 0
p
ijH  is sometimes called the multiple nonparametric Behrens-Fisher

testing problem because 0
p
ijH  is equivalent to testing the location parameters 0 0:ij ij iH µ µ µ=  in
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case the expectation of two heterogeneous normal distributions 2( , )ij ijN µ σ  and 2
0 0( , )i iN µ σ  are

compared, whereas 0
F
ijH  requires equality of the variances.

The testing problems are formulated as two-sided testing problems. Notice that the one-sided

testing problems do not have reasonable interpretations in general. Therefore the one-sided

testing situation is not described in this chapter.

However, if the space of possible distribution functions is reduced to a certain one-dimensional

subspace it might be useful to test against one-sided alternatives. In that case, the procedures

that will be derived later in this chapter to deal with the two-sided testing situation can be easily

adapted to suit the one-sided testing situation.

7.2 Estimators of relative effects and asymptotic covariance matrix

The asymptotic distribution of a consistent estimate of the relative pairwise treatment effects as

well as an estimator of the asymptotic covariance matrix are derived in this section in order to

derive test statistics for 0
FH  and 0

pH  in Section 7.3.

The distribution functions ( )ijF x  are unknown but can be estimated by their empirical

counterparts ˆ ( )ijF x . The empirical distribution function of ( )F x  is denoted by

( )
1

1ˆ( )
n

k
k

F x c x X
n =

= −∑ (7.7)

where ( )c u  denotes the counting function and 

0 if 0
( ) 0.5  if 0

1 if 0

u
c u u

u

<
= =
 >

Therefore the relative pairwise effects ijp  can be estimated by

0
ˆ ˆˆij ij ip F dF= ∫  (i = 1, …, r   j = 1, …, c). (7.8)
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It can be shown, e.g. by using the ideas in Brunner, Puri and Sun (1995) that ˆijp  is an unbiased

and consistent estimate of ijp .

The estimate ˆijp  can also be expressed in terms of mid-ranks

( 0 ) 0
0 0.

11ˆ ˆˆ
2

j i
ij ij i i

ij

np F dF R
n

+ = = − 
 ∫ (7.9)

where 
0

( 0) ( 0)
0. 0

10

1 in
j j

i i k
ki

R R
n =

= ∑  and

( 0)
0
j

i kR  is the mid-rank of the random variable 0i kX  among all observations within the j-th active

treatment group and control group in the i-th stratum, i.e. 
001 0,...,i i nX X  and 1,..., jij ijnX X , which

is defined as ( ) ( )
0

( 0)
0 0 0 0

1 1

0.5
iji nn

j
i k i k i l i k ijl

l l

R c X X c X X
= =

= + − + −∑ ∑ . In order to get the position

numbers of the ordered observations in case of no ties, 0.5 has to be added since (0)c =  0.5.

This can easily be seen by noticing that

( ) ( )
0 0 0

0 0 0 0
1 1 1 1 10 0 0

1 1 1 1 1ˆ ˆ ˆˆ ( )
ij iji i in nn n n

ij ij i ij i k i k ijl i k ijl
k k l k li i ij ij i

p F dF F X c X X c X X
n n n n n= = = = =

= = = − = −∑ ∑ ∑ ∑∑∫  and

( ) ( )
0 0 0 0

( 0) ( 0) 0
0. 0 0 0 0

1 1 1 1 10 0

1 1
2

iji i i i nn n n n
j j i

i i k i k i l i k ijl
k k l k li i

n
R R c X X c X X

n n= = = = =

  = = + − + − = 
  

∑ ∑∑ ∑∑

( ) ( )
0 0

0 0 0 0
0 0

1 1 1 10 0

11 1
2 2 2

ij iji in nn n
i i i i

i k ijl i k ijl
k l k li i

n n n n
c X X c X X

n n= = = =

  + = + + − = + − 
  

∑∑ ∑∑ .

In order to obtain asymptotic distribution results it is useful to consider the following asymptotic

result that follows from general nonparametric theory (see e.g. Brunner and Puri (1996)).

Under the assumptions that

 ijn → ∞  and 0 1 1ij

ij
ij

n

n
λ λ< < < − <

∑
      for all i = 1, …, r   j = 1, …, c (7.10)

it follows that
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2
ˆ( ) 0− − →N p p NB (7.11)

where

( )11,..., rcdiag N N=N  is a diagonal matrix with the pooled sample sizes 0ij ij iN n n= +  on the

diagonal, ( )11,..., rcB B ′=B  is a vector with elements 0 0
ˆ ˆ 1 2ij ij i i ij ijB F dF F dF p= − + −∫ ∫

(i = 1, …, r and j = 1, …, c ) and 2
2

( )X E X=  denotes the L2-norm.

Under the assumptions (7.10) and assuming that

 2
0, 0, 1( ) 0i j i jVar Yσ = >  and 2

,0 ,01( ) 0ij ijVar Yσ = > (7.12)

the asymptotic distribution of ( )ˆ −N p p  can be obtained:

( )ˆ ( , )N− →N p p 0 V (7.13)

i.e. ( )ˆ −N p p  has asymptotically an rc-variate normal distribution with expectation 0 and

covariance matrix ( )Cov=V NB .

No complete proof is provided but the outline is as follows.

According the asymptotic result above (7.11) it is sufficient to look at the asymptotic distribution

of NB . Notice that ijB  is the sum of independent, uniformly bounded (≤ 1) and unobservable

random variables 0, 0( )i jk i ijkY F X=  and ,0 0( )ij k ij i kY F X= :

0

0 0 0 0
1 10

1 1ˆ ˆ 1 2 ( ) ( ) 1 2
iji nn

ij ij i i ij ij ij i k i ijk ij
k ki ij

B F d F F dF p F X F X p
n n= =

= − + − = − + − =∑ ∑∫ ∫

0

,0 0,
1 10

1 1
1 2

iji nn

ij k i jk ij
k ki ij

Y Y p
n n= =

= − + −∑ ∑ .

Show that the Lindeberg condition is fulfilled. For more details see e.g. Munzel and Hothorn

(2001).

Introduce the following notation to describe the elements of the covariance matrix V :
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1 2 1 2,01 ,01( , )ij j ij ijCov Y Yσ = , (7.14)

 
0

,0. ,0
10

1 in

ij ij k
ki

Y Y
n =

= ∑  and 0, . 0,
1

1 ijn

i j i jk
kij

Y Y
n =

= ∑ .

Then the elements 
1 1 2 2( ),( )i j i jv  (i1, i2 = 1, …, r and j1, j2 = 1, …, c) can be expressed as

( )
1 1 2 2 1 1 2 2 1 1 1 1 2 2 2 2( ),( ) ,0. 0, . ,0. 0, .ov ,i j i j i j i j i j i j i j i jv N N C Y Y Y Y= − − (7.15)

such that

1 1 2 2( ),( ) 0i j i jv = if 1 2i i≠

1 1 2 2 1 2 1 2( ),( )
0

1
i j i j ij ij ij j

i

v N N
n

σ= if 1 2i i i= =  and 1 2j j≠ (7.16)

1 1 2 2

2 2
( ),( ) ,0 0,

0

1 1
i j i j ij ij i j

i ij

v N
n n

σ σ
 

= +  
 

if 1 2i i i= =  and 1 2j j j= =

and thus the covariance matrix V  has a block diagonal structure.

A consistent estimator V̂  for the covariance matrix V  can be obtained under the assumptions

(7.10) and (7.12).

The elements 
1 1 2 2( ),( )ˆ i j i jv  (i1, i2 = 1, …, r and j1, j2 = 1, …, c) of the covariance matrix V̂  are given

by

1 1 2 2( ),( )ˆ 0i j i jv = if 1 2i i≠

1 1 2 2 1 2 1 2( ),( )
0

1ˆ ˆi j i j ij ij ij j
i

v N N
n

σ= if 1 2i i i= =  and 1 2j j≠ (7.17)

1 1 2 2

2 2
( ),( ) ,0 0,

0

1 1
ˆ ˆi j i j ij ij i j

i ij

v N
n n

σ σ
 

= +  
 

if 1 2i i i= =  and 1 2j j j= =

where

0
2

2 ( 0) (0) ( 0) 0
,0 0 0 0.2

10

11ˆ
( 1) 2

in
j j i

ij i k i k i
kij i

nR R R
n n

σ
=

+ = − − + −  
∑ ,
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2

2 ( 0) ( ) ( 0)
0, .2

10

11ˆ
( 1) 2

ijn
ijj j j

i j ijk ijk ij
ki ij

n
R R R

n n
σ

=

+ 
= − − + −  

∑  and (7.18)

0

1 2 1 2,0 ,0
10

1
ˆ

( 1)

in

ij j ij k ij k
ki

D D
n

σ
=

=
− ∑  with ( 0 ) (0) ( 0) 0

,0 0 0 0.
11

2
j j i

ij k i k i k i
ij

nD R R R
n

+ = − − + 
 

No complete proof is provided but the idea how to proof e.g. that 2
,0ˆ ijσ  is a consistent estimator

for 2
,0ijσ  is as follows.

2
,0 ,01( )ij ijVar Yσ =  is the variance of the unobservable random variables ,01ijY ,…,

0,0 iij nY which are

independently and identically distributed. A consistent estimator for 2
,0ijσ  would be

( )
0 2

,0 ,0.
10

1
( 1)

in

ij k ij
ki

Y Y
n =

−
− ∑  in case the variables ,0ij kY  were observable. Now replace the

unobservable variables ,0 ( )ij k ij iokY F X=  by their empirical quantities

( )( 0 ) (0)
,0 0 0 0

1ˆ ˆ ( ) j
ij k ij i k i k i k

ij

Y F X R R
n

= = − . More details can be found in e.g. Munzel and Hothorn

(2001)

7.3 Test procedures

Given the asymptotic results of the previous section, test statistics can be defined to test the

global null hypothesis 0
pH  expressed in terms of the relative treatment effects or to test the

global null hypothesis 0
FH  expressed in terms of distribution functions.

First, consider the global null hypothesis expressed in terms of the relative treatment effects

0 : 0.5p
ijH p = (i = 1, …, r  j = 1, …, c)

versus

1 : : 0.5p
ijH ij p∃ ≠ (i = 1, …, r  j = 1, …, c)

as already defined in Section 7.1.

Define the test statistics
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2 2
( ),( ) ,0 0,

0

1 1ˆ ˆ
2 2

ˆ ˆ ˆ

ij ij ij
p

ij

ij ij ij i j

i ij

N p p
T

v

n n
σ σ

 − − 
 = =

+

(i = 1, …, r   j = 1, …, c) (7.19)

and

{ }
1 ;1

maxp p
ij

i r j c
T T

≤ ≤ ≤ ≤
= . (7.20)

Notice that for example assuming that observations in the control group have lower values than

in the active treatment group j within stratum i, ˆijp  is smaller than 0.5, which results in a

negative value of p
ijT .

The results of the previous section show that under the global null hypothesis 0
pH , the joint

distribution of the p
ijT ’s is asymptotically an rc-variate normal distribution with expectation 0 and

correlation matrix { }
1 2( , )

p p
i j jρ=R .

The correlation matrix pR  has the following block diagonal structure

1 .. 0

.. .. ..
0 ..

p

p

p
r

 
 

=  
 
 

R

R
R

 with 

(1,2) (1, )

(2,1)

( 1, )

( ,1) ( , 1)

1 ..
1 .. ..

.. .. 1
.. 1

p p
i i c

p
ip

i p
i c c

p p
i c i c c

ρ ρ
ρ

ρ
ρ ρ

−

−

 
 
 =  
   

R (7.21)

and correlation coefficients

1 2 1 2

1 2

1 1 2 2
1 1 2 2

1 2

( ),( )
( , )

2 2 2 2( ),( ) ( ),( ) 0 0
,0 0, ,0 0,

ij ij ij jp
i j j

ij ij ij ij i i
ij i j ij i j

ij ij

v

v v n n
n n

σ
ρ

σ σ σ σ
= =

+ +
(7.22)

(i = 1, …, r    j1, j2 = 1, …, c)

which can unfortunately not be written as a product.
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The test procedure that rejects the global null hypothesis 0
pH  in favor of the two-sided

alternative hypothesis 1
pH  if 2

p pT d α> , asymptotically controls the FWE if 2
pd α  is chosen such

that ( )
0

2p
p p

H
P T d α α> = . This can be shown similar to the statements given in Section 2.1 for

the original Dunnett procedure.

The percentage point { }
1 22 2 ( , )( , , , )p p p

i j jd d r cα α ρ=  is the two-sided 1 - α  percentage point of the

rc-variate normal distribution with correlation matrix pR , which is denoted as 
, , ;1prc α

ξ
−0 R

.

This is analogue to the two-sided test situation described in Section 4.2 that makes use of the

multivariate t-distribution. As described earlier, nowadays computer algorithms are available to

compute these percentage points. See e.g. Genz (1992) and Genz and Bretz (1999) and

SAS/IML code is available at the homepage of Bretz (the website with URL

http://www.bioinf.uni-hannover.de/~bretz/).

Notice that the multivariate t-distribution converges to the multivariate normal distribution for

increasing degrees of freedom (see Appendix 1). Brunner and Munzel (2000) demonstrated

that the accuracy of the normal approximation discussed in Section 7.2 could be improved for

small sample sizes by using a multivariate t-distribution, with a Satterthwaite approximation to

calculate the degrees of freedom. Munzel and Hothorn (2001) recommend to use the

conservative approximation for the degrees of freedom { }{ }ˆmax 1,min íjfν = , where

( )
( ) ( ) ( ) ( )

22 2
,0 0 0,

2 211 2 2
0 ,0 0 0,

ˆ ˆˆ
1 ˆ 1 ˆ

ij ij i i j
ij

i ij ij ij i i j

n n
f

n n n n

σ σ

σ σ
−−

+
=

− + −
.

In analogy to the two-sided test situation assuming normal distributed data as described in

Section 4.2, adjusted p-values p
ijp% ’s can be computed as:

{ } ( )00min    is rejected at FWEp p p p
ij ij H ijp H P T tα α= = = > =% (7.23)

( )1 - , ; ,p p p
rc ij ijt t= − Φ 0 R

where p
ijt  is the observed value of the test statistic p

ijT  (i = 1, …, r and j = 1, …, c).
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Two-sided 100(1 - α )% simultaneous confidence intervals for ijp  can also be calculated using

the expression:

2 2
,0 0,

, , ;1
0

ˆ ˆ
ˆ p

ij i j
ij rc

i ij

p
n nα

σ σ
ξ

−
± +

0 R
(i = 1, …, r and j = 1, …, c). (7.24)

where 
, , ;1prc α

ξ
−0 R

 is the two-sided 1 - α  percentage point of the rc-variate normal distribution

with correlation matrix pR  and both 2
,0ˆ ijσ  and 2

0,ˆ i jσ  are given in formula (7.18).

Let us now consider the other testing problem phrased in terms of distribution functions, i.e.

consider

0 0:F
ij iH F F= (i = 1, …, r  j = 1, …, c)

versus

1 0: :F
ij ij iH ij F F∃ ≠ (i = 1, …, r  j = 1, …, c).

Notice that the variances 2
0, 0 1( ( ))i j i ijVar F Xσ =  and 2

,0 01( ( ))ij ij iVar F Xσ =  are equal under the

null hypothesis 0
FH .

Hence the variance ( ),( )ij ijv  reduces to 
2

2 2 2
( ),( ) 0 0 0

0 0

1 1 ij
ij ij ij ij ij ij

i ij i ij

N
v N

n n n n
σ σ σ

 
= + =  

 
, where

2 2 2
0 ,0 0, 0 1( ( ))ij ij i j ij ijVar F Xσ σ σ= = =  and 0 0ij ij iF F F= = .

Then a consistent estimator for 2
0ijσ  is given by

 
0

2 2

2 ( 0 ) ( 0)
0 02

1 1

1 11
ˆ

( 1) 2 2

iji nn
ij ijj j

ij i k ijk
k kij ij

N N
R R

N N
σ

= =

 + +   
 = − + −   −      
∑ ∑ (7.25)

assuming that the assumptions (7.10) and (7.12) are fulfilled.
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(The proof is similar to the proof given in Section 7.2. Notice that in this situation

( ) ( )
0 2 2

0 0 .. 0 0 ..
1 1

1
( ) ( ) ( ) ( )

( 1)

iji nn

ij iok ij i ij ijk ij i
k kij

F X F X F X F X
N = =

 
− + − −  

∑ ∑  would be a consistent

estimator for 2
0ijσ  in case the variables 0( )ij ijkF X  and 0 0( )ij i kF X  were observable. Again

replace the unobservable variables by their empirical quantities.)

The test statistics p
ijT ’s defined in (7.19) for the testing problem in terms of relative effects

reduces therefore into

0

2
( ),( ) 0

1 1ˆ ˆ
2 2

ˆ ˆ

ij ij i ij ij
F

ij

ij ij ij ij

N p n n p
T

v N σ

   − −   
   = = (i = 1, …, r  j = 1, …, c). (7.26)

Asymptotically, under the global null hypothesis 0
FH , the F

ijT ’s follow an rc-variate normal

distribution with expectation 0 and block diagonal correlation matrix { }
1 2( , )

F F
i j jρ=R .

In this situation, the correlation coefficients 
1 2( , )

F
i j jρ  can be written as a product

1 2 1 21 2

1 2 1 2

1 1 2 2 1 2

1 2

1 2

1
0( ),( )

( , ) 2 2
( ),( ) ( ),( ) 2 2

0 0
0 0

ij ij i ij jij ijF F F
i j j ij ij

ij ij ij ij ij ij
ij ij

i ij i ij

N N nv
b b

v v N N
n n n n

σ
ρ

σ σ

−

= = = (7.27)

where ijF
ij

ij

n
b

N
= , by noticing that 

1 2 1 2 101 01 01( ( ), ( )) ( ( ))ij j ij i ij i ij iCov F X F X Var F Xσ = = =

2 01( ( ))ij iVar F X=  under 0
FH .

It follows that the test procedure { }
1 ;1

maxF F
ij

i r j c
T T

≤ ≤ ≤ ≤
= , which rejects the global null hypothesis

0
FH  in favor of the two-sided alternative hypothesis 1

FH  if 2
F FT d α> , asymptotically controls the

FWE, provided that ( )
0

2F
F F

H
P T d α α> = . 2

Fd α  is the two-sided 1 - α  percentage point of the rc-

variate normal distribution with correlation matrix FR , i.e. 2 , ;1F
F

rc
d α α

ξ
−

=
R

.
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The block diagonal correlation matrix FR  partially satisfies the product correlation structure and

hence the computation of 2
Fd α  doesn’t involve an rc-variate integral but can be expressed by

univariate integrals as already shown in Chapters 3 and 4.

For example, the probability ( )
0
F

F
H

P T t≤  can be expressed as:

( ) ( ) { }( )1 2( , )
1

 , ; ,
r

F F F
ij c i j j

i

P T t P t T t ij ρ
=

≤ = − ≤ ≤ ∀ = Φ =∏ -t t 0 (7.28)

( ) ( )2 2
1 1

( )
1 1

F Fr c
ij ij

F Fi j
ij ij

b y t b y t
y dy

b b
ϕ

∞

= =−∞

     
+ −     = Φ − Φ     

     − −     

∏ ∏∫

where { }( )1 2( , ), ; , F
c i j jρΦ -t t 0  is the c-variate normal integral with expectation 0  and correlation

matrix characterized by the 
1 2( , )

F
i j jρ ’s over the rectangular region with lower and upper

integration bounds t−  and t  respectively.

The probability expression within square brackets can directly be computed within the SAS

system using the statement:

1 2PROBMC('DUNNETT2', ,.,., , , ,..., )F F F
i i ict c b b b

as already introduced in Section 4.2.

Munzel and Hothorn (2001) mentioned that simulation studies showed that the accuracy of the

approximation could be slightly improved by using the ‘Steel’-factors 
1

ijS
ij

ij

n
b

N
=

+
 instead of

the ‘Dunnett’-factors ijF
ij

ij

n
b

N
= . Using these factors in the unstratified situation would result in

the well-known asymptotic Steel test (1959).

Adjusted p-values and simultaneous confidence intervals can be provided as illustrated for the

problem phrased in terms of relative treatment effects earlier in this section.

Adjusted p-values F
ijp% ’s can be computed as:
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( )1 - , ; ,F F F F
ij rc ij ijp t t= − Φ 0 R% (7.29)

where F
ijt  is the observed value of the test statistic ijT  (i = 1, …, r and j = 1, …, c).

Two-sided 100(1 - α )% simultaneous confidence intervals for ijp  can be computed as:

2
2
0, , ;1

0

ˆ ˆF

ij
ij ijrc

i ij

N
p

n nα
ξ σ

−
±

0 R
(i = 1, …, r and j = 1, …, c). (7.30)

where 2
0ˆ ijσ is given in formula (7.25).

Computations of the example

The test in terms of distribution functions is illustrated using the standard example introduced in

Chapter 3.

The situation is as follows:

0 11 12 10 21 22 20:  and H F F F F F F= = = =

versus

1 11 10 12 10 21 20 22 20:  or  or  or H F F F F F F F F≠ ≠ ≠ ≠

where i = 1 and i = 2 represent again the males and females and j = 1 and j = 2 represent the

low and high dose respectively.

The data are analyzed using the multivariate normal distribution and the ‘Dunnett’-factors.

The results of the analysis are presented in the following table.
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Table 7.1 Analysis of example applying nonparametric procedure

Stratum Contrast Estimator

ˆijp

Adjusted p-value

F
ijp%

Asymptotic two-sided

95% Confidence interval

M Plac-Low 0.143 0.056 (-0.221, 0.506)

Plac-High 0.020 0.013 (-0.365, 0.435)

F Plac-Low 0.350 0.783 (-0.032, 0.732)

Plac-High 0.060 0.027 (-0.345, 0.465)

The program code can be found in program Ch7.sas of Appendix 3, which also computes the

two sided upper percentage point { }
1 22,0.05 2 ( , ) 4, ;0.95

(0.05,2,2, ) 2.483F
F F F

i j jd d ρ ξ= = =
R

.

The analysis shows that all estimators of the relative effects ijp  are smaller than 0.5.

Qualitatively the conclusions are similar to the analysis of the two-sided testing problem in

terms of differences assuming normal distributed data and testing for 0∆ =  as illustrated in

Section 4.2: the low dose is not statistically significant (p < 0.05) but the high dose is statistically

significant in both genders. The interpretation of the ˆijp ’s is more difficult than the interpretation

of the estimators of the relative differences of the active treatment versus control in the situation

of Chapter 4.

Notice that the confidence intervals include values < 0 which are impossible.
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8 Resampling methods

Resampling method are methods in which the observed data are used repeatedly, in a

computer intensive simulation analysis, to provide inferences. The idea is to re-assigned the

observed data randomly and to re-compute the test statistics many many times. The original

test statistic is considered unusual if it is unusual compared to the resampling distribution of the

test statistic. Adjusted p-values are the natural output of these resampling methods. The

computation of critical values and resampling standard errors of these critical values are more

complicated.

General advantages of resampling methods are that they can cope with many complicated

testing situations and that they have the ability to incorporate distributional characteristics,

which can make the tests more robust. The main disadvantage is the heavy computational

effort although this is less of a problem now a day.

It is not the intention of this chapter to provide a complete overview of all possibilities of

resampling methods in the context of many-to-one comparisons in a stratified design, but just to

show some methods that are standard available within the SAS system. The following three

resampling methods are considered: the parametric simulation method of Edwards and Berry

(1987) in Section 8.1, the bootstrap method in Section 8.2 and the permutation method in

Section 8.3. They are illustrated for the example introduced in Chapter 3 and compared by

means of a small simulation study in Section 8.4.

An extensive overview of resampling-based multiple testing methods is given in the book by

Westfall and Young (1993).

8.1 Stochastic approximation

For many multiple testing situations, the upper-α percentage point can’t be easily determined.

Therefore Edwards and Berry (1987) proposed a method that approximated the upper-α

percentage point, say dα , by parametric computer simulation. The basic idea is to substitute a

random variable Dα  obtained by computer simulation instead of dα  itself, in much the same

way as 2s  is substituted for 2σ .

The validity of this method depends on a result, which is already referred to be Dwass (1957).

Assume that 1D , …, ND  and D  are independent random variables, each with the same

continuous probability distribution. Given a probability level α , let r =  (N + 1)(1 - α ) and



109

suppose that α  and N are such that r is and integer. Then ( )( )rP D D α> =  if (1)D  ≤   … ≤ ( )ND

are the order statistics of 1D , …, ND .

A disadvantage of using ( )rD Dα =  instead of dα  itself is that extraneous variability is

introduced. However, the amount of added variability is under control by choosing an

appropriate simulation size N. Under control means that the distance between the probability

( )( )rP D D≤  and the probability of the true upper-α percentage point ( ) 1P D dα α≤ = −  is as

small as requested with high probability.

Let F  denote the cumulative distribution function of D .  Then ( )( )rF D  has a beta distribution

with shape parameters r and N – r + 1, i.e. ( )Beta , 1r N r− + , since ( )( )rF D  can be seen as

the r-th order statistic of a random sample of size N from a ( )Uniform 0,1  distribution. Hence

( )( )( ) 1rE F D α= −  and ( )( ) ( ) ( )( ) 1 2rVar F D Nα α= − + .

For example, with 0.05α =  and N + 1 = 3200, r = 3040 and ( )( )( ) 0.0039rVar F D < ,

placing the tail area of ( )rD  within 0.01 of 1 - α  with 99% confidence.

Thus, for any desired γ  (> 0) and ε  (> 0), the simulation size N can be set so that the tail area

for the simulated percentage point ( )rD  is within γ  of 1 - α  with 100(1 - ε )% confidence, i.e. in

equation form: ( ) ( )( )( ) 1 1rP F D α γ ε− − ≤ = − .

Lets consider the testing situation

0 0: ( 1,..., 1,..., )ij iH i r j cµ µ= = =

versus (8.1)

1 0: : ( 1,... 1,..., )ij iH ij i r j cµ µ∃ > = =

with test statistic 
≤ ≤ ≤ ≤

=
1 ;1
max { }ij
i r j c

D D  where 
− −

−
= = =

+
0

1 1
0

( 1,..., 1,..., )ij i
ij

ij i

X X
D i r j c

s n n
 as

extensively discussed in Chapter 3.
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Then D  is the maximum of the random vector ( )11,..., rcD D  that has an rc-variate central t-

distribution with ν  degrees of freedom and correlation matrix characterized by the set of { }ijb

under the null hypothesis. Apply the results above by noticing that here F  is the cumulative

distribution function of the maximum of an rc-variate t-distributed random vector.

For this testing situation the stochastic approximation resampling algorithm can be outlined as

follows to obtain an estimate of the upper-α percentage point:

(i) initialize α , r, c, ν , { }ijb  and N (or γ  and ε )

(ii) Do l = 1 to N

• obtain lD  as the maximum of a generated rc-variate t-distributed random variable

• store lD  in an ordered way

(iii) write ( )rD Dα =

The SAS system offers the possibility to apply the stochastic approximation method for this

situation directly. Adjusted p-values and confidence limits can be computed using the

SIMULATE adjustment option in the LSMEANS statement of the procedure PROC MIXED. The

simulation size N, γ  and ε  can be controlled with the simulation options NSAMP, ACC and

EPS respectively. By default 0.005γ =  and 0.01ε = . (See also the SAS manual (1996))

Computations of the example

The example introduced in Section 3.1 has been analyzed using the stochastic approximation

resampling technique with γ  = 0.001 and ε  = 0.01. The adjusted p-values and simultaneous

95% confidence intervals are shown in the following table.

Table 8.1 Analysis of example applying stochastic approximation method

Stratum Contrast Estimate Adjusted p-value 95% Confidence interval

M Plac-Low 0.864 0.072 (-0.068, ∞)

Plac-High 2.163 <0.001 ( 1.128, ∞)

F Plac-Low 0.582 0.287 (-0.394, ∞)

Plac-High 1.265 0.015 ( 0.230, ∞)

The SAS program code can be found in Appendix 3.
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The table shows almost identical adjusted p-values and simultaneous confidence intervals as

obtained by using the extended Dunnett procedure as discussed in Chapter 3 assuming normal

distributed data. But this is in line with the expectation, because this method makes also use of

the multivariate t distribution.

8.2 Bootstrap

The bootstrap resampling method was introduced by Efron (1979) and is widely used for many

different situations since then.

The idea of the bootstrap method is to approximate the true but unspecified distribution function

by the empirical distribution function and use this empirical distribution function in the remainder

as if it is the true distribution function. The following simple situation illustrates this.

Assume that 1Y ,…, nY  are a random sample from a larger population with mean µ  and further

unknown underlying distribution, and let F  denote the cumulative distribution function of iY .

Assume that ( , )n iT T Y µ=  is the test statistic to test some hypothesis about the location of µ

and that large values of T  are in favor of the alternative hypothesis. Then one is interested in

the probability ( )P T t> . Notice that the probability ( )P T t>  depends on F .

Then the unknown distribution function of the test statistic can be approximated through

simulation by substitution the empirical distribution function ( )ˆ( ) # 'iF y Y s y n= ≤  for F :

( ) ( ) ( )ˆP T t P T t F P T t F> = > ≈ > (8.2)

The bootstrap method generates pseudo-data sets { }*
iY  having this distribution function F̂  by

sampling observations with replacement from the original set of observations.

Then the probability ( )( , )n iP T Y tµ >  may be estimated by 
( )*# ( , ˆ )n iT Y t

N

µ >
, where *( , ˆ )n iT Y µ

is the test statistics computed on the pseudo-data set { }*
iY  and µ̂  is an estimate of µ  based

on the observed data set { }iY  and N is the number of times a pseudo-data set has been

generated.
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Westfall and Young (1993) mentioned that there are two sources of error in this process: the

simulation error and the error inherent in using F̂  instead of F . The accuracy of the simulation

error, which is a function of simulation size N, can be estimated using the binomial distribution

and goes to zero for increasing N. The error induced by replacing F  with F̂  also goes to zero

for increasing N, since F̂  generally approaches F  for increasing N.

It is not the intention of this section to go into too much detail, though it is worthwhile to briefly

mention two important guidelines for the bootstrap resampling method as highlighted by Hall

and Wilson (1991): centering and pivoting. The first guideline concerning centering means that

resampling should be done to reflect the distribution under the null hypothesis even if the

observations are drawn from a population that fails to satisfies the null hypothesis. The second

guideline means that the test statistic is pivotal, i.e. under the null hypothesis the sampling

distribution of the test statistic should not depend on the distribution function of the observed

data within the assumed family of possible distributions. These guidelines can be extended to

the multiple testing situation, were the concept of pivotality is then called subset pivotality. It can

be shown that the bootstrap procedure, under the subset pivotality condition, has

(approximately) control of the FWE in the strong sense. For example the subset pivotality

condition is satisfied in the case of multiple comparisons using the t-statistics when the data

come from a location shift model, which does not require normal distributions. These details as

well other details are well described by Westfall and Young (1993), chapter 2.

Consider again the one-sided superiority testing problem for the many-to-one comparisons in a

stratified design as stated by (8.1).

For this testing situation the bootstrap resampling algorithm to obtain adjusted p-values can be

outlined as follows:

(i) Initialize counting variables 0ijCount =  (i = 1, ..., c and j = 1, …, r)

(ii) Center the data ijk ijk ijC X X= −  (i = 1, ..., c, j = 0, 1, …, r and k = 1, …, ijn )

(iii) Generate resampled data *
101X , …, 

1

*
1 ccnX  to *

1rcX , …, *
rcrcnX , within each stratum a

with replacement sample from the centered data  101C , …, 
11 ccnC  to 1rcC , …, 

rcrcnC

(iv) Compute the sample means *
ijX  as well as the residual mean square 

2*s  from the

permutated dataset { }*
ijkX
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(v) Compute the test statistics 
* *

0*

* 1 1
0

ij i
ij

ij i

X X
D

s n n− −

−
=

+
 (i = 1, ..., c and j = 1, …, r)

(vi) If { }*

1 ;1
max ij iji k j k

D d
≤ ≤ ≤ ≤

≥  where ijd  is the observed test statistic based on the original

data, then increment the count variable 1ij ijCount Count= +

(i = 1, ..., c and j = 1, …, r)

(vii) Repeat steps (i) to (vi) N times. The estimated adjusted p-value is ij ijp Count N=%

(i = 1, ..., c and j = 1, …, r)

The bootstrap procedure is available in the procedure PROC MULTTEST within the SAS

system. The option BOOTSTRAP specifies that the p-values be adjusted using the bootstrap

method and the NSAMPLE options specifies the number of resamples. Continuous variables

are mean-centered by default prior to resampling. The t-test for the mean can be requested by

specifying MEAN in the TEST statement. (See also the SAS manual (1996) or Westfall and

Young (1993).)

The SAS program code for the example can be found in Appendix 3.

The bootstrap resampling technique can also be applied in a step-down manner directly

available in procedure PROC MULTTEST by using the option STEPBOOT. This will not be

discussed here any further. See e.g. Chapter 2 of Westfall and Young (1993)

The output of the standard example can be found at the end of this Chapter.

8.3 Permutation

The idea behind permutation or rerandomisation tests goes back to Fisher (1935). The concept

is as follows. Suppose that treatments are randomly assigned to the experimental units, but

these units themselves are not randomly selected from a larger population. Then the only

legitimate form of inference seems to be based on the probability mechanism of the random

assignments of the treatments, see Ludbrook and Dudley (1998). Permutation tests calculate

how extreme the observer results are in comparison with those that would have occurred with

other randomisations. The permutation approach is conditional with respect to the data and so

it gives rise to conditional inferences, whereas bootstrap is not a strictly conditional procedure,

in fact it is asymptotically unconditional.
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The computation of the permutation adjusted p-values is almost identical as the computation of

the bootstrap adjusted p-values. The exception is that permutation tests use resampling without

replacement whereas bootstrap tests use resampling with replacement. In the spirit of

rerandomisation analyses, the raw data are resampled in contrast to the bootstrap method

where the variables are centered prior to resampling.

Adapting the bootstrap algorithm of Section 8.2 provides the following permutation algorithm:

(i) Initialize counting variables 0ijCount =  (i = 1, ..., c and j = 1, …, r)

(ii) Generate resampled data *
101X , …, 

1

*
1 ccnX  to *

1rcX , …, *
rcrcnX , within each stratum a

without replacement sample (or permutation) of the observed data 101X , …, 
11 ccnX

to 1rcX , …, 
rcrcnX

(iii) Compute the sample means *
ijX  as well as the residual mean square 

2*s  from the

permutated dataset { }*
ijkX

(iv) Compute the test statistics 
* *

0*

* 1 1
0

ij i
ij

ij i

X X
D

s n n− −

−
=

+
 (i = 1, ..., c and j = 1, …, r)

(v) If { }*

1 ;1
max ij iji k j k

D d
≤ ≤ ≤ ≤

≥  where ijd  is the observed test statistic based on the original

data, then increment the count variable 1ij ijCount Count= +

(i = 1, ..., c and j = 1, …, r)

(vi) Repeat steps (i) to (v) N times. The estimated adjusted p-value is ij ijp Count N=%

(i = 1, ..., c and j = 1, …, r)

The permutation resampling method can also be applied in a step-down manner using the

option STEPPERM in the procedure PROC MULTTEST. However, one should be cautious

because this process doesn’t control the FWE in the strong sense. Westfall and Wolfinger

(2000) illustrate that the permutation resampling technique within PROC MULTTEST does not

provide closed tests in the situation of comparisons of means involving more than three groups.

The reason is that PROC MULTTEST always uses the global hypothesis for calculating the

adjusted p-values.

Like the bootstrap resampling technique, the permutation resampling technique can also be

applied in a step-down manner by using the option STEPBOOT.
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Computations of the example

The same example has been analyzed using the bootstrap and permutation resampling

techniques. The simulation size for both the bootstrap and permutation techniques was set on

N = 50000. The adjusted p-values are shown in the following table. The adjusted p-values

obtained using the stochastic approximation technique of Section 8.1 are added for reason of

comparisons.

Table 8.2 Single-step adjusted p-values of resampling methods
Stratum Contrast Estimate Stoch.

Approx.

Bootstrap

(N=50000)

Permutation

(N=50000)

M Plac-Low 0.864 0.072 0.078 0.074

Plac-High 2.163 <0.001 <0.001 <0.001

F Plac-Low 0.582 0.287 0.293 0.296

Plac-High 1.265 0.015 0.018 0.015

These figures show that both the bootstrap and permutation resampling techniques result in

similar adjusted p-values and that those are also similar to the adjusted p-values obtained using

the stochastic approximation technique.

Although the step-down adjusted p-values were only briefly mentioned in this chapter, these are

presented in the following table. The adjusted p-values using the step-down method proposed

by Cheung and Holland (1994) assuming normal distributed data as described in Section 3.5

are also included.

Table 8.3 Step-down adjusted p-values of bootstrap and permutation methods
Stratum Contrast Estimate Cheung &

Holland

Bootstrap

(N=50000)

Permutation

(N=50000)

M Plac-Low 0.864 0.039 0.041 0.039

Plac-High 2.163 <0.001 <0.001 <0.001

F Plac-Low 0.582 0.089 0.104 0.075

Plac-High 1.265 0.011 0.015 0.008

The p-values of the bootstrap method are in the same order of the step-down adjusted p-values

assuming normal distributed data although slightly more conservative. The permutation method

provides more liberal adjusted p-values, although one should not forget that this process

doesn’t control the FWE in the strong sense.

The program code can be found in Appendix 3.
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8.4 Simulation study

A small simulation study was conducted to compare the behaviour of the resampling

procedures described above as well as the extended Dunnett procedure for the stratified

situation and the Bonferroni corrected Dunnett-within-strata procedure. This latter procedure

consists of applying the original Dunnett procedure within each of the strata at a significance

level of α / r  to control the FWE in the strong sense.

Some of the many configurations that were investigated are reported here.

The number of observations for each of the control treatments is chosen to be equal, say 0n ,

and the number of observations for each of the active treatments within each of the strata is

also taken to be equal, say an . The following pairs of combinations of 0( , )an n  were

considered: (2, 5), (5,5), (5,10), (10,5) and (10,10). The number of strata is taken to be two (r =

2) and there are three active treatment arms within each of the strata (c = 3). The random error

terms are taken as independently identically distributed random variables from the standard

normal distribution or from the lognormal distribution, which are being generated as the

exponential of a standard normal random variable. The performance of these methods are

compared under the null hypothesis to check whether the FWE is correctly kept at an alpha

level of α = 0.05 using 10.000 replications for each of the settings. The results are shown in

Table 8.4.

All five methods approximate the alpha level in the situation of normally distributed data quit

well. However, in case of lognormal distributed data, the stratified Dunnett procedure, the

Bonferroni corrected Dunnett-within-strata method as well as the stochastic approximation

technique become much too liberal. This is not a surprise because it is well known that the

original Dunnett’s procedure does not control the FWE in case of non-normal distributed data.

The other two resampling methods (bootstrap and permutation) behave much better in this

situation.
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Table 8.4: Empirical Type I errors (α = 0.05) for r = 2 groups and c = 3 active treatment

arms within each group based on 10000 replications

Method

n0 na

Stoch.

Approx. Bootstrap Permutation

Stratified

Dunnett

Bonferroni-

Dunnett

Normal data

2 5 0.0508 0.0487 0.0510 0.0507 0.0512

5 5 0.0525 0.0493 0.0527 0.0534 0.0483

5 10 0.0529 0.0495 0.0516 0.0519 0.0565

10 5 0.0563 0.0529 0.0564 0.0565 0.0508

10 10 0.0494 0.0487 0.0502 0.0497 0.0512

Lognormal data

2 5 0.0173 0.0220 0.0337 0.0170 0.0121

5 5 0.0737 0.0630 0.0593 0.0730 0.0442

5 10 0.0280 0.0403 0.0403 0.0283 0.0835

10 5 0.1097 0.0637 0.0567 0.1087 0.0155

10 10 0.0630 0.0560 0.0540 0.0627 0.0468

In addition, the methods are compared under the alternative hypothesis using the any-pair

power. The setting of the one-sided alternative hypothesis represents a linear shift of 0.5 for

each of the active treatment means; i.e. the means of the three active treatments have a

positive shift of 0.5, 1.0 and 1.5, respectively compared to placebo. The simulations are

conducted using 3000 replications for each of the settings. Table 8.5 shows the results.

In the situation of normally distributed data, the stratified Dunnett and the resampling methods

have very similar power results, although the bootstrap method seems to have the lowest

power of these four methods. Even in the case of only two strata, the Bonferroni corrected

Dunnett-within-strata procedure shows the lowest power of these five methods for almost all

settings as shown above. This is in line with our expectation and one can image that the loss of

power in comparison to the other methods will increase if the number of groups (r) increases.

Before one compares the power of these five methods directly in the situation of lognormal

distributed data, one should keep in mind that the stratified Dunnett, the stochastic

approximation and the Bonferroni corrected Dunnett-within-strata methods are not maintaining
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the FWE. On the other hand, Table 8.5 does not show that the bootstrap and permutation

methods have a much lower power in these settings.

Table 8.5: Any-Pair power a linear shift and for r = 2 groups, c = 3 active treatment arms

within each group based on 3000 replications

Method

N0 na

Stoch.

Approx. Bootstrap Permutation

Stratified

Dunnett

Bonferroni-

Dunnett

Normal data

2 5 0.5317 0.5117 0.5353 0.5327 0.5017

5 5 0.7707 0.7477 0.7717 0.7687 0.7343

5 10 0.8820 0.8793 0.8853 0.8833 0.8640

10 5 0.8840 0.8713 0.8867 0.8843 0.8800

10 10 0.9760 0.9743 0.9757 0.9760 0.9730

Lognormal data

2 5 0.2280 0.2970 0.3190 0.2307 0.2670

5 5 0.4277 0.3943 0.3927 0.4280 0.4707

5 10 0.4367 0.5143 0.5070 0.4370 0.5700

10 5 0.5107 0.4017 0.4050 0.5127 0.4930

10 10 0.5913 0.5557 0.5603 0.5923 0.6487

These simulation results indicate that the stratified Dunnett procedure maintains the FWE in the

situation of normal distributed data, as do the other proposed methods. The power of all five

methods, except the Bonferroni style adjusted method, are similar for the situation of normal

distributed data.

The simulation study also indicates that the FWE of the stratified Dunnett procedure, the

Bonferroni corrected Dunnett-within-strata method and the stochastic approximation method

are inflated in case of lognormal distributed data. Both the bootstrap and permutation

resampling methods seem to behave better without substantial loss in power.

Similar results are found for other settings. Evaluation of the all-pairs power instead of the any-

pair power shows similar results as presented in Table 8.5 and evaluation of the situation where
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the error terms are exponential distributed shows similar results as presented for the lognormal

distributed random error terms.

This suggests that the resampling techniques, and in particular the bootstrap method, that are

standard available within SAS seem to be worthwhile to calculate p-values in case of non-

normal distributed data. Keep in mind that PROC MULTTEST doesn’t provide simultaneous

confidence intervals.
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9 Summary and Outlook

The topic of this thesis was to investigate multiple comparisons procedures for many-to-one

comparisons in a stratified design while controlling the familywise error rate strongly at level α .

The situation of testing several active treatments versus a control treatment in each of several

strata simultaneously does occur in several practical settings as illustrated by the examples

shown in the introduction of this thesis. A naïve way would be to perform Dunnett’s procedure

within each stratum without any other multiplicity correction. This would lead to an inflation of

the FWE in the overall experiment. And the use of an additional Bonferroni correction to correct

for the number of strata would result in a conservative approach under the assumption of an

unknown common variance as assumed in this thesis.

Cheung and Holland (1992) extended the Dunnett procedure to the stratified situation.

However, they only derived upper percentage points for a common correlation coefficient and

suggested interpolation of these percentage points for all other testing situations. This thesis

shows that these approximations are not needed any more and that correct percentage points

can be computed quite easily with current available software (SAS).

In addition, this thesis described how power calculations and sample size determination could

be performed, which was not considered by Cheung and Holland.

Although the interest for most of the many-to-one comparisons in practical testing situations is

in showing that an active treatment is superiority to the control treatment or different from the

control treatment, there are testing situations where this type of trials are not appropriate. This

thesis showed that it is also feasible to perform many-to-one comparisons in a stratified design

in case of a non-inferiority testing problem or in case of a global equivalence testing problem,

while still controlling the FWE.

Also if the testing problem is better expressed in terms of proportions rather than in terms of

differences, it has been showed in this thesis how to perform many-to-one comparisons in a

stratified layout.

All these procedures assume that the data are normally distributed. If this assumption is

suspect, the use of a nonparametric approach might be more appropriate. Munzel and Hothorn

(2001) discussed an asymptotic approach to perform many-to-one comparisons for the one-

way layout based on a pairwise ranking procedure. In this thesis it has been illustrated how this

procedure could be extended to handle the testing problem in case of a stratified two-way

layout.

At last this thesis discussed the stochastic approximation method, the bootstrap method and

the permutation method as alternative methods. It was illustrated for a situation were these

three computer intensive resampling methods are standard available within the SAS system.
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To summarize, this thesis showed that it is possible to perform many-to-one comparisons in a

stratified two-way layout for several different practical testing situations and provided program

code to analyze these situations.

The work of this thesis also generated new areas of interest.

In this thesis it supposed that the experimenter is interested to analyze the data within each of

the strata, while controlling the overall FWE. However in practice this is not always known

upfront, but may become clear during the course of the experiment or even when the

experiment is in the analysis phase. Suppose for example, that the experiment was designed to

perform many-to-one comparisons averaged over all levels of a second factor. Then assume

that it becomes clear, during the course of the experiment due to external information, that one

cannot speak about the treatment effect, but that there are different treatment effects for each

of the levels of the second factor. The same situation can occur if a first statistical analysis

shows significant treatment by stratum interactions. A similar phenomenon arises in the

analyses of subgroups in clinical trials. It would be interesting to develop strategies to deal with

these practical situations.

A second interesting topic would be to describe the procedures and to provide corresponding

computer programs to perform stratified many-to-one comparisons in a two-way analysis of

covariance model which allows adjustment for covariates like a baseline value or a continuous

covariate like age (see also Wong and Cheung (2000)).

Another inviting topic that could need more attention is the construction of simultaneous

confidence intervals in case the testing problem is expressed in terms of proportions.
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Appendix 1: Multivariate normal and multivariate t-distribution

The multivariate normal distribution and the multivariate t-distribution play an important role in

many statistical applications and in many multiple comparisons procedures. Also the test

statistics considered in this thesis are based on these multivariate distributions.

The multivariate normal distribution has been given a lot of attention in the literature. In contrast

to the multivariate normal distribution, the multivariate t-disitribution has been given much less

attention in the literature. See Johnson and Kotz (1972) and also Tong (1990) for a detailed

discussion of the multivariate normal distribution and for details of the multivariate t-distribution.

This appendix describes the definition and some basic properties of both these multivariate

distributions. In addition it shows the relationship between the multivariate normal and

multivariate t-distribution.

Multivariate Normal distribution

Definition:

Let ′= 1 2( , ,..., )nZ Z ZZ  denotes a random vector of dimension n with independent and

identically distributed (i.i.d.) components iZ  with ~ (0,1)iZ N  i = 1, …, n.

If a random vector X  of dimension k can be expressed as = +X µ CZ  where µ  is a k-vector,

C  a (k x n) matrix with rank n ≤ k and ′ =CC S ,  then X  is said to follow a k-variate normal

distribution which will be denoted as  ~ ( , )kNX µ S .

By this definition, Z  is said to follow a standard normal distribution of dimension n, which is

denoted as ~ ( , )n nNZ 0 I , where nI  is the n-dimensional identity matrix.

The k-dimensional random variable X  is said to have a non-singular multivariate normal

distribution if k = n and > 0S . Otherwise, = 0S  and X  is said to follow a singular k-variate

normal distribution.

Some basic properties of the multivariate normal distribution are:
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i) ~ ( , )kNX µ S  if and only if its characteristic function is given by

1
2( ) ( ) , 

i
iE e eψ

′ ′−′= = ∈
t µ tSt

t x
x t t  R k where = −1i

Thus the distribution of ( , )kN µ S  is uniquely determined by µ  and S.

ii) Assume ~ ( , )kNX µ S  and ≠ 0S , then the density function of X  is given by

π
− ′= − − − 

 
1

/ 2

1 1
( ) exp ( ) ( )

2(2 ) | |k k
f x x µ S x µ

S

iii) Assume ~ ( , )kNX µ S , then as expected

=( )E X µ  and =( )Cov X S

iv) Assume ~ ( , )kNX µ S  and = +Y ? BX , where ?  is a l-vector and B  is a (l x k) matrix,

then

~ ( , )lN ′+Y ? Bµ BSB

Thus a linear transformation of a multivariate normal distributed random variable remains

multivariate normal distributed.

v) Assume ~ ( , )kNX µ S  and 
 

=  
 

1

2

X
X

X
, 

 
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and
 
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S S
, where 1X  and 1µ

are l-vectors and 11S  is a (l x l) matrix with l < k, then

1 1 11~ ( , )lNX µ S  and 2 2 22~ ( , )n lN −X µ S

Thus the marginal distribution of a multivariate normal distribution is again a multivariate

normal distribution.

Notation:

Assume ~ ( , )kNX µ S  with > 0S  and density function ( )kf x , then the cumulative distribution

function of this multivariate normal distribution is denoted as

Φ = ≤ ≤ = ≤ ≤ ≤ ≤ =, , 1 1 1( , ; , ) ( ) ( ,..., )k k k kP P a X b a X bµ S µ Sa b µ S a X b

= ∫ ∫
1

1

1... ( ) ...
k

k

b b

k k
a a

f dX dXx
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The α  (equi-)percentage point of this distribution is denoted as αξ , , ;k µ S , i.e.

( ), , ;, ; ,k k α αΦ ∞ =µ S- ? µ S .

Multivariate t-distribution

Definition:

Let 1 2( , ,..., ) ' ~ ( , )kX X X N=X µ R , where R  is the correlation matrix of X , and let U  be a

univariate random variable that is νχ2  distributed independently of the iX ’s. Then

1 2
1 2( , ,..., ) , ,...,

/ / /
k

k
X X XT T T
U U Uν ν ν

′ ′= =  
 

T  has a k-variate t-distribution with ν  degrees of

freedom and associated correlation matrix R .

In case =µ 0  the distribution is called a central k-variate t-distribution and the notation is

~ ( , )kt νT R . Otherwise the distribution is called a non-central k-variate t-distribution with non-

centrality parameter µ , which notation is ,~ ( , )kt νµT R .

Two basic properties of the multivariate t-distribution are:

i) Assume ~ ( , )kt νT R  and > 0R , then the density function of T  is given by

21

/ 2

12( ) 1 ,  
( ) | |

2

k

k
k

k

g

νν

ν ννπ

+−
−

+ Γ     ′= + ∈    Γ 
 

x t R t t
R

R k

where 
∞

− −Γ = ∫ 1

0

( ) t xx e t dt  denotes the gamma function.

This was independently derived by Dunnett and Sobel (1954) and Cornish (1954).

ii) Assume ,~ ( , )kt νµT R , then

=( )E T µ  for ν > 1 and =( )Corr T R  for ν > 2 .
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Notation:

Assume ~ ( , )kt νT R  and > 0R  and density function ( )kg x , then the cumulative distribution

function of this multivariate t-distribution is denoted as

ν νν = ≤ ≤ = ≤ ≤ ≤ ≤ =, , 1 1 1( , ; , ) ( ) ( ,..., )k k k kT P P a T b a T bR Ra b R a T b

νν

ν ννπ

+−
−
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 
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g d dt t t R t t
R

The α  (equi-)percentage point of the distribution of T  is denoted as ν α, , ;kt R , i.e.

( ), , ;, ; ,k kT ν α ν α∞ =R- t R .

The two-sided α  (equi-)percentage point of the distribution of T  is denoted as 
, , ;k

t
ν αR

, i.e.

( ), , ; , , ;
, ; ,k k k

T
ν α ν α

ν α=
R R

- t t R .

Relationships between multivariate normal and multivariate t-distribution

Dunnett (1955) showed that a general k-variate t-distribution with ν  degrees of freedom and

associated correlation matrix R  can be transformed into a single integral over a k-variate

standard normal distribution with the same matrix R  as covariance matrix.

Relationship 1:

Let ν( , ; , )kT a b R  and Φ ( , ; , )k a b µ S  be the cumulative density functions of the k-variate t-

distribution and k-variate normal distribution, respectively. In addition, let

ν ν ν

ν ν

ν
ν

− −

=
Γ

/ 2 / 2 / 2 1

/ 2( )
( /2)2

xe x
h x  be the density function of a νχ ν2 / distributed random variable.

Then νν
∞

= Φ =∫
0

( , ; , ) ( , ; , ) ( )k kT x x h x dxa b R a b 0 R

ν
ν ν

ν

ν
ν

∞
− −= Φ

Γ ∫
/ 2

/ 2 / 2 1
/ 2

0

( , ; , )
( /2)2

x
ke x x x dxa b 0 R
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In particular, assume that ,~ ( , )kt νµT R  and Z is a standardized k-variate normal distribution

random variable with correlation matrix R  and independently U  is a νχ ν2 /  distributed random

variable, then ( ) ( )+ < = < = < − 
 

P P P U
U

Z µ
T b b Z b µ .

Relationship 2:

Let ν( ; , )kg t R  and ( ; , )kf t 0 R  be the density functions of a multivariate t-distribution and

multivariate normal distribution, respectively. Then

lim ( ; , ) ( ; , )  k kg f
ν

ν
→∞

= ∀ ∈t R t 0 R t R k

Thus this relationship shows that the multivariate t-distribution converges to the multivariate

normal distribution for increasing degrees of freedom, like it holds true for the univariate

situation.

Product correlation structure

A correlation matrix { }ρ= ijR  is said to satisfy the product structure condition if

ρ λ λ= ∀ ≠ ij i j i j  with λ ∈ −( 1,1)i .

Let ′= 1 2( , ,..., )kX X XX  have a k-variate normal distribution with zero mean vector, unit

variances and correlation matrix { }ρ= ijR  which satisfies the product structure condition. Then

the iX ’s can be represented by λ λ= − − =2
01   1,...,i i i iX Y Y i k  where 0 1, ,..., kY Y Y  are i.i.d.

(0,1)N  random variables.

Under this condition, the calculation of the probability of the cumulative density function of the

k-variate normal distribution does not involve a k-variate integral but can be expressed by

univariate integrals as follows:

λ λ

λ λ

∞

=−∞

    + +    Φ = Φ − Φ Φ    − −     
∏∫ 2 2

1

( , ; , ) ( )
1 1

k
i i i i

k
i i i

y b y a
d ya b 0 R
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where Φ( )y  is the cumulative density function of the univariate standard normal distribution.

See also Dunnett and Sobel (1955) or Curnow and Dunnett (1962).

Proof:

Φ = ≤ ≤ = ≤ ≤ = =( , ; , ) ( ) ( ; 1,..., )k i i iP P a X b i ka b 0 R a X b

λ λ= ≤ − − ≤ = =2
0( 1 ;  1,..., )i i i i iP a Y Y b i k

( )λ λ
∞

−∞

= ≤ − − ≤ = = Φ =∫ 2
0 01 ; 1,...,  and ( )i i i i iP a Y Y b i k Y y d y

( )λ λ λ
∞

−∞

= + ≤ − ≤ + = Φ =∫ 21 ; 1,..., ( )i i i i i iP y a Y y b i k d y

λ λ

λ λ

∞

=−∞

    + +    = Φ − Φ Φ    − −     
∏∫ 2 2

1

( )
1 1

k
i i i i

i i i

y b y a
d y .

Similarly the cumulative density function of the k-variate t-distribution can be expressed by

univariate integrals:

νν
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     + +     = Φ − Φ Φ     − −      
∏∫ ∫ 2 2

10

( ) ( )
1 1

k
i i i i

i i i

y b x y a x
d y h x dx

where 
ν ν ν

ν ν

ν
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( /2)2

xe x
h x  is the density function of a νχ ν2 / distributed random variable.
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Appendix 2: SAS/STAT function PROBMC

The PROBMC function provided with the SAS/STAT software enables to compute probabilities

and quantiles from the one-sided and two-sided Dunnett distributions with finite and infinite

degreed of freedom for the variance estimate.

This section describes the PROBMC function restricted to the many-to-one test situation. A full

description of the PROBMC function can be found in the SAS manual SAS/STAT Software

(1996).

Syntax

value = PROBMC(string, q, prob, df, nparms, <parameters>);

Return value:

value = either the probability or the quantile from the distribution

Input arguments:

string = a character string identifying the distribution, which is either ‘DUNNETT1’

or ‘DUNNETT2’.

q = the quantile from the distribution. Only one of the parameters q or prob

should be specified; the other should be set to missing. (q > 0 in case of

‘DUNNETT2’)

prob = the left probability of the distribution. Only one of the parameters q or

prob should be specified; the other should be set to missing.

df = the degrees of freedom. A missing value is interpreted as an infinite

value.

nparms = the number of active treatment groups.

parameters = the set of nparms parameters that must be specified to handle the

unequal case. If parameters is not specified, equal parameters are

assumed.

The precision of the computed probability prob will be O(10-8) (absolute error), and the precision

of the computed quantile q will be O(10-5).
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Formulas and parameters

Let
/ 2 / 2 / 2 1

/ 2( )
( /2)2

xe x
h x

ν ν ν

ν ν

ν
ν

− −

=
Γ

 be the density function of a 2 /νχ ν  distributed random variable.

Then the following expressions relate the probability, prob, and the quantile, q, for different

situations.

• Unequal case with finite degrees of freedom:

2
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k
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i i

y q x
prob y h x dydxν

λ
φ

λ

∞ ∞
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∏∫ ∫ two-sided case

In this case, the parameters are λ λ1,..., k , the value of nparms is set to k, and the value of

df is set to ν .

• Equal case with finite degrees of freedom:
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In this case, no parameters are passed, the value of nparms is set to k, and the value of

df is set to ν .

• Unequal case with infinite degrees of freedom:
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In this case, the parameters are λ λ1,..., k , the value of nparms is set to k, and the value of

df is set to missing.

• Equal case with infinite degrees of freedom:

( )( ) 2
k

prob y y q dyφ
∞

−∞

 = Φ + ∫ one-sided case

( ) ( )( ) 2 2
k

prob y y q y q dyφ
∞

−∞

 = Φ + − Φ − ∫ two-sided case

In this case, no parameters are passed, the value of nparms is set to k, and the value of

df is set to missing.
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Appendix 3: SAS Program code

This appendix contains the SAS code of all procedures used throughout this thesis to analyze

the example dataset introduced in Chapter 3.

The example dataset consist of the following data:

 OBS  STRATA  TRT             Y  OBS  STRATA  TRT             Y

1     1     0     10.5212 23     2     0     15.2332

 2     1     0     10.8392 24     2     0     13.8679

3     1     0      9.6872 25     2     0     15.0877

4     1     0     10.6900 26     2     0     14.7369

  5     1     0      9.2314 27     2     0     13.8194

6     1     0      9.3274 28     2     0     13.4193

7     1     0     10.8205 29     2     0     14.8510

8     1     0     11.8538 30     2     0     14.4201

9     1     0     10.0951 31     2     0     15.5445

10    1     0      9.8664 32     2     0     15.3915

11    1     1     10.2495 33     2     1     13.4587

12    1     1     10.9874 34     2     1     15.4549

13    1     1     11.8561 35     2     1     17.2838

14    1     1     10.9736 36     2     1     15.4497

15    1     1     10.8699 37     2     1     14.5990

16    1     1     11.6841 38     2     1     15.0679

17    1     1     11.4768 39     2     2     16.1797

18    1     2     13.8552 40     2     2     16.6505

19    1     2     12.6919 41     2     2     15.3983

20    1     2     12.3069 42     2     2     15.9460

21    1     2     11.9455 43     2     2     15.3376

22    1     2     11.4824

The value Strata = 1 represents the males and Strata = 2 represents the females.

The value Trt = 0 represents the control treatment and Trt = 1, Trt = 2 represent the low dose

and high dose respectively.

The data are assumed to be stored in the location 'c:\My SAS Files\...';
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Program CH3_12.SAS performs the analyses of Chapter 3, Sections 1 and 2

/*********************************************************/
/* Program calculating one-sided 'Dunnett' corrected     */
/* p-values and simultanous CI's                         */
/*                                                       */
/* Input:  dataset Example                               */
/* Output: dij  = estimate of treatment effect of        */
/*                treatment j in stratum i               */
/*         pval = one-sided adjusted p-value             */
/*         cval = critical values at alpha 5% level      */
/*         cij  = lower limit of one-sided 95% CI of     */
/*                treatment j in stratum i               */
/*********************************************************/

%GLOBAL _PRINT_;
%LET _PRINT_ = OFF;

OPTIONS NOBYLINE;

/****************************/
/* Input of example dataset */
/****************************/
LIBNAME DAT 'c:\My SAS Files\...';

DATA WORK.example;
SET DAT.example;
trts = 10 * strata + trt; /* Unique treatment code per stratum */
RUN;

PROC MEANS DATA = WORK.example NOPRINT;
CLASS trts;
VAR y;
OUTPUT OUT = WORK.means N = n MEAN = mean STD = std;
RUN;

TITLE 'Summary statistics';
PROC PRINT DATA = WORK.means;
RUN;

/******************************/
/* Compute t-values and sigma */
/******************************/
PROC MIXED DATA = WORK.example;
CLASS strata trt;
MODEL y = strata trt strata*trt;
ESTIMATE 'C1 plac - 1' strata 0 0 trt -1 1 0 strata*trt -1 1 0  0 0 0;
ESTIMATE 'C1 plac - 2' strata 0 0 trt -1 0 1 strata*trt -1 0 1  0 0 0;
ESTIMATE 'C2 plac - 1' strata 0 0 trt -1 1 0 strata*trt  0 0 0 -1 1 0;
ESTIMATE 'C2 plac - 2' strata 0 0 trt -1 0 1 strata*trt  0 0 0 -1 0 1;
LSMEANS strata*trt/ DIFFS;
MAKE 'DIFFS' OUT = WORK.diffs;
MAKE 'COVPARMS' OUT = WORK.cov;
RUN;

DATA WORK.diffs;
SET WORK.diffs;
IF strata = _strata;
IF trt = 0 and _trt > 0;
t = - _t_;
p = 1 - PROBT(t,_df_); /* one-sided unadjusted p-value */
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RUN;

TITLE 'Statistics and unadjusted p-values';
PROC PRINT DATA = WORK.diffs;
RUN;

/******************************************/
/* Create variables needed within SAS/IML */
/******************************************/
DATA _NULL_;
SET WORK.cov;
CALL SYMPUT('sigma',SQRT(est));
RUN;

DATA _NULL_;
SET WORK.means;
IF trts = 10 THEN CALL SYMPUT('n10',n);
IF trts = 11 THEN CALL SYMPUT('n11',n);
IF trts = 12 THEN CALL SYMPUT('n12',n);
IF trts = 20 THEN CALL SYMPUT('n20',n);
IF trts = 21 THEN CALL SYMPUT('n21',n);
IF trts = 22 THEN CALL SYMPUT('n22',n);
IF trts = . THEN CALL SYMPUT('df',n-6);
RUN;

DATA _NULL_;
SET WORK.diffs;
IF strata = 1 AND _trt = 1 THEN DO;
  CALL SYMPUT('t11',t); CALL SYMPUT('d11',-_diff_); END;
IF strata = 1 AND _trt = 2 THEN DO;
  CALL SYMPUT('t12',t); CALL SYMPUT('d12',-_diff_); END;
IF strata = 2 AND _trt = 1 THEN DO;
  CALL SYMPUT('t21',t); CALL SYMPUT('d21',-_diff_); END;
IF strata = 2 AND _trt = 2 THEN DO;
  CALL SYMPUT('t22',t); CALL SYMPUT('d22',-_diff_); END;
RUN;

/*******************************************/
/* Compute adjusted p-values and sim. CI's */
/* using algorithm 3: PROBMC               */
/*******************************************/
PROC IML;
n10 = &n10; n11 = &n11; n12 = &n12;
n20 = &n20; n21 = &n21; n22 = &n22;

d11 = &d11; d12 = &d12; d21 = &d21; d22 = &d22;

df= &df;             /* sum overij (nij-1) */
lambda11 = SQRT(n11/(n10 + n11));
lambda12 = SQRT(n12/(n10 + n12));
lambda21 = SQRT(n21/(n20 + n21));
lambda22 = SQRT(n22/(n20 + n22));

d = df/2;
m = d**d / GAMMA(d);

/* Define integrand */
START dunnett(u) GLOBAL(d,t,lambda11,lambda12,lambda21,lambda22);
  q = t * SQRT(u);
  p1 = PROBMC("DUNNETT1",q,.,.,2,lambda11,lambda12);
  p2 = PROBMC("DUNNETT1",q,.,.,2,lambda21,lambda22);
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  g = u **(d-1) * EXP(-u * d);
  v = p1 * p2 * g;
RETURN (v);
FINISH;

int = {0 .P};

t = &t11;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval = 1 - m * z;
PRINT 'P-value stratum 1 treatment 1' d11 t pval[FORMAT=7.5];

t = &t12;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval = 1 - m * z;
PRINT 'P-value stratum 1 treatment 2' d12 t pval[FORMAT=7.5];

t = &t21;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval = 1 - m * z;
PRINT 'P-value stratum 2 treatment 1' d21 t pval[FORMAT=7.5];

t = &t22;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval = 1 - m * z;
PRINT 'P-value stratum 2 treatment 2' d22 t pval[FORMAT=7.5];

/* find critical values using bisection method */
alpha = 0.05;
c = 2;                           /* number of active treatments    */
r = 2;                           /* number of groups               */
q1 = TINV(1 - alpha,df);         /* start value: uncorr. t value   */
q2 = TINV(1 - alpha/(c*r),df);   /* start value: Bonf. corr. value */
t = q2;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
crit = 1 - m * z;

n = 1;
DO WHILE ((ABS(crit - alpha) > 0.0001) & (n < 20));/* max 20 steps */
  n = n + 1;
  qm = (q1 + q2)/2;
  t = qm;
  CALL QUAD(z,"dunnett",int) EPS = 1E-10;
  crit = 1 - m * z;
  IF crit > alpha THEN q1 = qm;
  ELSE q2 = qm;
END;

cval = t;
PRINT 'Critical value' cval[FORMAT=7.5];

c11 = &d11 - cval * &sigma * SQRT(n11**-1 + n10**-1);
c12 = &d12 - cval * &sigma * SQRT(n12**-1 + n10**-1);
c21 = &d21 - cval * &sigma * SQRT(n21**-1 + n20**-1);
c22 = &d22 - cval * &sigma * SQRT(n22**-1 + n20**-1);

PRINT 'Lower limit of one-sided 95% CIs' c11 c12 c21 c22;

QUIT;
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Program CH3_3.SAS performs the analyses of Chapter 3, Section 3

/*********************************************************/
/* Program calculating power                             */
/*                                                       */
/* Input:  parameters of dataset Example including       */
/*         critical value                                */
/*         program PROBMVT.SAS of Genz and Bretz         */
/* Output: powAll = All-pairs power                      */
/*         powAny = Any-pair power                       */
/*********************************************************/

/*****************************************************/
/* Include the SAS/IML program PROBMVT that computes */
/* probabilities of the multivariate t distribution  */
/* available on the homepage of Bretz:               */
/* http://www.bioinf.uni-hannover.de/~bretz          */
/*****************************************************/

/****************************/
/* Input parameters example */
/****************************/
s = SQRT(0.7);
b11 = (7 / (10+7))##(0.5);
b12 = (5 / (10+5))##(0.5);
b21 = (7 / (10+7))##(0.5);
b22 = (5 / (10+5))##(0.5);
rho1_12 = b11*b12;
rho2_12 = b21*b22;

/*************************/
/* S is the complete set */
/*************************/
n = 4;
nu = 38;
covar = (   1   ||rho1_12||   0   ||   0   )//
        (rho1_12||   1   ||   0   ||   0   )//
        (   0   ||   0   ||   1   ||rho2_12)//
        (   0   ||   0   ||rho2_12||   1   );

maxpts = 2000*n*n*n;
abseps = .0001;
releps = 0;

delta11 = 1.5 / (s*SQRT(1/10 + 1/7));
delta12 = 1.5 / (s*SQRT(1/10 + 1/5));
delta21 = 1.5 / (s*SQRT(1/10 + 1/7));
delta22 = 1.5 / (s*SQRT(1/10 + 1/5));
delta = delta11||delta12||delta21||delta22;

/***************************/
/* Compute All-pairs power */
/***************************/
lower = J(1,n,2.30336);   /* fill in the crit.value */
upper = J(1,n,15);
infin = J(1,n,1);         /* interval [lower,inf)   */

RUN MVN_DIST(n,nu,delta,lower,upper,infin,covar,maxpts,abseps,releps,error,
                                                        value,nevals,inform);
powAll = value;
PRINT 'All-pairs power';
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PRINT powAll, n error nevals inform;

/***************************/
/* Compute Any-pair power */
/***************************/
lower = J(1,n,0);
upper = J(1,n,2.30336);   /* fill in the crit.value */
infin = J(1,n,0);         /* interval (-inf,upper]  */

RUN MVN_DIST(n,nu,delta,lower,upper,infin,covar,maxpts,abseps,releps,error,
                                                        value,nevals,inform);
powAny = 1 - value;
PRINT 'Any-pair power';
PRINT powAny, n error nevals inform;

/*************************************/
/* S is only the two highest dosages */
/*************************************/
n = 2;
nu = 38;

covar = (   1   ||   0   )//
        (   0   ||   1   );

maxpts = 2000*n*n*n;
abseps = .0001;
releps = 0;

delta12 = 2 / (s*SQRT(1/10 + 1/5));
delta22 = 2 / (s*SQRT(1/10 + 1/5));
delta = delta12||delta22;

/***************************/
/* Compute All-pairs power */
/***************************/
lower = J(1,n,2.30336);   /* fill in the crit.value */
upper = J(1,n,15);
infin = J(1,n,1);         /* interval [lower,inf)   */

RUN MVN_DIST(n,nu,delta,lower,upper,infin,covar,maxpts,abseps,releps,error,
                                                        value,nevals,inform);
powAll = value;
PRINT 'All-pairs power';
PRINT powAll, n error nevals inform;

/***************************/
/* Compute Any-pair power */
/***************************/
lower = J(1,n,0);
upper = J(1,n,2.30336);   /* fill in the crit.value */
infin = J(1,n,0);         /* interval (-inf,upper]  */

RUN MVN_DIST(n,nu,delta,lower,upper,infin,covar,maxpts,abseps,releps,error,
                                                        value,nevals,inform);
powAny = 1 - value;
PRINT 'Any-pair power';
PRINT powAny, n error nevals inform;

QUIT;
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Program CH3_4.SAS performs the analyses of Chapter 3, Section 4

/*********************************************************/
/* Program calculating sample sizes                      */
/*                                                       */
/*                                                       */
/* Input:  parameters of dataset Example including       */
/*         critical value and relevant difference        */
/*         program PROBMVN.SAS of Genz and Bretz         */
/* Output: powAll = All-pairs power                      */
/*         (powAny = Any-pair power)                     */
/*********************************************************/

/*********************************************************/
/* Include the SAS/IML program PROBMVN that computes     */
/* probabilities of the multivariate normal distribution */
/* available on the homepage of Bretz:                   */
/* http://www.bioinf.uni-hannover.de/~bretz              */
/*********************************************************/

/****************************/
/* Input parameters example */
/****************************/
l = 1 / SQRT(2);
rho = l / (1+l);

/*************************/
/* S is the complete set */
/*************************/
n = 4;
covar = ( 1 ||rho|| 0 || 0 )//
        (rho|| 1 || 0 || 0 )//
        ( 0 || 0 || 1 ||rho)//
        ( 0 || 0 ||rho|| 1 );

maxpts = 2000*N*N*N;
abseps = .0001;
releps = 0;

dalpha = 2.215;                  /* crit.value */
delta = 1.5;         /* relevant difference    */

/***********************************************/
/* fill in (n1,n2) and compute All-pairs power */
/* change until power >= required value        */
/***********************************************/
n1 = 8;
n2 = 8;

s = SQRT(0.7);
b1 = (delta * SQRT(n1) / (s*SQRT(1.707107))) - dalpha;
b2 = (delta * SQRT(n2) / (s*SQRT(1.707107))) - dalpha;

lower = J(1,N,0);
upper = b1||b1||b2||b2;
infin = J(1,N,0);     /* interval (-inf,upper] */

RUN MVN_DIST(n,lower,upper,infin,covar,maxpts,abseps,releps,error,value,
                                                           nevals,inform);
powAll = value;
PRINT 'All-pairs power';
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PRINT powAll, n error nevals inform;

QUIT;
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Program CH3_5.SAS performs the analyses of Chapter 3, Section 5

/*********************************************************/
/* Program calculating one-sided adjusted p-values       */
/* applying step-down procedure                          */
/*                                                       */
/* Input:  parameters of dataset Example                 */
/* Output: pval = one-sided adjsuted pvalue              */
/*         cval = critical value at alpha 5% level       */
/*********************************************************/

/*********************************************/
/* Compute adjusted p-values and crit.values */
/* using algorithm 3: PROBMC                 */
/*********************************************/
PROC IML;
n10 = 10; n11 = 7; n12 = 5;
n20 = 10; n21 = 6; n22 = 5;

df = SUM(n10,n11,n12,n20,n21,n22) - 6;  /* sum overij (nij-1) */
lambda11 = SQRT(n11/(n10 + n11));
lambda12 = SQRT(n12/(n10 + n12));
lambda21 = SQRT(n21/(n20 + n21));
lambda22 = SQRT(n22/(n20 + n22));

d = df/2;
m = d**d / GAMMA(d);

/**********/
/* Step 1 */
/**********/
/*Define integrand */
START dunnett(u) GLOBAL(d,t,lambda11,lambda12,lambda21,lambda22);
  q = t * SQRT(u);
  p1 = PROBMC("DUNNETT1",q,.,.,2,lambda11,lambda12);
  p2 = PROBMC("DUNNETT1",q,.,.,2,lambda21,lambda22);
  g = u **(d-1) * EXP(-u * d);
  v = p1 * p2 * g;
RETURN (v);
FINISH;

int = {0 .P};

t = 4.82028;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval = 1 - m * z;
PRINT 'P-value step 1' t pval[FORMAT=7.5];

/* find critical values using bisection method */
alpha = 0.05;
c = 2;                           /* number of active treatments */
r = 2;                           /* number of groups */
q1 = TINV(1 - alpha,df);         /* start value: uncorr. t value */
q2 = TINV(1 - alpha/(c*r),df);   /* start value: Bonf. corr. value */
t = q2;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
crit = 1 - m * z;

n = 1;
DO WHILE ((ABS(crit - alpha) > 0.0001) & (n < 20));/* max 20 steps */
  n = n + 1;
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  qm = (q1 + q2)/2;
  t = qm;
  CALL QUAD(z,"dunnett",int) EPS = 1E-10;
  crit = 1 - m * z;
  IF crit > alpha THEN q1 = qm;
  ELSE q2 = qm;
END;

cval = t;
PRINT 'Critical value step 1' cval[FORMAT=7.5];

/**********/
/* Step 2 */
/**********/
/*Redefine integrand */
START dunnett(u) GLOBAL(d,t,lambda11,lambda21,lambda22);
  q = t * SQRT(u);
  p1 = PROBMC("DUNNETT1",q,.,.,1,lambda11);
  p2 = PROBMC("DUNNETT1",q,.,.,2,lambda21,lambda22);
  g = u **(d-1) * EXP(-u * d);
  v = p1 * p2 * g;
RETURN (v);
FINISH;

int = {0 .P};

t = 2.81947;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval = 1 - m * z;
PRINT 'P-value step 2' t pval[FORMAT=7.5];

/* find critical values using bisection method */
c = 2;                           /* number of active treatments */
r = 2;                           /* number of groups */
q1 = TINV(1 - alpha,df);         /* start value: uncorr. t value */
q2 = TINV(1 - alpha/(c*r),df);   /* start value: Bonf. corr. value */
t = q2;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
crit = 1 - m * z;

n = 1;
DO WHILE ((ABS(crit - alpha) > 0.0001) & (n < 20));/* max 20 steps */
  n = n + 1;
  qm = (q1 + q2)/2;
  t = qm;
  CALL QUAD(z,"dunnett",int) EPS = 1E-10;
  crit = 1 - m * z;
  IF crit > alpha THEN q1 = qm;
  ELSE q2 = qm;
END;

cval = t;
PRINT 'Critical value step 2' cval[FORMAT=7.5];

/**********/
/* Step 3 */
/**********/
/*Redefine integrand */
START dunnett(u) GLOBAL(d,t,lambda11,lambda21);
  q = t * SQRT(u);
  p1 = PROBMC("DUNNETT1",q,.,.,1,lambda11);
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  p2 = PROBMC("DUNNETT1",q,.,.,1,lambda21);
  g = u **(d-1) * EXP(-u * d);
  v = p1 * p2 * g;
RETURN (v);
FINISH;

int = {0 .P};

t = 2.13874;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval = 1 - m * z;
PRINT 'P-value step 3' t pval[FORMAT=7.5];

/* find critical values using bisection method */
c = 2;                           /* number of active treatments */
r = 2;                           /* number of groups */
q1 = TINV(1 - alpha,df);         /* start value: uncorr. t value */
q2 = TINV(1 - alpha/(c*r),df);   /* start value: Bonf. corr. value */
t = q2;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
crit = 1 - m * z;

n = 1;
DO WHILE ((ABS(crit - alpha) > 0.0001) & (n < 20));/* max 20 steps */
  n = n + 1;
  qm = (q1 + q2)/2;
  t = qm;
  CALL QUAD(z,"dunnett",int) EPS = 1E-10;
  crit = 1 - m * z;
  IF crit > alpha THEN q1 = qm;
  ELSE q2 = qm;
END;

cval = t;
PRINT 'Critical value step 3' cval[FORMAT=7.5];

/**********/
/* Step 4 */
/**********/
/*Redefine integrand */
START dunnett(u) GLOBAL(d,t,lambda21);
  q = t * SQRT(u);
  p2 = PROBMC("DUNNETT1",q,.,.,1,lambda21);
  g = u **(d-1) * EXP(-u * d);
  v = p2 * g;
RETURN (v);
FINISH;

int = {0 .P};

t = 1.37519;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval = 1 - m * z;
PRINT 'P-value step 4' t pval[FORMAT=7.5];

/* find critical values using bisection method */
alpha = 0.05;
c = 2;                           /* number of active treatments */
r = 2;                           /* number of groups */
q1 = TINV(1 - alpha,df);         /* start value: uncorr. t value */
q2 = TINV(1 - alpha/(c*r),df);   /* start value: Bonf. corr. value */
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t = q2;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
crit = 1 - m * z;

n = 1;
DO WHILE ((ABS(crit - alpha) > 0.0001) & (n < 20));/* max 20 steps */
  n = n + 1;
  qm = (q1 + q2)/2;
  t = qm;
  CALL QUAD(z,"dunnett",int) EPS = 1E-10;
  crit = 1 - m * z;
  IF crit > alpha THEN q1 = qm;
  ELSE q2 = qm;
END;

cval = t;
PRINT 'Critical value step 4' cval[FORMAT=7.5];

QUIT;
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Program CH4.SAS performs the analyses of Chapter 4

/*********************************************************/
/* Program calculating two-sided 'Dunnett' corrected     */
/* p-values and simultaneous CI's                        */
/*                                                       */
/* Input:  dataset Example                               */
/* Output: dij   = estimate of treatment effect of       */
/*                 treatment j in stratum i              */
/*         pval  = two-sided adjusted p-value            */
/*         cval  = critical values at alpha 5% level     */
/*         cij_l = lower limit of two-sided 95% CI of    */
/*                 treatment j in stratum i              */
/*         cij_u = upper limit of two-sided 95% CI of    */
/*                 treatment j in stratum i              */
/*********************************************************/

%GLOBAL _PRINT_;
%LET _PRINT_ = OFF;

OPTIONS NOBYLINE;

/****************************/
/* Input of example dataset */
/****************************/
LIBNAME DAT 'c:\My SAS Files\...';

DATA WORK.example;
SET DAT.example;
trts = 10 * strata + trt; /* Unique treatment code per stratum */
RUN;

/******************************/
/* Compute t-values and sigma */
/******************************/
PROC MIXED DATA = WORK.example;
CLASS strata trt;
MODEL y = strata trt strata*trt;
ESTIMATE 'C1 plac - 1' strata 0 0 trt -1 1 0 strata*trt -1 1 0  0 0 0;
ESTIMATE 'C1 plac - 2' strata 0 0 trt -1 0 1 strata*trt -1 0 1  0 0 0;
ESTIMATE 'C2 plac - 1' strata 0 0 trt -1 1 0 strata*trt  0 0 0 -1 1 0;
ESTIMATE 'C2 plac - 2' strata 0 0 trt -1 0 1 strata*trt  0 0 0 -1 0 1;
LSMEANS strata*trt/ DIFFS;
MAKE 'DIFFS' OUT = WORK.diffs;
MAKE 'COVPARMS' OUT = WORK.cov;
RUN;

DATA WORK.diffs;
SET WORK.diffs;
IF strata = _strata;
IF trt = 0 and _trt > 0;
t = - _t_;
RUN;

TITLE 'Statistics and Unadjusted p-values';
PROC PRINT DATA = WORK.diffs;
RUN;

/******************************************/
/* Create variables needed within SAS/IML */
/******************************************/
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DATA _NULL_;
SET WORK.cov;
CALL SYMPUT('sigma',SQRT(est));
RUN;

PROC MEANS DATA = WORK.example NOPRINT;
CLASS trts;
VAR y;
OUTPUT OUT = WORK.means N = n;
RUN;

DATA _NULL_;
SET WORK.means;
IF trts = 10 THEN CALL SYMPUT('n10',n);
IF trts = 11 THEN CALL SYMPUT('n11',n);
IF trts = 12 THEN CALL SYMPUT('n12',n);
IF trts = 20 THEN CALL SYMPUT('n20',n);
IF trts = 21 THEN CALL SYMPUT('n21',n);
IF trts = 22 THEN CALL SYMPUT('n22',n);
IF trts = . THEN CALL SYMPUT('df',n-6);
RUN;

DATA _NULL_;
SET WORK.diffs;
IF strata = 1 AND _trt = 1 THEN DO;
  CALL SYMPUT('t11',t); CALL SYMPUT('d11',-_diff_); END;
IF strata = 1 AND _trt = 2 THEN DO;
  CALL SYMPUT('t12',t); CALL SYMPUT('d12',-_diff_); END;
IF strata = 2 AND _trt = 1 THEN DO;
  CALL SYMPUT('t21',t); CALL SYMPUT('d21',-_diff_); END;
IF strata = 2 AND _trt = 2 THEN DO;
  CALL SYMPUT('t22',t); CALL SYMPUT('d22',-_diff_); END;
RUN;

/*******************************************/
/* Compute adjusted p-values and sim. CI's */
/* using algorithm 3: PROBMC               */
/*******************************************/
PROC IML;
n10 = &n10; n11 = &n11; n12 = &n12;
n20 = &n20; n21 = &n21; n22 = &n22;

d11 = &d11; d12 = &d12; d21 = &d21; d22 = &d22;

df= &df;             /* sum overij (nij-1) */
lambda11 = SQRT(n11/(n10 + n11));
lambda12 = SQRT(n12/(n10 + n12));
lambda21 = SQRT(n21/(n20 + n21));
lambda22 = SQRT(n22/(n20 + n22));

d = df/2;
m = d**d / GAMMA(d);

/*Define integrand */
START dunnett(u) GLOBAL(d,t,lambda11,lambda12,lambda21,lambda22);
  q = t * SQRT(u);
  p1 = PROBMC("DUNNETT2",q,.,.,2,lambda11,lambda12);
  p2 = PROBMC("DUNNETT2",q,.,.,2,lambda21,lambda22);
  g = u **(d-1) * EXP(-u * d);
  v = p1 * p2 * g;
RETURN (v);
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FINISH;

int = {0 .P};

t = &t11;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval2 = 1 - m * z;
PRINT 'P-value stratum 1 treatment 1' d11 t pval2[FORMAT=7.5];

t = &t12;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval2 = 1 - m * z;
PRINT 'P-value stratum 1 treatment 2' d12 t pval2[FORMAT=7.5];

t = &t21;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval2 = 1 - m * z;
PRINT 'P-value stratum 2 treatment 1' d21 t pval2[FORMAT=7.5];

t = &t22;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval2 = 1 - m * z;
PRINT 'P-value stratum 2 treatment 2' d22 t pval2[FORMAT=7.5];

/* find critical values using bisection method */
alpha = 0.05;
c = 2;                             /* number of active treatments */
r = 2;                             /* number of groups */
q1 = TINV(1 - alpha/2,df);         /* start value: uncorr. t value */
q2 = TINV(1 - alpha/(2*c*r),df);   /* start value: Bonf. corr. value */
t = q2;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
crit = 1 - m * z;

n = 1;
DO WHILE ((ABS(crit - alpha) > 0.0001) & (n < 20));/* max 20 steps */
  n = n + 1;
  qm = (q1 + q2)/2;
  t = qm;
  CALL QUAD(z,"dunnett",int) EPS = 1E-10;
  crit = 1 - m * z;
  IF crit > alpha THEN q1 = qm;
  ELSE q2 = qm;
END;

cval = t;
PRINT 'Two-sided critical value' cval[FORMAT=7.5];

c11_l = &d11 - cval * &sigma * SQRT(n11**-1 + n10**-1);
c11_u = &d11 + cval * &sigma * SQRT(n11**-1 + n10**-1);
c12_l = &d12 - cval * &sigma * SQRT(n12**-1 + n10**-1);
c12_u = &d12 + cval * &sigma * SQRT(n12**-1 + n10**-1);
c21_l = &d21 - cval * &sigma * SQRT(n21**-1 + n20**-1);
c21_u = &d21 + cval * &sigma * SQRT(n21**-1 + n20**-1);
c22_l = &d22 - cval * &sigma * SQRT(n22**-1 + n20**-1);
c22_u = &d22 + cval * &sigma * SQRT(n22**-1 + n20**-1);

PRINT 'Lower and upper limits of two-sided 95%CIs',
    c11_l c11_u, c12_l c12_u, c21_l c21_u, c22_l c22_u;

QUIT;
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Program CH6.SAS performs the analyses of Chapter 6

/*********************************************************/
/* Program calculating two-sided adjusted p-values and   */
/* critical values for ratio's                           */
/*                                                       */
/* Input:  dataset Example                               */
/* Output: dij = estimate of treatment effect of         */
/*               treatment j in group i                  */
/*         cal = two-sided critical values at            */
/*               alpha 5% level                          */
/*********************************************************/

%GLOBAL _PRINT_;
%LET _PRINT_ = OFF;

OPTIONS NOBYLINE;

/****************************/
/* Input of example dataset */
/****************************/
LIBNAME DAT 'c:\My SAS Files\...';

DATA WORK.example;
SET DAT.example;
trts = 10 * strata + trt; /* Unique treatment code per stratum */
RUN;

/******************************************/
/* Create variables needed within SAS/IML */
/******************************************/
PROC MIXED DATA = WORK.example;
CLASS strata trt;
MODEL y = strata trt strata*trt;
MAKE 'COVPARMS' OUT = WORK.cov;
RUN;

DATA _NULL_;
SET WORK.cov;
CALL SYMPUT('sigma',SQRT(est));
RUN;

PROC MEANS DATA = WORK.example NOPRINT;
CLASS trts;
VAR y;
OUTPUT OUT = WORK.means MEAN = MEAN N = n STD =std;
RUN;

DATA _NULL_;
SET WORK.means;
IF trts = 10 THEN DO;
  CALL SYMPUT('x10',mean); CALL SYMPUT('n10',n); END;
IF trts = 11 THEN DO;
  CALL SYMPUT('x11',mean); CALL SYMPUT('n11',n); END;
IF trts = 12 THEN DO;
  CALL SYMPUT('x12',mean); CALL SYMPUT('n12',n); END;
IF trts = 20 THEN DO;
  CALL SYMPUT('x20',mean); CALL SYMPUT('n20',n); END;
IF trts = 21 THEN DO;
  CALL SYMPUT('x21',mean); CALL SYMPUT('n21',n); END;
IF trts = 22 THEN DO;
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  CALL SYMPUT('x22',mean); CALL SYMPUT('n22',n); END;
IF trts = . THEN CALL SYMPUT('df',n-6);
RUN;

/*********************************************/
/* Compute adjusted p-values and crit. value */
/* using algorithm 3: PROBMC                 */
/*********************************************/
PROC IML;
x10 = &x10; x11 = &x11; x12 = &x12;
x20 = &x20; x21 = &x21; x22 = &x22;

n10 = &n10; n11 = &n11; n12 = &n12;
n20 = &n20; n21 = &n21; n22 = &n22;

df = &df;             /* sum overij (nij-1) */
s  = &sigma;

t11 = (x11 - x10) / (s * SQRT(1/n11 + 1/n10));
t12 = (x12 - x10) / (s * SQRT(1/n12 + 1/n10));
t21 = (x21 - x20) / (s * SQRT(1/n21 + 1/n20));
t22 = (x22 - x20) / (s * SQRT(1/n22 + 1/n20));

lambda11 = 1 / SQRT((n10/n11) + 1);
lambda12 = 1 / SQRT((n10/n12) + 1);
lambda21 = 1 / SQRT((n20/n21) + 1);
lambda22 = 1 / SQRT((n20/n22) + 1);

d = df/2;
m = d**d / GAMMA(d);

/*Define integrand */
START dunnett(u) GLOBAL(d,t,lambda11,lambda12,lambda21,lambda22);
  q = t * SQRT(u);
  p1 = PROBMC("DUNNETT2",q,.,.,2,lambda11,lambda12);
  p2 = PROBMC("DUNNETT2",q,.,.,2,lambda21,lambda22);
  g = u **(d-1) * EXP(-u * d);
  v = p1 * p2 * g;
RETURN (v);
FINISH;

int = {0 .P};

t = t11;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval2 = 1 - m * z;
r11 = x11 / x10;
PRINT 'P-value stratum 1 treatment 1' r11 t11 pval2[FORMAT=7.5];

t = t12;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval2 = 1 - m * z;
r12 = x12 / x10;
PRINT 'P-value stratum 1 treatment 2' r12 t12 pval2[FORMAT=7.5];

t = t21;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval2 = 1 - m * z;
r21 = x21 / x20;
PRINT 'P-value stratum 2 treatment 1' r21 t21 pval2[FORMAT=7.5];
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t = t22;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
pval2 = 1 - m * z;
r22 = x22 / x20;
PRINT 'P-value stratum 2 treatment 2' r22 t22 pval2[FORMAT=7.5];

/* find critical values using bisection method */
alpha = 0.05;
c = 2;                           /* number of active treatments */
r = 2;                           /* number of groups */
q1 = TINV(1 - alpha/2,df);         /* start value: uncorr. t value */
q2 = TINV(1 - alpha/(2*c*r),df);   /* start value: Bonf. corr. value */
t = q2;
CALL QUAD(z,"dunnett",int) EPS = 1E-10;
crit = 1 - m * z;

n = 1;
DO WHILE ((ABS(crit - alpha) > 0.0001) & (n < 20));/* max 20 steps */
  n = n + 1;
  qm = (q1 + q2)/2;
  t = qm;
  CALL QUAD(z,"dunnett",int) EPS = 1E-10;
  crit = 1 - m * z;
  IF crit > alpha THEN q1 = qm;
  ELSE q2 = qm;
END;

cval = t;
PRINT 'Two-sided critical value' cval[FORMAT=7.5];

QUIT;
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Program CH7.SAS performs the analyses of Chapter 7

/*********************************************************/
/* Program calculating asymptotic two-sided adjusted     */
/* p-values and simulteneous CI's using nonparametrical  */
/* procedure based on distribution functions             */
/*                                                       */
/* Input:  dataset Example                               */
/* Output: dij  = estimate of treatment effect of        */
/*                treatment j in stratum i               */
/*         pval = two-sided adjusted p-value             */
/*         cval = critical values at alpha 5% level      */
/*         c_l  = lower limit of two-sided 95% CI of     */
/*                treatment j in stratum i               */
/*         c_u  = upper limit of two-sided 95% CI of     */
/*                treatment j in stratum i               */
/*********************************************************/

%GLOBAL _PRINT_;
%LET _PRINT_ = OFF;

OPTIONS NOBYLINE;

/****************************/
/* Input of example dataset */
/****************************/
LIBNAME DAT 'c:\My SAS Files\...';

DATA WORK.example;
SET DAT.example;
trts = 10 * strata + trt; /* Unique treatment code per stratum */
RUN;

/********************/
/* Pairwise ranking */
/********************/
DATA WORK.ex2;
LENGTH j 8;
SET WORK.ex (IN = in11 WHERE = (trts IN (10 11)))
    WORK.ex (IN = in12 WHERE = (trts IN (10 12)))
    WORK.ex (IN = in21 WHERE = (trts IN (20 21)))
    WORK.ex (IN = in22 WHERE = (trts IN (20 22)));
IF in11 THEN j = 11;
IF in12 THEN j = 12;
IF in21 THEN j = 21;
IF in22 THEN j = 22;
RUN;

PROC RANK DATA = WORK.ex2 OUT = WORK.rank TIES = MEAN;
BY j;
RANKS rank;
VAR y;
RUN;

/**************/
/* Mean ranks */
/**************/
PROC MEANS DATA = WORK.rank NOPRINT NWAY;
CLASS j trt;
VAR rank;
OUTPUT OUT = WORK.rmean (DROP = _TYPE_ _FREQ_) N = n MEAN = rmean;
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RUN;

/* n_act: obs. on active treatment
   rmean1: mean of midranks Xi0k in sample Xi0k and Xijk */
DATA WORK.n_act(KEEP = j trt n)
     WORK.rmean1 (DROP = trt RENAME = (n = n0));
SET WORK.rmean;
IF trt = 0 THEN OUTPUT WORK.rmean1;
ELSE OUTPUT WORK.n_act;
RUN;

/*********************/
/* Compute sigma_ij0 */
/*********************/
PROC RANK DATA = WORK.ex2 OUT = WORK.rank2 FRACTION TIES = MEAN;
BY j;
RANKS rank;
VAR y;
RUN;

PROC MIXED DATA = WORK.rank2;
BY j;
CLASS trt;
MODEL rank =  / S;
MAKE 'COVPARMS' OUT = WORK.sigma;
RUN;

/***************************/
/* Compute test statistics */
/***************************/
DATA WORK.test;
MERGE WORK.rmean1 WORK.n_act WORK.sigma;
BY j;
lambda = SQRT(n/(n + n0));
p = (rmean - (n0+1)/2) / n;
temp = SQRT(n0) * lambda / SQRT(est);
t = temp * (p-0.5);
abst = ABS(t);
RUN;

PROC TRANSPOSE DATA = WORK.test OUT = WORK.lambda PREFIX = lambda;
VAR lambda;
ID j;
RUN;

/************************************/
/* Compute adjusted p-values and CI'*/
/************************************/
DATA WORK.pval;
IF _N_ = 1 THEN SET WORK.lambda;
SET WORK.test;
pval = 1 - (PROBMC("DUNNETT2",abst,.,.,2,lambda11,lambda12) *
            PROBMC("DUNNETT2",abst,.,.,2,lambda21,lambda22));
RUN;

DATA _NULL_;
SET WORK.lambda;
CALL SYMPUT('lambda11',lambda11);
CALL SYMPUT('lambda12',lambda12);
CALL SYMPUT('lambda21',lambda21);
CALL SYMPUT('lambda22',lambda22);
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RUN;

PROC IML;
lambda11 = &lambda11;
lambda12 = &lambda12;
lambda21 = &lambda21;
lambda22 = &lambda22;

alpha = 0.05;
c = 2;                            /* number of active treatments */
r = 2;                            /* number of groups */
q1 = PROBIT(1 - alpha/2);         /* start value: uncorr. t value */
q2 = PROBIT(1 - alpha/(2*c*r));   /* start value: Bonf. corr. value */
crit = 1 - (PROBMC("DUNNETT2",q2,.,.,2,lambda11,lambda12) *
            PROBMC("DUNNETT2",q2,.,.,2,lambda21,lambda22));

n = 1;
DO WHILE ((ABS(crit - alpha) > 0.0001) & (n < 20));/* max 20 steps */
  n = n + 1;
  qm = (q1 + q2)/2;
  crit = 1 - (PROBMC("DUNNETT2",qm,.,.,2,lambda11,lambda12) *
              PROBMC("DUNNETT2",qm,.,.,2,lambda21,lambda22));
  IF crit > alpha THEN q1 = qm;
  ELSE q2 = qm;
END;
cval = qm;
CALL SYMPUT('cval', CHAR(cval));

QUIT;

DATA WORK.cis;
SET WORK.pval;
c_l = p - &cval / temp;
c_u = p + &cval / temp;
RUN;

TITLE 'Adjusted p-values, critical value and lower and upper bounds';
PROC PRINT DATA = WORK.cis;
RUN;
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Program CH8.SAS performs the analyses of Chapter 8

/*********************************************************/
/* Program applying standard resampling methods          */
/* for ones-sided testing problem                        */
/*                                                       */
/* Input:  Example dataset                               */
/* Output: p-values and CI's for the stochastic approx.  */
/*       and bootstrap and permutation method            */
/*********************************************************/

%GLOBAL _PRINT_;
%LET _PRINT_ = ON;

OPTIONS NOBYLINE;

/****************************/
/* Input of example dataset */
/****************************/
LIBNAME DAT 'c:\My SAS Files\...';

DATA WORK.example;
SET DAT.example;
trt1 = trt;
IF trt NE 0 THEN trt1 = 10 * strata + trt;  /* Active treatments are unique
                                                               per stratum */
trts = 10 * strata + trt;                   /* Unique treatment code per
                                                                   stratum */
RUN;

/****************************/
/* Stochastic approximation */
/****************************/
TITLE1 'Resampling techniques';
TITLE2 'Stochastic Approximation: Acc = 0.001 Eps = 0.01';
PROC MIXED DATA = WORK.example;
CLASS strata trt1;
MODEL y = strata trt1;
LSMEANS trt1 / ADJUST = SIMULATE(ACC=0.001 EPS= 0.01 SEED =99) DIFF =
CONTROLU ('0') CL;
RUN;

/*************/
/* Bootstrap */
/*************/
TITLE2 'Bootstrap including Step-down procedure: N = 50000';
PROC MULTTEST BOOT N = 50000 DATA = WORK.example SEED = 99 OUT = WORK.pvals
STEPBOOT;
CLASS trts;
STRATA strata;
TEST MEAN (y / UPPER);
CONTRAST 'Stratum 1 Plac - 1' -1 1 0  0 0 0;
CONTRAST 'Stratum 1 Plac - 2' -1 0 1  0 0 0;
CONTRAST 'Stratum 2 Plac - 1'  0 0 0 -1 1 0;
CONTRAST 'Stratum 2 Plac - 2'  0 0 0 -1 0 1;
RUN;
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/***************/
/* Permutation */
/***************/
TITLE2 'Permutation including Step-down: N = 50000';
PROC MULTTEST PERM N = 50000 DATA = WORK.example SEED = 99 OUT = WORK.pvals
STEPPERM;
CLASS trts;
STRATA strata;
TEST MEAN (y / UPPER);
CONTRAST 'Stratum 1 Plac - 1' -1 1 0  0 0 0;
CONTRAST 'Stratum 1 Plac - 2' -1 0 1  0 0 0;
CONTRAST 'Stratum 2 Plac - 1'  0 0 0 -1 1 0;
CONTRAST 'Stratum 2 Plac - 2'  0 0 0 -1 0 1;
RUN;
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