
Simultaneous Inference for Ratios of

Location Parameters

Von der Naturwissenschaftlichen Fakultät

der Universität Hannover

zur Erlangung des akademischen Grades eines

Doktors der Gartenbauwissenschaften

-Dr.rer.hort.-

genehmigte

Dissertation

von

Gemechis Dilba Djira

geboren am 06.03.1968 in Äthiopien
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Zusammenfassung

Die Inferenz für Quotienten von Lageparametern oder Quotienten von Koef-

fizienten im verallgemeinerten linearen Modell ist in vielen Forschungsfeldern

von Bedeutung. Die Verwendung solcher Quotienten umfasst: Schätzung der

relativen Wirksamkeit bei multiplen Bioassays, Entscheidung über Äquivalenz,

Nicht-Unterlegenheit und Überlegenheit von mehreren Behandlungen basier-

end auf relativen Schwellenwerten. Die vorliegende Arbeit behandelt Frageste-

llungen mit mehr als einem Quotienten von Lageparametern (oder Quo-

tienten von Linearkombinationen von Lageparametern). Die spezifischen

Probleme sind: (i) die Herleitung und Untersuchung von Güte und Fal-

lzahlschätzung für einseitige simultane Tests quotientenbasierter Vergleiche

zur Kontrolle, (ii) die Entwicklung neuer Methoden zur Konstruktion exakter

simultaner Konfidenzmengen und approximativer simultaner Konfidenzinter-

valle für multiple Quotienten.

Im ersten Teil führen wir in die grundsätzliche Idee des quotientenbasierten,

multiplen Testens ein und wenden uns dann dem Problem der Berechnung

von Güte und Fallzahl für simultane Tests auf Nicht-Unterlegenheit zu. Hier

betrachten wir den Fall des Vergleichs mehrerer experimenteller Behandlun-

gen mit einer aktiven Kontrolle. Der Ansatz basiert auf den Quotienten zur

Kontrolle mit gemeinsamer Nicht-Unterlegenheits-Grenze. Zwei Gütedefini-
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tionen im multiplen Testen, complete power und minimal power, werden

diskutiert. Weiterhin werden die notwendigen Fallzahlen für quotienten-

basierte Inferenz mit den Fallzahlen verglichen, die bei Inferenz basierend

auf Differenzen von Mittelwerten in vergleichbaren Situationen benötigt wer-

den. In einer numerischen Studie wird gezeigt, dass die benötigte Fallzahl

für quotientenbasierte Inferenz kleiner ist als die für Inferenz basierend auf

Differenzen, wenn die relative Nicht-Unterlegenheits-Grenze kleiner als eins

ist und wenn grosse Werte der Zielgrösse eine bessere Wirkung der Behand-

lung bedeuten. Das Design von Versuchen zum Nachweis quotientenbasierter

Nicht-Unterlegenheit (oder Überlegenheit) ist anhand von Beispielen veran-

schaulicht.

Im zweiten Teil behandeln wir das Problem simultaner Konfidenzinter-

valle für mehrere Quotienten. Im einfachsten Fall eines einzelnen Quotienten

kann anhand von Fiellers Theorem ein Konfidenzintervall für einen Quo-

tienten berechnet werden. Für multiple Quotienten gibt es keine Methoden

zur Konstruktion simultaner Konfidenzintervalle, die ein gegebenes versuchs-

bezogenes Konfidenzniveau exakt einhalten. Das grundlegende Problem ist

hier, dass die gemeinsame Verteilung der Teststatistiken, die für die simultane

Schätzung benötigt wird, von den unbekannten Quotienten abhängt. Die

derzeit verfügbaren Methoden zur Konstruktion von simultanen Konfidenzin-

tervallen sind konservativ, da sie auf Ungleichungen basieren. In dieser Arbeit
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betrachten wir zuerst exakte simultane Konfidenzmengen, die auf der multi-

variaten t-Verteilung basieren. Zwei Ansätze zur Bestimmung dieser exakten

Konfidenzmengen werden vorgeschlagen. Weiterhin werden approximative

simultane Konfidenzintervalle, basierend auf der multivariaten t-Verteilung

mit geschätzter Korrelationsmatrix, sowie ein resampling-Ansatz vorgeschla-

gen. Die Methoden werden auf Quotienten von Linearkombinationen der

Mittelwerte (Parameter, Koeffizienten) von Einweg-Anlagen und Quotienten

von Parameterkombinationen im verallgemeinerten linearen Modell angewen-

det. Umfangreiche Monte-Carlo-Simulationen werden durchgefhrt, um das

Verhalten der verschiedenen Methoden in Hinsicht auf die Stabilität der

geschätzten kritischen Werte und der coverage probability zu vergleichen.

Eine vorgeschlagene Methode zur Konstruktion approximativer simultaner

Konfidenzintervalle wird als plug-in-Ansatz bezeichnet. Bei dieser Methode

werden die Maximum-Likelihood-Schätzer der Quotienten in die unbekan-

nte Korrelationsmatrix der multivariaten t-Verteilung eingesetzt. Die Unter-

suchungen zeigen, dass die plug-in-Methode besser als alle anderen Methoden

das nominelle versuchsbezogene Konfidenzniveau erreicht.

Schlagworte: multiple Quotienten, Nicht-Unterlegenheit, simultane Inferenz



Abstract

Inferences concerning ratios of location parameters or ratios of coefficients

in the general linear model arise in many areas of research. Applications of

such ratios include: relative potency estimation in multiple assays (direct,

parallel-line, slope-ratio assays), inferences for equivalence, non-inferiority,

and superiority of several treatments based on relative margins, and so on.

This research focuses on problems involving more than one ratio of location

parameters (or ratios of linear combinations of location parameters). The

specific objectives are: (i) to derive and investigate power and sample size in

one-sided simultaneous tests for comparisons with a control based on ratios,

(ii) developing new methods of constructing exact simultaneous confidence

sets and approximate simultaneous confidence intervals for multiple ratios.

In the first part, we introduce the general idea of multiple testing based on

ratios and then address the special problem of calculating power and sample

sizes associated with simultaneous tests for non-inferiority. We consider the

case of comparing several experimental treatments with an active control.

The approach is based on the ratio view, where the common non-inferiority

margin is chosen to be some percentage of the mean of the control treatment.

Two power definitions in multiple hypothesis testing, namely, complete power

and minimal power, are used in the discussions. The sample sizes associated
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with the ratio-based inferences are also compared with that of comparable

inferences based on the difference of means for various scenarios. A numerical

study revealed that the sample sizes required for ratio-based inferences are

smaller than that of the difference-based inferences when the relative non-

inferiority margin is less than one and when large response values indicate

better treatment effects. The design of non-inferiority trials (or superiority

trials) based on the ratio view are illustrated with examples.

In the second part, we deal with the problem of simultaneously estimating

multiple ratios. In the simplest case of only one ratio parameter, Fieller’s the-

orem provides a confidence interval for the single ratio. For multiple ratios,

there is no method available to construct simultaneous confidence intervals

that exactly satisfy a given family-wise confidence level. The key challenge

here is that the joint distribution of the test statistics used for simultaneous

estimation depends on the unknown ratios. The currently available meth-

ods for constructing simultaneous confidence intervals are conservative since

they are based on probability inequalities. In this research, first we consider

exact simultaneous confidence sets based on the multivariate t-distribution.

Two approaches of determining the exact simultaneous confidence sets are

proposed. Second, approximate simultaneous confidence intervals based on

the multivariate t-distribution with estimated correlation matrix and a re-

sampling approach are proposed. The methods are applied to ratios of linear
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combinations of the means in the one-way layout and ratios of parameter

combinations in the general linear model. Extensive Monte Carlo simula-

tions are carried out to compare the performance of the various methods

with respect to the stability of the estimated critical points and of the cov-

erage probabilities. One of the methods proposed to construct approximate

simultaneous confidence intervals is called the plug-in approach. This method

works by plugging the maximum likelihood estimates of the ratios in the un-

known correlation matrix of a multivariate t-distribution. It is observed that

the plug-in method outperforms all other methods in terms of achieving the

nominal family-wise confidence level.

Keywords: multiple ratios, non-inferiority, simultaneous inference



Notations

µ: vector of treatment means

γ: vector of ratio parameters

ψ: threshold against which to perform tests

θ∗: clinically irrelevant percentage to be detected

α: type I familywise error rate in multiple testing

1− β: given power

R: correlation matrix

Mtk(ν,R): a central k-variate t-distribution with ν degrees of freedom

and a correlation matrix R

Mtk(ν,R, δ): a non-central k-variate t-distribution with ν degrees of

freedom, a correlation matrix R, and a non-centrality vector δ

CV0: coefficient of variation of the control group

CVY 0
: coefficient of variation of the mean of the control group
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Chapter 1

General Introduction

1.1 Introduction

Inferences concerning ratios of location parameters or ratios of coefficients

in the general linear model arise in many areas of research. Among others,

ratios appear (i) in estimation of relative potencies in biological assays (bioas-

says) (e.g., Jensen, 1989; Sen, 1998), (ii) in ratio-based inference for equiv-

alence and non-inferiority trials (Hsu et al., 1994; Röhmel, 1998; Hauschke

et al., 1999a; Hauschke et al., 1999b), (iii) in calibration (inverse regression)

problems where interest lies in estimating value of an independent variable

after fitting regression models (Fox, 1991; Lee, 1998), (iv) in estimating the

abscissa of the point of intersection of two simple linear regressions, or es-

timating the point of extremum in a quadratic regression (Buonaccorsi and
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Iyer, 1984), (v) in discriminant analysis (ratios of discriminant coefficients,

e.g., see Chikuse, 1981), and (vi) in health economics to estimate incremental

cost-effectiveness ratios (Gold et al., 1996; Laska et al., 1997). In these prob-

lems, either a single ratio of location parameters (or coefficients) is involved

or there are multiple ratios. The central focus of this research is on the latter

case where more than one ratio is of interest.

Inference for one ratio parameter is studied by several researchers in var-

ious contexts. Here we provide only few examples. In dose-response studies

(with only one compound or insecticide), estimation of the dose level that

produces 50% response (ED50) is often of interest. For example, Faraggi et

al. (2003) compared various methods of estimating ED50. In parallel-line

assay involving two preparations (standard and test preparations), the rel-

ative potency of the test preparation with respect to the standard is also

expressed as a single ratio, the ratio of the difference of the intercepts to

the common slope. The incremental cost-effectiveness ratio (ICER), which

is the ratio of the average cost difference (of two treatments) to the average

effect difference is also widely studied. For example, Polsky et al. (1997) and

Briggs et al. (1999) compared various methods of constructing confidence

intervals for ICER via simulation.

To further motivate our aim, we consider the one-way layout. Often

statistical inferences about location parameters are done for the differences
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between the treatment means (e.g., in comparisons with a control). How-

ever, for some biomedical problems, it is tenable to base inference on ratios

of treatment means. In multiple tests for equivalence, non-inferiority, or su-

periority, the margins based on the ratio approach can easily be medically

interpreted and can easily be defined as compared with inferences based on

differences. For example, see Hauschke and Kieser (2001) for applications in

non-inferiority trials where k treatments are compared with a control based

on the ratio view. Ratio parameters have the notable advantage of being

dimensionless (free of the unit of measurement of the endpoint) as compared

with the difference of location parameters. In addition to interpretational

convenience, more recently, Laster and Johnson (2003) showed that the ratio

view is more powerful in test for non-inferiority of an experimental therapy

as compared with a standard one.

1.2 Objectives

The kernel of this research is design in multiple testing based on ratios and

simultaneous confidence intervals estimation of several ratios. For exam-

ple, it might be of interest to compare not only two treatments but several

treatments with a control treatment (positive or negative control). In this

comparison, one encounters multiple ratios. Previously, this problem is ad-
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dressed by Hauschke and Kieser (2001) in multiple tests for non-inferiority.

Biesheuvel (2002) also discussed the issue of multiple testing for ratios as

applied in stratified designs. Jensen (1989) discussed in detail simultane-

ous estimation in direct, parallel-line and slope-ratio assays based on Ŝidák

(1967) inequality and compared the results with a method due to Scheffé

(1970). In some circumstances, inferences based on probability inequalities

and the projection method discussed by Scheffé (1970) can be quite conser-

vative. Therefore, in this research, we propose two alternative simultaneous

estimation procedures and investigate their performance by simulation. The

main objectives are: (i) to derive power formulas and compute the sample

sizes required in simultaneous tests based on ratios, (ii) to develop simul-

taneous confidence sets (SCS) and simultaneous confidence intervals (SCI)

based on the joint distribution of the relevant test statistics which follows a

multivariate t-distribution.

Due to the inherent multiplicity aspects, we need special statistical tech-

niques for simultaneous inference. There exist numerous multiple compari-

son procedures in the statistical literature. See Miller (1977) for a detailed

historical development and bibliography on these procedures. Standard text-

books on this subject include Miller (1981), Hochberg and Tamhane (1987),

and Hsu (1996). Multiple comparison procedures are broadly classified as

single-step and step-wise procedures. In single-step procedures, the critical
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points are determined once and for all comparisons (e.g., the simple Bonfer-

roni adjustment). Whereas, in step-wise procedures, the critical points are

determined in a sequential manner (e.g., Bonferroni-Holm procedure). The

methods used in this research are all single-step procedures.

Accordingly, the thesis is organized as follows. In Chapter 2, we present

various datasets to be analyzed later on. In Chapter 3, we describe the prob-

lem of multiple testing for ratios and thereby introduce the notations to be

used in subsequent chapters. Chapter 4 deals with the special problem of

calculating power and sample size in simultaneous tests for non-inferiority

based on relative margins. Chapter 5 deals with the general problem of con-

structing simultaneous confidence sets and simultaneous confidence intervals

for several ratios. In this chapter, two methods of constructing SCS and sev-

eral methods of constructing SCI are discussed. Finally, Chapter 6 is devoted

to the conclusions and proposals for further research.



Chapter 2

Data Examples

In this chapter, we describe four motivating data examples to be analyzed in

later chapters. The first two datasets will be used to illustrate the construc-

tion of SCS and SCI, while the other two will be used for design purposes.

2.1 Chroma Value and Chlorophyll Content

Mutui et al. (2005) compared three Pelargonium cultivars (‘Fire’, ‘Katinka’,

and ‘Ganymed’) and four levels of ethylene with respect to chroma value and

total chlorophyll content of leaves. Of the three cultivars, here we consider

only ‘Katinka’. The control group is untreated (ethylene at 0 level). The

summary statistics for the two response variables are provided in Table 2.1.

The aim is to simultaneously compare the three active treatments with the
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Table 2.1: Descriptive summary of leaf chroma value and chlorophyll content

Chroma value Chlorophyll content

Ethe. (µl/l) n mean sd n mean sd

0 24 28.4 4.1 24 3.2 0.3

0.5 24 29.7 5.1 24 2.8 0.2

1 24 31.3 10.4 24 2.3 0.4

2 24 42.0 2.7 24 1.5 0.3

control for both leaf chroma value and leaf chlorophyll content based on the

ratio of the treatment means to that of the control. In other words, we

construct simultaneous confidence intervals for the three ratios to control

and see how the ratios (percentages) change. The merit of this construction

is that the SCI are dimensionless (percentages) though the two responses are

in different units. Moreover, these type of confidence intervals would enable

us to tell the percentage increase (decrease) in the mean of the treatments

as compared with that of the control group.
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Table 2.2: Body weight gain data

Treatment

Control 107 91 115 90 133 95 112 115 117 91

Thyroxin 119 88 84 133 87 118 132

Thiouracil 61 68 89 80 69 52 80 63 63 68

2.2 Body Weight Gain Data

Consider data on weight gains of rats treated with three treatments, namely,

control, Thyroxin, and Thiouracil (Westfall and Young, 1993, p29). The

number of observations under the three treatments are n0 = 10, n1 = 7 and

n2 = 10, respectively. The original data are longitudinal and weights of rats

were recorded weekly at five time points. The primary variable of interest

is the weight gain over the study period (the difference between the weight

at the end of the study and the baseline). The data are shown in Table 2.2.

The aim is to simultaneously compare the effect of Thyroxin and Thiouracil

with the control based on the ratio of treatment means.
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2.3 Osteoporosis Study

Consider the problem of determining the sample size in a simultaneous non-

inferiority test of three intermittent administration schedules against a con-

tinuous administration of the same total dose of ibandronate in a long-term

in-vivo study on osteoporosis (Hothorn and Bauss, 2004). The continuous

administration represents the active control group and the endpoint is tra-

becular bone mass in tibiae (in %). According to previous results, it can

be assumed that the coefficient of variation for the control group is 50%

(mean and standard deviation of 10% and 5%, respectively). Suppose that

the interest is to design a new confirmatory non-inferiority trial based on

these previous study results with a relative non-inferiority margin of 0.70

(which was explicitly described for trabecular bone mass in osteoporosis tri-

als (Kanis et al., 2002)), a minimal power of 80% and overall type I error rate

α = 0.05. In particular, it is of interest to investigate the optimum sample

size allocation across the four treatment arms when the total sample size is

fixed.

2.4 Superiority in a Clinical Trial

Knapp et al. (2001) described a double-blind, placebo-controlled, multi-

centre trial with four arms on subjects with hypercholesterolaemia. The
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study involved the comparisons of placebo with two doses of Simvastatin and

a third treatment group with a fixed Simvastatin/Colesevelam dose combi-

nation. The primary outcome variable was serum low density lipoprotein

(LDL) cholesterol level after 45 days. The goal of this study was to show

superiority by a cholesterol level reduction of at least 10% over placebo in

at least one treatment arm. Assuming that a follow-up confirmatory trial

is planned, we are interested in calculating the necessary sample size for

the proof of efficacy due to the superiority associated with a minimal power

of 80% and α = 0.025. From the previous study, it can be assumed that

the coefficient of variation for the control group is 17% (mean and standard

deviation of 177 and 30, respectively).



Chapter 3

Simultaneous Tests of

Hypotheses

3.1 Simultaneous Tests

Consider the problem of simultaneously comparing k experimental treat-

ments (i = 1, . . . , k) with a control treatment (i = 0). Let Yij denote inde-

pendent observations from a normal distribution with mean µi and common

unknown variance σ2, i = 0, 1, . . . , k; j = 1, . . . , ni. Throughout, the vari-

ances are assumed to be homogeneous. The primary interest is to use a fixed

relative threshold ψ (a dimensionless number) in constructing the tests.

Without loss of generality, we consider the case when the responses are

nonnegative and when large response values indicate better treatment effects.
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We wish to test

H0` : γ` ≤ ψ against H1` : γ` > ψ, ` = 1, 2, . . . , k, (3.1)

where γ` = µ` /µ0 denotes the ratio of the mean of the `th treatment to that

of the control. For µi > 0, the hypotheses in (3.1) can equivalently be stated

as

H0` : µ` − ψµ0 ≤ 0 against H1` : µ` − ψµ0 > 0, ` = 1, 2, . . . , k,

which naturally lead us to the accompanying test statistics. Let Y i and S2 be

the usual unbiased estimators of µi and σ2, respectively. The pooled variance

estimator S2 has ν =
∑k

i=0(ni − 1) degrees of freedom. The likelihood ratio

statistics to test the hypotheses in (3.1) are

T`(ψ) =
Y` − ψY0

S
√

1
n`

+ ψ2

n0

=
Z`

S/σ
, ` = 1, 2, . . . , k, (3.2)

where

Z` =
Y` − ψY0

σ
√

1
n`

+ ψ2

n0

.

Under H0`, each of the T`(ψ)’s follows a central t-distribution with ν degrees

of freedom. The random vector T = (T1, . . . , Tk)
′ of the test statistics in

(3.2) then follows a central k-variate t-distribution with ν degrees of freedom

and a correlation matrix R(ψ) = [ρij(ψ)], where

ρij(ψ) = Corr(Zi, Zj) =
ψ√

n0

ni
+ ψ2

ψ√
n0

nj
+ ψ2

, 1 ≤ i 6= j ≤ k. (3.3)
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This is based on the fact that Z = (Z1, . . . , Zk)
′ follows a multivariate nor-

mal distribution with mean 0 and a correlation matrix R(ψ) (see Kotz and

Nadarajah (2004) for various definitions of central and non-central multi-

variate t-distributions). We designate a central k-variate t-distribution with

ν degrees of freedom and a correlation matrix R by Mtk(ν,R). The H0`

hypothesis will be rejected if the test statistic T`(ψ) is larger than a mul-

tiplicity adjusted critical point c (see Hochberg and Tamhane, 1987). The

method in this section aims at controlling the family-wise error rate (FWE)

(also called the experiment-wise error rate) in the strong sense. FWE is the

chance of erroneously rejecting at least one true null hypothesis. That is, if

I0 ⊆ I = {1, . . . , k} denotes the index set of all true null hypotheses, then

FWE = 1− P{T`(ψ) ≤ c for all ` ∈ I0}.

In order to get FWE ≤ α for any configuration of the true null hypotheses,

we require FWE = α in the case of I0 = I. The critical point c is seen to be

an equi-coordinate percentage point of T ∼ Mtk(ν,R(ψ)) satisfying

P {T1(ψ) ≤ c, . . . , Tk(ψ) ≤ c} = 1− α. (3.4)

As shown in Figure 3.1, for two comparisons (i.e., k = 2), the critical point

c is determined such that the volume above the shaded region is 1− α. The

correlation matrix R(ψ) in (3.3) has a product correlation structure, i.e.,

we can factorize ρij(ψ) as ρij(ψ) = λiλj, where λi = (niψ
2/(n0 + niψ

2))
1/2

.
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Figure 3.1: Contour plot of a central bivariate t-distribution with ν = 30 and

ρ12 = 0.4.

This property enables us to reduce the dimension of the multivariate normal

integrals involved in the computation of multivariate t equi-coordinate per-

centage points (see, e.g., Tong (1990)). In general, for the computation of

central/non-central multivariate t critical points and probabilities, we refer

to numerical integration routines of Genz and Bretz (1999, 2002) which can

directly be used for power calculations (Bretz, Genz and Hothorn, 2001).

This algorithm is not restricted to special correlation structures.
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Figure 3.2: Contour plot of a non-central bivariate t-distribution with ν = 30,

ρ12 = 0.4, and δratio
1 = δratio

2 = 5.

3.2 Distribution Under the Alternatives

Let θ = (θ1, . . . , θk)
′ denote a vector of the true but unknown ratios. Note

that some of the θ`’s may be less than or equal to ψ (i.e., under H0`). When

some of the H1`’s are true, the vector of test statistics T has a non-central

k-variate t-distribution with ν degrees of freedom, a correlation matrix R(ψ),

and non-centrality vector δratio = (δratio
1 , . . . , δratio

k )′, where

δratio
` =

θ` − ψ

CV0

√
1
n`

+ ψ2

n0

, ` = 1, . . . , k,
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Figure 3.3: Contour plot of a non-central bivariate t-distribution with ν = 30,

ρ12 = 0.4, δratio
1 = −2, and δratio

2 = 5.

and CV0 = σ /µ0 denotes the coefficient of variation of the control group. We

denote this distribution by Mtk(ν,R, δratio). The non-centrality parameters

are dimensionless as are the ratio parameters γ`. Power computations for

the tests in (3.1) depend on this non-central multivariate t-distribution and

it is a function of the threshold value ψ, the fixed ratios θ`, the coefficient of

variation of the control group CV0, and the sample sizes ni, i = 0, 1, . . . , k.

Two examples of bivariate non-central t-distributions are shown in Figures

3.2 and 3.3. These are non-central t-distributions according to Kshirsagar

(1961) (see also Kotz and Nadarajah, 2004, p. 87, for an explicit expression
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of the probability density function). Since these probability density functions

involve infinite sums, Figures 3.2 and 3.3 are obtained by taking only the first

few terms. The figures show the effect of the non-centrality parameters on

the shape of the distribution. In Figure 3.2, the non-centrality parameters

are positive and the same, whereas in Figure 3.3 they are unequal and of

different signs.

3.3 Ratios of Linear Combinations

Multiple testing concerning the ratios of linear combinations of the treatment

means can be performed in much similar fashion as in the previous section.

Suppose that we wish to test

H0` :
c′`µ
d′`µ

= ψ against H1` :
c′`µ
d′`µ

6= ψ, ` = 1, . . . , r, (3.5)

where r is the number of ratio parameters. The vectors c` = (c`0, . . . , c`k)
′

and d` = (d`0, . . . , d`k)
′ are known vectors of real constants associated with

the `th ratio, and µ = (µ0, µ1, . . . , µk)
′. The likelihood ratio statistics to test

the set of hypotheses in (3.5) are given by

T`(ψ) =
c′`Y − ψd′`Y

S[ψ2d′`Md` − 2ψc′`Md` + c′`Mc`]
1
2

∼ t(ν), ` = 1, . . . , r, (3.6)

where Y is the maximum likelihood estimator of µ and M is a diagonal

matrix containing the reciprocals of the sample sizes. Jointly, the statistics
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in (3.6) follows Mtr(ν,R), where the elements of the correlation matrix are

given by

ρij =
(ψdi − ci)′M(ψdj − cj)√

(ψdi − ci)′M(ψdi − ci)
√

(ψdj − cj)′M(ψdj − cj)
, (3.7)

1 ≤ i 6= j ≤ r. Therefore, decisions about the tests in (3.5) can be based

on the equicoordinate percentage point obtained from the above multivariate

t-distribution.

Example 1. A three-arm non-inferiority trial discussed by Pigeot et al.

(2003) is a one-sided test about a single ratio parameter (µ2− µ0)/(µ1− µ0)

which can be tested by using r = 1, µ = (µ0, µ1, µ2)
′, c` = (−1, 0, 1)′, and

d` = (−1, 1, 0)′ in the above general formulation.

Example 2. In comparisons with a control, the simultaneous tests de-

scribed in (3.1) is a one-sided special case of the above formulation with

k = 3, d1 = d2 = d3 = (1, 0, 0, 0)′, c1 = (0, 1, 0, 0)′, c2 = (0, 0, 1, 0)′, and

c3 = (0, 0, 0, 1)′.



Chapter 4

Power and Sample Size

Computations in Simultaneous

Tests for Non-inferiority

4.1 Introduction

The goal of a non-inferiority trial is to test whether a given test treatment

is no worse than a standard treatment in its efficacy. Such trials are be-

coming increasingly more popular as an alternative to placebo controlled

clinical trials. If the use of a placebo group is unethical, an active competi-

tor may be included against which non-inferiority has to be claimed. Such

approach replaces the traditional superiority trials including a placebo arm
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if well-established active competitors are available. In many therapeutic ar-

eas, such active competitors do exist and it may, therefore, not be sufficient

to solely show superiority of the newly developed experimental treatment

over placebo since its relative performance to the competitors on the market

would remain uninvestigated. Another reason to conduct non-inferiority tri-

als is the increased number of studies claiming a better safety profile of the

experimental treatment over competing treatments while not being inferior

in efficacy. In such instances, the new experimental treatment is shown to be

safer than its competitors in which case a proven non-inferior efficacy justifies

its potential release on the market.

In a special issue of Statistics in Medicine (2003, volume 22, issue 2),

several statistical problems related to non-inferiority trials were discussed.

Among others, D’Agostino et al. (2003) addressed the design concepts while

Rashid (2003) dealt with non-parametric analysis, and Laster and Johnson

(2003) discussed the use of ratio hypotheses. Ratio-based tests reformulate

the standard hypotheses of differences, say for the efficacy parameters, in

terms of relative effects which are particularly appealing in non-inferiority

trials. The primary merit of this approach is that margins of non-inferiority

(or equivalence) or superiority can be easily defined as a percentage of the

unknown mean of the control treatment, particularly when the definition of

the non-inferiority margin in an absolute term is difficult (Röhmel, 1998;
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Hwang and Morikawa, 1999). Hauschke et al. (1999a) dealt with sample size

calculations in test of equivalence based on ratio. In this problem, a single

ratio is involved, but the nature of the problem leads to the computation

of percentage points of a non-central bivariate t-distribution. Pigeot et al.

(2003) considered the problem of comparing an experimental treatment for

non-inferiority with a reference including a placebo arm. This problem is

succinctly formulated as inference for a single ratio of linear combinations of

the treatment means. They also derived formulas for determining power and

sample sizes. Laster and Johnson (2003) described the ratio-based inference

in detail and compared it with the classical testing approach due to Black-

welder (1982) which is based on the difference of means . In terms of the

sample size, they conclude that under certain conditions testing for ratio of

means is more efficient than testing the associated difference of means.

In this chapter, we extend the results from Laster and Johnson (2003) to

the case of testing multiple treatments for non-inferiority against an active

competitor. The problem of multiple ratios occurs, for example when several

dose levels of a certain compound are assessed for their efficacy in comparison

to an established treatment. Multiple testing for non-inferiority based on

ratios was first addressed by Hauschke and Kieser (2001). In dose finding

studies, Bretz et al. (2003) implemented a step-wise test procedure with

associated confidence intervals to identify effective and/or safe doses based
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on ratios. Tamhane et al. discussed determining sample sizes in the context

of estimating the maximum safe dose.

Power or sample size formulas related to simultaneous testing of non-

inferiority of several treatments against a common control, without priori-

tizing the hypothesis, are yet not available. This chapter aims at bridging

this gap and we derive power and sample size formulas associated with the

single-step multiple test procedure. Due to the inherent multiplicity aspect,

different power concepts are available. They are thoroughly discussed in

the context of non-inferiority testing and advice is given on how to proceed

in practical situations. The inverse problem of determining the necessary

sample size for a given power is also addressed and numerical comparisons

related to the different power definitions are performed. In particular, we

investigate how the required sample sizes for the ratio-based inference com-

pare with that of the inference based on differences (or absolute margin) for

various scenarios.

4.2 Simultaneous Tests for Non-inferiority

In this section, we consider a special case of the test described in the previous

chapter with a restriction on the margin ψ. Let ψ < 1 denote the relative

non-inferiority margin (in the case of large response values indicating better
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treatment effects). Here we are interested in the one-sided tests

H0` : γ` ≤ ψ against H1` : γ` > ψ, ` = 1, 2, . . . , k. (4.1)

The procedures for computing the critical point c and the decision rules are

exactly as described in the previous chapter.

Some remarks on other cases or possible generalizations of the setup above

are as follows. First, in the situation above where large response values

indicate better treatment effects, the choice ψ ≥ 1 corresponds to a test

for superiority. Secondly, for the tests in (4.1), one may also use unequal

non-inferiority margins ψ`, ` = 1, . . . , k, if such is of interest. In all cases,

the derivations in the subsequent sections are equally applicable. We defer a

detailed discussion for the case when small metrics indicate better treatment

effects to Section 4.8.

4.3 Power Formulas

A major task in the design phase of a clinical study is that of determin-

ing sample sizes which guarantee a pre-specified power. In this section, we

provide the power associated with the tests described in (4.1).

Let θ∗ (> ψ) denote the greatest clinically (or biologically) irrelevant per-

centage of the control mean which is to be detected. Define the set of indices
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I(θ∗) = {`| θ` > θ∗} = {`1, . . . , `m}, 1 ≤ m ≤ k. All treatments with θ` val-

ues greater than θ∗ are non-inferior to the control. We consider the following

two power definitions.

(i) Complete power. Suppose that the interest is to detect all non-inferior

treatments with a given power of 1 − β, where β is the size of type II er-

ror. The power associated with this problem is called complete (or all-pairs)

power and it is given by

πCom(θ, θ∗) = P {T` > c, for all ` ∈ I(θ∗)}

=

∫ ∞

0

∫ ∞

−∞

∏

`∈I(θ∗)

Φ

(
−cη − δratio

` + λ`z√
1− λ2

`

)
φ(z)ϕ(η)dzdη,

(4.2)

where Φ(.) and φ(.), respectively denote the cumulative density function and

the density function of the univariate standard normal distribution, and ϕ(.)

is the density function of (χ2
ν /ν )

1/2
.

(ii) Minimal power. Suppose that the interest is to detect at least one

non-inferior treatment with a given power of 1 − β. This is called minimal

(or any-pair) power. The power of this test is given by

πMin(θ, θ∗) = P {T` > c, for some ` ∈ I(θ∗)}

= 1−
∫ ∞

0

∫ ∞

−∞

∏

`∈I(θ∗)

Φ

(
cη − δratio

` + λ`z√
1− λ2

`

)
φ(z)ϕ(η)dzdη.

(4.3)
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For other definitions of power in simultaneous testing (e.g., individual power

and proportional power), we refer to Horn and Vollandt (1998) and Westfall

et al. (1999).

We now return to the practical problem of determining the sample size

associated with a given lower bound 1 − β of the power. Note that all

parameters of the distribution of T depend on the sample sizes for each

treatment. For simplicity, we consider a balanced design with n observations

per treatment. The required size n is determined iteratively by starting with

a given sample size and search until the power condition is satisfied. That is,

for minimal power, we look for the smallest n such that πMin(θ, θ∗) ≥ 1− β

and similarly for complete power the smallest n for which πCom(θ, θ∗) ≥ 1−β.

A program that computes the necessary sample size to achieve a pre-specified

power is given in Appendix A.

A more practical allocation is to consider the case where a different num-

ber of subjects is allocated to the control group than to the other treatment

groups, i.e., n0 6= n1 = . . . = nk. It is well known that in case of test-

ing for hypotheses based on differences of means, the square-root allocation

rule n0/n` =
√

k, ` = 1, . . . , k, is nearly optimal (Dunnett, 1955; Hochberg

and Tamhane, 1987). If we use the same idea of minimizing Var(Y` − ψY0),

` = 1, . . . , k subject to a fixed total sample size N =
∑k

i=0 ni, then we get

the solution n0 = ψ
√

kn`. The power behaviour of this allocation will be
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discussed in later sections.

4.4 Comparison with Difference-Based Tests

In this section, we investigate the advantage of ratio-based inference over the

classical difference-based inferences in a multiple testing situation. In case of

a single ratio (comparing two treatments), Laster and Johnson (2003) showed

that the ratio-based inference is more efficient as long as ψ < 1. That is,

the sample size associated with the ratio-based inference is smaller than that

of a comparable inference based on the difference of means in tests for non-

inferiority. In multiple testing, the results based on the ratio view can also

be compared with tests based on difference. To do this, we reformulate the

tests in (4.1) as

H0` : µ` − µ0 ≤ ∆0 against H1` : µ` − µ0 > ∆0, ` = 1, 2, . . . , k, (4.4)

where ∆0 is the absolute non-inferiority margin and it is fixed as ∆0 =

(ψ − 1)µ0. The likelihood ratio statistics to test the hypotheses in (4.4) are

T`(∆0) =
Y` − Y0 −∆0

S
√

1
n0

+ 1
n`

, ` = 1, 2, . . . , k.

Under the null hypotheses in (4.4), T`(∆0) follows a central t-distribution

with ν degrees of freedom. Jointly, T(∆0) = (T1(∆0), . . . , Tk(∆0))
′ is dis-

tributed as a central k-variate t-distribution with ν degrees of freedom and
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a correlation matrix R(∆0) = [ρij(∆0)]. The correlation ρij(∆0) has also a

product correlation structure and can be written as ρij(∆0) = λiλj, where

λi = (ni/(n0 + ni))
1/2. Unlike in the case of the ratio-based inference, note

that the correlation matrix for the inference based on difference does not

depend on the non-inferiority margin. If the design is balanced, we have

ρij(∆0) = 0.5, 1 ≤ i 6= j ≤ k. The H0` hypotheses in (4.4) will be rejected if

T (∆0) > c, where c is an equi-coordinate percentage point of T(∆0). Now, to

obtain a comparable power with that of the ratio-based inference, we set the

vector of mean differences (µ1−µ0, . . . , µk−µ0)
′ to ∆ = (∆1, . . . , ∆k)

′, where

∆` = (θ` − 1)µ0, ` = 1, . . . , k. Under the alternative hypotheses, T(∆0) is

distributed as Mtk(ν,R(∆0), δ
diff), where the elements of the non-centrality

vector are given by

δdiff
` =

∆` −∆0

σ
√

1
n`

+ 1
n0

=
θ` − ψ

CV0

√
1
n`

+ 1
n0

, ` = 1, . . . , k.

Consider the minimal power πMin(∆, ∆∗), where ∆∗ = (θ∗ − 1)µ0. The sam-

ple size n required per treatment (in a balanced design) is the smallest n

such that πMin(∆, ∆∗) ≥ 1 − β. It is observed that the power function in-

creases as both the elements of the correlation matrix and the non-centrality

parameters increase, and vice versa. For a given ψ < 1, CV0 and θ, note

that ρij(∆0) > ρij(ψ) but δdiff
` < δratio

` . Therefore, there is no easy analytical

way of comparing the power functions of the ratio-based and difference-based
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inferences as in the single-ratio case. However, from the plot of the power

against the elements of the correlation matrix and the non-centrality param-

eters (not shown here), it is observed that the elements of the correlation

matrix have little impact on the power compared with the impact of the

non-centrality parameters. Thus, the difference in powers of the two ap-

proaches is mainly due to the differences in the non-centrality parameters.

Let nratio and ndiff denote the number of observations required per treatment

by the ratio and difference approaches, respectively. In Section 4.7, we show

by various numerical examples that nratio ≤ ndiff if we have increasing effect

(i.e., for the hypotheses in (4.1)) in tests for non-inferiority with ψ < 1. In

the next section, we introduce least favourable configuration (LFC) and then

compute the relative efficiency of the ratio-based test at LFC.

4.5 Least Favourable Configuration

As noted in Section 4.3, power computation in multiple testing relies on

the knowledge about the configuration of the m true alternative hypotheses

with θ` > θ∗. Typically, the number m of true alternatives is not known

in advance. One possibility is to evaluate the power at the least favorable

configuration, i.e., at the parameter configuration under the alternative hy-

potheses at which the smallest power is attained. For multiple testing based
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on the difference of location parameters, Horn and Vollandt (1998) derived

LFCs for various power definitions. Along a similar line, we obtain LFCs

associated with the ratio-based inference for complete and minimal power

in one-sided tests for non-inferiority (or superiority). Suppose that a priori

one knows upper and lower bounds on m, i.e., m1 ≤ m ≤ m2, where m1

and m2 are integers such that 1 ≤ m1 ≤ m2 ≤ k. We consider the case

n0 6= n1 = . . . = nk = n, that is λ` = λ. From the expression for the

complete power in (4.2), we see that

πCom(θ, θ∗) =

∫ ∞

0

∫ ∞

−∞

∏

`∈I(θ∗)

Φ

(
(θ` − ψ)µ0

σ

√
n− cη + λ`z√

1− λ2
`

)
φ(z)ϕ(η)dzdη,

>

∫ ∞

0

∫ ∞

−∞
Φm

(
(θ∗ − ψ)µ0

σ

√
n− cη + λz√

1− λ2

)
φ(z)ϕ(η)dzdη,

≥
∫ ∞

0

∫ ∞

−∞
Φm2

(
(θ∗ − ψ)µ0

σ

√
n− cη + λz√

1− λ2

)
φ(z)ϕ(η)dzdη,

= P {T1 > c, . . . , Tm2 > c | θ1 = . . . = θm2 = θ∗} .

Thus, if m1 ≤ m ≤ m2, a LFC for the complete power is θ1 = . . . = θm2 = θ∗,

and θ` < θ∗ for ` > m2, . That is, if we compute the power at a LFC, for

any other configuration of θ, the resultant power is larger than 1− β. Note

that θk−m2+1 = . . . = θk−1 = θk = θ∗, and θ` < θ∗ for ` ≤ k −m2 is also a

LFC. Therefore, the LFCs are permutation invariant. When there is no prior

information about m (i.e., m1 = 1 and m2 = k), θ1 = . . . = θk = θ∗ is a LFC.
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In a similar manner, for the minimal power, it can be shown from (4.3) that

πMin(θ, θ∗) ≥ 1− P {T1 < c, . . . , Tm1 < c | θ1 = . . . = θm1 = θ∗} .

Therefore, if a priori m1 ≤ m ≤ m2, then θ1 = . . . = θm1 = θ∗, and θ` < θ∗

for ` > m1, constitutes a LFC for the minimal power, and if there is no prior

information about m, θ1 = θ∗, and θ` < θ∗ for ` > 1 is a LFC .

4.6 Relative Efficiency of Ratio-Based Tests

The relative efficiency of ratio-based test is defined as the ratio of the sample

size required by the ratio approach to the sample size required by a compara-

ble difference-based test. Sample size can be determined either by using the

exact central and non-cental t-distributions or by normal approximations to

the t-distributions. In a balanced design, since both the number of degrees of

freedom and the non-centrality parameter(s) depend on the sample size, the

exact method involves a step-by-step calculation until the power condition

is satisfied. The problem of this approach is that it can be time consuming

since one has to compute and check the power for a wide range of sample

sizes. An alternative and efficient approach is to use the corresponding nor-

mal approximations to the central and non-central t-distributions. Normal

approximation also enable us to explicitly write an expression for sample size

which is useful in practical calculations and it also facilitates the computation
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of relative efficiencies.

Let cd,R(),1−α > 0 denote a one-sided equi-coordinate percentage point of a

central multivariate normal distribution of dimension d, a correlation matrix

R(), and a given familywise error rate of α. If there is no prior information

about m (i.e., 1 ≤ m ≤ k ), given a minimal power of 1− β, ψ, θ∗ and CV0,

the required sample size by the ratio approach is

nratio =
(
ck,R(ψ),1−α − Zβ

)2 1 + ψ2

(θ∗ − ψ)2
CV 2

0

where Zβ is the βth quantile point of a univariate standard normal density.

The corresponding sample size for the difference-based test is

ndiff =
(
ck,R(∆0),1−α − Zβ

)2 2

(θ∗ − ψ)2
CV 2

0 .

Therefore, the relative efficiency of the ratio-based test is given by

Rel.Eff. =
nratio

ndiff

=

(
ck,R(ψ),1−α − Zβ

ck,R(∆0),1−α − Zβ

)2
1 + ψ2

2
. (4.5)

In two-sample problems, Laster and Johnson (2003) has shown that Rel.Eff =

(1 + ψ2)/2. This is in line with the above result for k = 1. In (4.5), for

2 ≤ k ≤ 5, 1− β = 0.8 and α = 0.05, it is observed that

(
ck,R(ψ),1−α − Zβ

ck,R(∆0),1−α − Zβ

)2

≈ 1.

Thus, in these cases, the relative efficiency of the ratio-based approach is

roughly 0.5+0.5ψ2. This means that in simultaneous tests for non-inferiority
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with large response values indicating better treatment effects, the ratio-based

inference requires smaller sample size if ψ < 1.

When controlling the minimal power, if a priori it is known that m1 ≤

m ≤ m2, then

Rel.Eff. =

(
ck,R(ψ),1−α − cm1,R(ψ),β

ck,R(∆0),1−α − cm1,R(∆0),β

)2
1 + ψ2

2
.

Likewise, the relative efficiency for the complete power can be derived.

4.7 Numerical Study

In this section, we investigate the power and the associated sample sizes for

both the ratio-based and difference-based inferences. Various scenarios of

the coefficient of variation for the control group (CV0) and specific ratio pa-

rameter configurations (θ) under the alternative hypotheses are considered.

Suppose that large response values indicate better treatment effect. Figure

4.1 shows the minimal power function at LFC for the ratio-based test with

three comparisons (k = 3) and ψ = 0.8. The figure compares the power func-

tions for various sample sizes n in a balanced design. As one would expect,

the power is an increasing function of the clinically irrelevant percentage θ∗

and larger sample sizes lead to larger power values. The power at θ∗ = ψ is

α.
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Figure 4.1: Minimal power at LFC for various balanced sample sizes n when

k = 3, m1 = 1, ψ = 0.8, CV0 = 0.2, and α = 0.05.

Figure 4.2 shows the minimal power differences at LFC between the ratio

and difference approach πMin(θ, θ∗) − πMin(∆, ∆∗) when there is no prior

information about the correct configuration of the θ`s for different number of

comparisons k. From this figure, we see that the ratio-based is more powerful

than the difference-based in tests for non-inferiority with ψ < 1 (assuming

that large response values correspond to better treatment effects). This result
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Figure 4.2: Comparisons of the differences between the minimal power at LFC for

the ratio-based and the difference-based tests when m1 = 1, ψ = 0.80, CV0 = 0.2,

and n = 100 (balanced design).

is in line with the results obtained by Laster and Johnson (2003) for a single

ratio (k = 1). Figure 4.2, thus, indicates that this result also holds true for

multiple ratios (k > 1). If the θ values fall far to the right of ψ, the power

functions for both ratio and difference-based tests are close to one and the

two approaches practically do not differ, i.e., the power difference is close to

zero. Note that for the situation described above, when the non-inferiority

margin is greater than 1, πMin(θ, θ∗) < πMin(∆, ∆∗) for ψ < θ, therefore,
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Figure 4.3: Comparisons of the differences between the complete power at LFC for

the ratio-based and the difference-based tests when m2 = k, ψ = 0.80, CV0 = 0.2,

and n = 100 (balanced design).

difference-based inferences lead to higher power when testing for superiority.

When interest lies in controlling the complete power, we have a slightly

different situation in the power differences πCom(θ, θ∗)−πCom(∆, ∆∗) at LFCs.

As shown in Figure 4.3, the power of the difference-based testing is slightly

greater than that of the ratio for θ∗ values near the non-inferiority margin ψ.

In other words, for a fixed very small complete power (often of no practical

importance), ndiff can be smaller than nratio, even if ψ < 1.
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Let us now consider the impact of different parameter constellations on

the resulting sample sizes. Sample sizes are determined for LFC when no

prior information concerning m is available (i.e., m1 = 1 when controlling the

minimal power and m2 = r for complete power). The computations are based

on the exact non-central t-distribution, but normal approximation also yields

very similar results (with a difference of 2 or 1 observations in few cases).

Tables 4.1 and 4.2 consist of the sample sizes required for a given minimal

power and complete power, respectively. From the tables, it can be seen that

the sample size required for the minimal power (Table 4.1) is substantially

smaller than that of the complete power (Table 4.2) as expected. In the

tables, we compare the sample sizes required by the ratio-based inference

(nratio) with that of the inferences based on difference of means (ndiff). To

this end, the mean of the control group is fixed at an arbitrary value of

µ0 and the common standard deviation is fixed at σ = CV0µ0. Tables 4.1

and 4.2 show that smaller sample sizes are associated with the ratio-based

inference for the cases under investigation. Table 4.3 consists of the sample

sizes required in test of superiority for the problem described above. The

superiority margin is chosen to be ψ = 1.2. In this case, the sample size

required for the ratio-based test is larger than that of the difference.

Comparing Tables 4.1 and 4.3, one also discerns the symmetry in the

sample size required by the inference based on difference (ndiff is the same
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Table 4.1: Test for non-inferiority: Sample size nratio(ndiff) based on minimal

power for increasing effect (k = 3, m1 = 1, ψ = 0.80, α = 0.05)

θ∗

CV0(%) 1− β 0.85 0.90 0.95 1 1.10

10 0.75 51 (61) 14 (16) 7 (8) 4 (5) 3 (3)

0.80 57 (68) 15 (18) 7 (9) 5 (5) 3 (3)

0.90 75 (90) 20 (23) 9 (11) 6 (7) 3 (4)

0.95 92 (111) 24 (28) 11 (13) 7 (8) 4 (4)

20 0.75 201 (241) 51 (61) 23 (28) 14 (16) 7 (8)

0.80 226 (271) 57 (68) 26 (31) 15 (18) 7 (9)

0.90 298 (359) 75 (90) 34 (41) 20 (23) 9 (11)

0.95 366 (441) 92 (111) 42 (50) 24 (28) 11 (13)

50 0.75 1249 (1499) 313 (375) 140 (167) 79 (95) 36 (43)

0.80 1404 (1687) 352 (423) 157 (188) 89 (106) 40 (48)

0.90 1858 (2237) 465 (560) 207 (249) 117 (141) 53 (63)

0.95 2281 (2749) 571 (688) 254 (306) 144 (173) 64 (77)
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Table 4.2: Test for non-inferiority: Sample size nratio(ndiff) based on complete

power for increasing effect (k = 3, m2 = 3, ψ = 0.80, α = 0.05)

θ∗

CV0(%) 1− β 0.85 0.90 0.95 1 1.10

10 0.75 73 (85) 19 (22) 9 (10) 6 (6) 3 (3)

0.80 79 (93) 21 (24) 10 (11) 6 (7) 3 (4)

0.90 98 (116) 25 (30) 12 (14) 7 (8) 4 (5)

0.95 115 (137) 29 (35) 14 (16) 8 (10) 4 (5)

20 0.75 289 (339) 73 (85) 33 (38) 19 (22) 9 (10)

0.80 315 (371) 79 (93) 36 (42) 21 (24) 10 (11)

0.90 388 (461) 98 (116) 44 (52) 25 (30) 12 (14)

0.95 456 (544) 115 (137) 52 (61) 29 (35) 14 (16)

50 0.75 1801 (2114) 451 (529) 201 (236) 113 (133) 51 (60)

0.80 1962 (2312) 491 (579) 219 (258) 124 (145) 55 (65)

0.90 2423 (2879) 606 (720) 270 (321) 152 (181) 68 (81)

0.95 2843 (3395) 711 (849) 317 (378) 179 (213) 80 (95)
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Table 4.3: Test for superiority: Sample size nratio(ndiff) based on minimal

power for increasing effect (k = 3, m1 = 1, ψ = 1.20, α = 0.05)

θ∗

CV0(%) 1− β 1.25 1.30 1.35 1.40 1.50

10 0.75 73 (61) 19 (16) 9 (8) 6 (5) 3 (3)

0.80 82 (68) 21 (18) 10 (9) 6 (5) 3 (3)

0.90 109 (90) 28 (23) 13 (11) 8 (7) 4 (4)

0.95 133 (111) 34 (28) 16 (13) 9 (8) 5 (4)

20 0.75 288 (241) 73 (61) 33 (28) 19 (16) 9 (8)

0.80 325 (271) 82 (68) 37 (31) 21 (18) 10 (9)

0.90 431 (359) 109 (90) 49 (41) 28 (23) 13 (11)

0.95 531 (441) 133 (111) 60 (50) 34 (28) 16 (13)

50 0.75 1797 (1499) 450 (375) 201 (167) 113 (95) 51 (43)

0.80 2025 (1687) 507 (423) 226 (188) 127 (106) 57 (48)

0.90 2691 (2237) 673 (560) 300 (249) 169 (141) 76 (63)

0.95 3312 (2749) 829 (688) 369 (306) 208 (173) 93 (77)



4.8 Small Metrics Indicating Better Treatment Effects 40

in Tables 4.1 and 4.3). This is not only a numerical finding but it is also

theoretically expected (since the correlation matrix and the non-centrality

parameters for the two tables are identical). For the ratio approach, this

kind of symmetry does not hold true. Further, it may seem that one gets the

same nratio in Table 4.3 as in Table 4.1 if the margin in Table 4.3 is chosen

to be 1/0.8 = 1.25. But this is again not the case as can be seen from the

following example. In Table 4.1, nratio = 75 when CV0 = 0.2, 1 − β = 0.90,

and θ∗ = 0.90. In test for superiority (like in Table 4.3) with ψ = 1.25,

CV0 = 0.2, 1 − β = 0.90, and θ∗ = 1.30, the sample size required for the

ratio-based is nratio = 451, which is quite different from 75.

In summary, for the ratio-based inference, a smaller sample size is required

in tests for non-inferiority with ψ < 1 compared with the common difference-

based inference.

4.8 Small Metrics Indicating Better Treat-

ment Effects

In the case of small response values indicating better treatment effects, the

choice of ψ < 1 leads to test for superiority while ψ > 1 is test for non-

inferiority. Therefore, in simultaneous tests for non-inferiority with small
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response values indicating better treatment benefits, the hypotheses to be

tested are

H0` : γ` ≥ ψ against H1` : γ` < ψ, ` = 1, 2, . . . , r, (4.6)

where now the non-inferiority margin ψ > 1. In this case, we decide the

`th treatment to be non-inferior to the control if T`(ψ) < −c. The critical

point c is computed as in equation (3.4) by using the value of ψ fixed in

(4.6). From the symmetry of the distribution of T`(ψ) under the null, it can

be shown that the power behaviors of the problem in (4.6) are exactly the

same as the power behaviors of simultaneous tests for superiority when large

response values indicate better treatment effect and ψ > 1. The sample sizes

associated with the latter scenario is given in Table 4.3. Thus, there is no

sample size advantage in simultaneous tests for non-inferiority with ψ > 1.

In order to maintain the sample size advantage of the ratio view, if it gives

sense, one may make inference about the ratio of control mean to that of the

test treatments (as suggested by Laster and Johnson (2003) for a two-sample

problem). Thus, if we invert the ratios in (4.6), the hypotheses to be tested

are

H0` : µ0 /µ` ≤ ψ1 against H1` : µ0 /µ` > ψ1, ` = 1, 2, . . . , r, (4.7)

where ψ1 < 1. The associated joint distribution of the test statistics to test

the hypotheses in (4.7) has a multivariate t-distribution with off-diagonal
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elements of the correlation matrix given by

ρij(ψ1) =
1√

1 + n0

ni
ψ2

1

1√
1 + n0

nj
ψ2

1

, 1 ≤ i 6= j ≤ r.

For power computations, the corresponding non-centrality parameters are

given by

δratio
` (ψ1) =

1− ψ1(µ0 /µ` )
−1

CV0

√
1
n0

+ 1
n`

ψ2
1

.

Now, for comparing the power associated with the tests in (4.7) with that of

the difference-based test, we consider the hypotheses

H0` : µ0 − µ` ≤ ∆` against H1` : µ0 − µ` > ∆`, ` = 1, 2, . . . , r,

where ∆` = (ψ1 − 1)µ`. Here, we encounter varying absolute non-inferiority

margins which depend on the mean of the new treatments. For these choices

of the delta-margins, the corresponding ratio-formatted tests are more power-

ful. It might be more desirable to have identical absolute delta-margins across

the comparisons. In this case, from the relationship between µ0 and µ` on the

boundaries of the H0` hypotheses in (4.7), we can write µ` = µ0 /ψ1 . Substi-

tuting this in ∆` = (ψ1− 1)µ`, we get another delta-margin of (1− 1 /ψ1 )µ0.

Often, there exists more prior information about the standard treatment (the

control) than the new treatments. Thus, the latter approach seems to be a

more practical way of choosing the delta-margins. However, for this second

choice of the delta-margins, the difference-based test is more efficient.
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Figure 4.4: Minimal power at LFC versus allocation factor (n0/n`) for a fixed

total sample size N = 208. The vertical dotted line is at the allocation factor

ψ
√

k = 1.212.

4.9 Examples

Now, let us determine the sample sizes required for two of the data exam-

ples in Chapter 2. All computations are carried out for the least favourable

configuration.

Example 1. For the osteoporosis study described in Section 2.3, we com-

pute the sample size associated with a non-inferiority margin of ψ = 0.70,



4.9 Examples 44

a minimal power of 80%, α = 0.05, and CV0 = 0.50. We further assume

that the clinically irrelevant percentage of the control mean which is to be

detected is θ∗ = 0.95. Since there is no prior information about m, a LFC is

θ1 = 0.95, θ2, θ3 < 0.95. Under these conditions, for the one-sided simultane-

ous test of three treatment schedules versus an active control, the required

number of observations per treatment is nratio = 52 (ndiff = 68) in a balanced

design. For the ratio-based testing, if we use the allocation rule n0 = ψ
√

kn`

with a fixed total sample size of N = 4 × 52 = 208, the number of obser-

vations required per treatment are n0 = 60 and n1 = n2 = n3 = 50. The

power of this allocation is 0.807. The graph of power versus other allocation

factors (n0/n`) is shown in Figure 4.4. The power attains its maximum at

the allocation factor 0.7 ×√3 (the vertical dotted line in Figure 4.4). Note

that this holds true when m1 = 1. If m1 > 1 or if the interest is to control

the complete power (with m2 = 3), the maximum power over all possible

allocations is slightly greater than the power at the allocation 0.7×√3. For

the difference-based inference, using the allocation rule n0 =
√

kn` with a

fixed total sample size of N = 4 × 68 = 272, the number of observations

required per treatment are n0 = 100 and n1 = n2 = n3 = 58.

Example 2. The clinical data example described in Section 2.4 is the case

when small response values indicate better treatment effect. The superior-
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ity margin is ψ = 0.90, the given minimal power is 0.80, α = 0.025, and

CV0 = 0.17. Let the clinically relevant percentage of the control to be de-

tected be θ∗ = 0.85. Since there is no prior information about m, a LFC

is θ1 = 0.85, θ2, θ3 > 0.85. Thus, the number of observations required per

treatment is nratio = 215 (ndiff = 237) in a balanced design. Therefore, in

terms of sample size, the ratio approach is more efficient in designing a new

confirmatory clinical trial. For the same trial, if one wishes to control the

complete power, the LFC is θ1 = 0.85, θ2 = 0.85, θ3 = 0.85, and the required

sample size for each treatment is nratio = 290 (ndiff = 315).

We remark that when controlling minimal power with the prior informa-

tion that m1 > 1, the power at the allocation factor ψ
√

k is slightly smaller

than the maximum power over all possible allocations. In this case, it is

again possible to determine the optimum sample sizes (associated with the

maximum power) iteratively by first finding the optimum allocation factor.

4.10 Discussion

In this chapter, we considered the problem of sample size and power com-

putations in simultaneous tests for non-inferiority based on the ratio view.

The efficiency of this approach is also compared with that of tests based

on the difference of location parameters. From the various numerical stud-
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ies, the following results are observed. The ratio approach has advantage in

one-sided tests, namely, (i) in tests for non-inferiority with relative margin

less than one and when large response values indicate better treatment effect

and (ii) in tests for superiority with the superiority margin less than one

and when small response values indicate better treatment effect. The latter

case is illustrated using a clinical data example (Example 2). It is not di-

rectly investigated but it can be shown analogously to test for non-inferiority.

This generalizes the results of Laster and Johnson (2003) from two-sample to

multiple-sample designs. In some cases, the reduction in sample size can be

clinically relevant. For instance, for the osteoporosis study, we have about

25% reduction in the number of observations per treatment by applying the

ratio approach.

Therefore, from the perspective of higher power and problem-adequate

interpretation, ratio-based multiple testing can be recommended for selected

non-inferiority (or superiority) trials when the interest is to control the min-

imal power. The related R code for the design is provided in the Appendix.



Chapter 5

Simultaneous Confidence Sets

and Confidence Intervals

5.1 Introduction

A well-known theorem by Fieller (1954) provides a method for constructing

confidence interval for ratio of bivariate normal means. Various extensions

and the characteristics of the Fieller solution are studied by Cox (1967), Stef-

fens (1971), Buonaccorsi (1985), Koschat (1987), and others. The focus of

this chapter is that of constructing simultaneous confidence sets (SCS) and

simultaneous confidence intervals (SCI) for multiple ratios. In the statis-

tical literature, this problem is also addressed by a number of researchers.

Scheffé (1970) showed that estimation of ratios is related to estimation of an
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unoriented direction of a vector, and thereby proposed a method for joint

estimation of multiple ratios based on the projection method. Zerbe et al.

(1982) applied the Scheffé method to ratios of linear combinations of the co-

efficients in the general linear model. Young et al. (1997) further extended

the Scheffé method to the case of ratios of parameters of linear and non-linear

mixed models. Bennett (1961) dealt with the problem of constructing con-

fidence intervals for the common ratio of means of several bivariate normal

distributions. Malley (1982) dealt with the case of multivariate observations

and several ratios and provides a method for constructing SCI for multiple

ratios for various scenarios of the covariance matrix. Among others, Malley

(1982) also proposed the use of a Bonferroni correction for the simultaneous

estimation of ratios. Jensen (1989) used a critical point which is derived on

the basis of Šidák (1967) inequality, and discussed its applications in direct,

parallel-line and slope-ratio assays. In sequential analysis, Hwang and Liu

(1990) proposed confidence sequences for multiple ratios which are analogous

to Scheffé’s simultaneous confidence intervals. They also give sharper confi-

dence sequences. The primary objective is to propose some alternatives to

the existing conservative procedures in non-sequential setting.

In this chapter, first we describe a new method of constructing SCS based

on the multivariate t-distribution which controls the confidence level exactly.

Secondly, we review the existing methods for constructing SCI (Bonferroni,
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Šidák and Scheffé) which approximately control the confidence level and then

propose two other methods (plug-in and resampling). The methods are com-

pared for a variety of data sets. Monte Carlo simulation is also used to

compare the performance of the methods with respect to estimates of the

critical point and the coverage probabilities. Accordingly, the chapter is or-

ganized as follows. In Section 5.2, we define the problem as applied to the

one-way ANOVA model. The general problem of constructing SCS and SCI

for multiple ratios are introduced in Sections 5.3 and 5.4. Section 5.5 deals

with a specific area of application, the many-to-one comparisons. Various nu-

merical examples are also provided in this section. A simulation study based

on the many-to-one comparisons is given in Section 5.6. Finally, Section 5.7

is devoted to concluding remarks.

5.2 Multiple Ratios

Suppose that we have k treatments. Let Yij denote the jth independent

observation under the ith treatment, i = 1, . . . , k; j = 1, . . . , ni. We consider

the one-way ANOVA model with Yij ∼ N (µi, σ
2). Let µ = (µ1, . . . , µk)

′ be

the vector of treatment means. The aim is to develop simultaneous confidence

sets and confidence intervals for ratios of linear combinations of µ. We are
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interested in the vector of parameters γ = (γ1, . . . , γr)
′, where

γ` =

∑k
i=1 c`iµi∑k
i=1 d`iµi

=
c′`µ
d′`µ

, ` = 1, . . . , r, (5.1)

and r is the number of ratios. The vectors c` = (c`1, . . . , c`k)
′ and d` =

(d`1, . . . , d`k)
′ are known vectors of real constants associated with the `th

ratio.

A key step in the derivation of confidence intervals for ratios is expressing

the ratio problem as a linear form L` = (γ`d` − c`)
′Y, ` = 1, . . . , r, where

Y = (Y 1, . . . , Y k)
′ is the maximum likelihood estimator of µ. More details

on this approach can also be found in Fieller (1954) and Zerbe et al. (1982).

Clearly, L` is distributed as N (0, σ2
L`

), where

σ2
L`

= Var(L`) = σ2(γ`d` − c`)
′M(γ`d` − c`),

and Var(Y) = σ2M, with M being a diagonal matrix containing the recip-

rocals of the sample sizes. Let S2 be the unbiased pooled variance estimator

of the common variance σ2 based on ν =
∑k

i=1(ni − 1) degrees of freedom.

Denote an estimator of σ2
L`

by S2
L`

, where S2
L`

is obtained from σ2
L`

by re-

placing σ2 by S2. Since SL`
is distributed as

(
σ2

L`
ν−1χ2(ν)

) 1
2 independent of

L`, the statistic T`(γ`) = L` /SL`
follows a t-distribution with ν degrees of

freedom. For notational convenience, note that this test statistic is chosen

to be the negative of the one defined in Chapter 3 (compare with Equation

3.6). Jointly, the random vector T = (T1, . . . , Tr)
′ follows Mtr(ν,R), where
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the elements of R are given by

ρij =
(γidi − ci)′M(γjdj − cj)√

(γidi − ci)′M(γidi − ci)
√

(γjdj − cj)′M(γjdj − cj)
, (5.2)

1 ≤ i 6= j ≤ r. It can be shown that Corr(Zi, Zj) = ρij, where Zi = Li/σLi
.

In Section 5.3, we shall use the distribution of T as a basis for deriving

confidence sets for γ. One particular challenge is the dependence of R on γ

which is the object of estimation. It is seen from (5.2) that the correlation

ρij is a function of the unknown ratios γi and γj, say ρij = h(γi, γj).

Before taking up the simultaneous inference for multiple ratios, we remark

on some special cases of the above problem. For r = 1, we have a single

ratio, say γ = c′µ /d′µ . A confidence interval for γ can be constructed using

Fieller’s theorem. A two-sided (1 − α)100% confidence interval for γ is the

solution in γ of the inequality

|T (γ)| = |(γd− c)′Y|
S[γ2d′Md− 2γc′Md + c′Mc]

1
2

≤ t1−α
2
(ν), (5.3)

where t1−α
2
(ν) is the (1− α

2
)th quantile point of a t-distribution with ν degrees

of freedom. The inequality in (5.3) can be expressed as a quadratic inequality

in γ

Aγ2 + Bγ + C ≤ 0, (5.4)

where A = (d′Y)2 − t2S2d′Md, B = −2
[
(c′Y)(d′Y)− t2S2c′Md)

]
, C =

(c′Y)2 − t2S2c′Mc and t = t1−α
2
(ν). Depending on the values of the leading
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coefficient A and the discriminant B2 − 4AC, there are three possible solu-

tions to the inequality in (5.4)(see, for example, Buonaccorsi and Iyer, 1984;

Kendall (1999)). If A > 0, then it can be shown, that also B2−4AC > 0, and

the solution is a finite interval lying between the two roots. This is the most

desirable situation. The other two cases result in either a region containing

all values lying outside the finite interval defined by the two roots or even

the entire γ-axis. If d′µ is significantly different from 0, the last two cases

occur only with small probability. The condition A > 0 can equivalently be

expressed as g < 1, where

g =
t2S2d′Md

(d′Y)2
. (5.5)

Note that S
√

d′Md
/
d′Y is an estimator of σ

√
d′Md /d′µ , the coefficient

of variation of d′Y.

Now for the general ratio problem in (5.1), in order to guarantee A` > 0

(for the `th ratio) with high probability, we should require that

0 <
qσ

√
d′`Md`

d′`µ
¿ 1 or

d′`µ

qσ
√

d′`Md`

À 1, (5.6)

where q is some relevant critical point. The direction of the inequality in

(5.6) follows from the assumption that d′`µ > 0. As explained after (5.4), for

a single ratio, there are three types of solutions depending on the value of g

and the discriminant. For multiple ratios, many combinations of these types

exist and it is difficult to fully describe the geometry of all such regions. Some



5.3 Simultaneous Confidence Sets 53

examples of unbounded two-sided SCS are shown in Appendix C. This is the

reason for demanding the constraint in (5.6). In this case, the probability

of the event g` > 1 is small and ignorable. Later on, we shall see that

qσ
√

d′`Md` /d′`µ is a key quantity dictating the geometric form of SCS for

multiple ratios.

A major challenge in ratio estimations is the case of non-significant de-

nominators (g > 1). If the probability of getting g > 1 is high, one may (i)

change the design of the experiment such that d′`Md` will be smaller, (ii)

estimate the reciprocal of the ratio if it gives sense (with appropriate inverse

interpretation), or (iii) if feasible, apply Bayesian methods as proposed by

Buonaccorsi and Gatsonis (1988).

5.3 Simultaneous Confidence Sets

Let θ = (θ1, . . . , θr)
′ be a point in the parameter space of γ = (γ1, . . . , γr)

′.

Suppose that the interest is to construct a lower (1−α)100% SCS for γ. The

usual way of determining a confidence set is to consider the test problems

H0` : γ` = θ` against H1` : γ` < θ` (5.7)
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with respect to the unknown parameters γ` and the constants θ`, ` = 1, . . . , r.

If inequality (5.6) is true, then it is reasonable to apply

T`(θ`) =
c′`Y − θ`d

′
`Y

S[θ2
`d

′
`Md` − 2θ`c′`Md` + c′`Mc`]

1
2

as a test statistic for testing (5.7). This means that H0` will be rejected if

T (θ`) exceeds a suitable significance threshold. Now a vector θ belongs to the

confidence set if and only if for this vector the null hypothesis H0 :
⋂r

`=1 H0`

is accepted. Therefore, for a given sample, the collection of all such points

constitutes a SCS for γ. To test H0 against the alternative hypothesis

H1 :
⋃r

`=1 H1`, we employ the union-intersection principle due to Roy (1953)

which accepts H0 if all H0`’s are accepted. Thus, using the test statistics

T (θ`), for a lower (1− α)100% SCS, we get the following definition.

Definition (Simultaneous confidence sets). Let c1−α(R(θ)) denote a one-

sided equicoordinate critical point of Mtr(ν,R(θ)). A (1− α)100% SCS for

γ is defined by the set

{θ : T`(θ`) ≤ c1−α(R(θ)), ` = 1, . . . , r}. (5.8)

We write R(θ) to indicate the dependence of R on θ. Under H0, c1−α(R(θ))

satisfies

P {T`(θ`) ≤ c1−α(R(θ)), ` = 1, . . . , r} = 1− α.
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We refer to this confidence set as exact SCS in the sense that exact probability

equality is inverted to obtain the set. In the same manner, a two-sided

(1− α)100% SCS for γ is defined as

{θ : |T`(θ`)| ≤ c′1−α(R(θ)), ` = 1, . . . , r}, (5.9)

where c′1−α(R(θ)) denotes the two-sided equicoordinate critical point of

Mtr(ν,R(θ)).

From (5.8) and (5.9), it is apparent that the critical points of T depend

on θ through the correlation matrix R. Therefore, there is no easy way of

explicitly determining the boundary of the confidence set. In the following

sections, two approaches of constructing SCS are discussed.

5.3.1 Iterative Approach

In general, the iterative approach consists of a step-by-step method of es-

timating the unknown parameters (one conditioned over the other in turn)

and determining the boundaries of the confidence set by starting from some

initial values. We consider the simplest case of r = 2 to describe the method.

The algorithm below is developed from the discussions of Guiard (2002) in

comparisons with a control. Now, suppose that the interest is to construct

the lower (1− α)100% SCS for γ = (γ1, γ2)
′ = (c′1µ /d′1µ , c′2µ /d′2µ)′. The

steps are:
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Case 1. Estimating upper confidence limits for γ1 conditional on γ2 values.

Step 1 Initiate the parameters: Let γ
(0)
1 be the initial value for γ1 and

let Γ2 be a set of fine grid points for γ2.

Step 2 For a given θ2 ∈ Γ2, compute the correlation and hence the

quantile of T. The correlation matrix at the jth iteration is given by

R(j) =




1 ρ
(j)
12

ρ
(j)
12 1




where ρ
(j)
12 = h(γ

(j)
1 , θ2). Compute the quantile c

(j)
1−α of T such that

P
{

T1 ≤ c
(j)
1−α, T2 ≤ c

(j)
1−α

}
= 1− α.

Step 3 Compute the boundary (upper confidence limit for γ1) as

γ
(j+1)
1 =

−B
(j)
1 +

√(
B

(j)
1

)2

− 4A
(j)
1 C

(j)
1

2A
(j)
1

,

where

A
(j)
1 = (d′1Y)2 − (c

(j)
1−α)2S2d′1Md1,

B
(j)
1 = −2

[
(c′1Y)(d′1Y)− (c

(j)
1−α)2S2c′1Md1)

]
,

C
(j)
1 = (c′1Y)2 − (c

(j)
1−α)2S2c′1Mc1.
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Step 4 Repeat steps 2 and 3 until convergence, i.e.,
∣∣∣c(j+1)

1−α − c
(j)
1−α

∣∣∣ < ε,

for some pre-specified accuracy ε > 0, j = 0, 1, 2, . . .

Step 5 Do steps 2 to 4 for all θ2 ∈ Γ2. If γ1(θ2) is the confidence limit

for γ1 given θ2, then use this limit as an initial value if γ1(θ
′
2) will be

searched for a neighbouring value θ′2 ∈ Γ2.

Step 6 Sketch the upper confidence limits for γ1 at the points of con-

vergence versus Γ2.

Case 2. Estimating upper confidence limits for γ2 conditional on γ1 values.

This case is exactly the same as Case 1, except that we interchange the

role of γ1 and γ2. Thus, the correlation and the upper confidence limits are

going to be updated as

ρ
(j)
12 = h(θ1, γ

(j)
2 )

γ
(j+1)
2 =

−B
(j)
2 +

√
(B

(j)
2 )2 − 4A

(j)
2 C

(j)
2

2A
(j)
2

, j = 0, 1, 2, . . .

until convergence. The quantities A
(j)
2 , B

(j)
2 and C

(j)
2 are the coefficients of

the quadratic equation associated with γ2 at the jth iteration.
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Figure 5.1: Comparison of the iterative and pointwise testing for constructing

SCS.

Finally, the desired SCS is the set of points in the γ1γ2-plane for which

γ1 ≤ γ∗1(θ2) and γ2 ≤ γ∗2(θ1), where γ∗1(θ2) and γ∗2(θ1) are the points of

convergences in Cases 1 and 2, respectively. In Figure 5.1, these points are

the same as the intersection points of the vertical and the horizontal lines.

An alternative way of obtaining the SCS is described in the next section. As

to the rate of convergence, few iterations (like 2 and 3) are required when

ε = 0.001 for the examples considered this report.
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5.3.2 Point-wise Testing

Suppose that the interest is to construct a lower (1 − α)100% confidence

set for γ as in (5.8). From (5.8) it follows that the point θ belongs to this

confidence set if it fulfils the condition T`(θ`) ≤ c1−α(R(θ)), ` = 1, . . . , r.

Therefore, for every point θ we can directly decide whether it belongs to

the confidence set or not. In Figure 5.1, the accepted points are shown by

dots. Therefore, both approaches lead to the same region. Using (5.9), the

two-sided SCS can be constructed analogously.

The difference between the two approaches is that the iterative approach

initializes the unknown parameters and the iteration is repeated until conver-

gence to boundary points, whereas the second approach consists of deciding

for every point whether it belongs to the confidence set or not. The iterative

approach works best for r = 2. The approach based on pointwise testing

works for any r, although it takes more time since it has to go over all the

grid points.

5.4 Simultaneous Confidence Intervals

In this section, we discuss useful approximations to the exact SCS described

in the previous section. In effect, we replace the critical point c1−α(γ) which

depends on the vector of the unknown ratios by some constant(s) which is
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free of γ. By doing so we get conservative or approximate SCI. As dis-

cussed in Section 5.3, SCS can be determined precisely; but often, they have

strange and irregular shapes which make the interpretations harder (See,

e.g., Chikuse (1981), where confidence sets are constructed for ratios of the

discriminant coefficients.) On the other hand, SCI are rectangular in shape

and easily interpretable. However, it is not possible to construct SCI which

satisfy the pre-specified familywise confidence level exactly. Thus, there is a

trade-off between exact SCS and SCI for ratios.

Let Q`(γ`, c1−α) = A`γ
2
` + B`γ` + C` denote a quadratic function in the

ratio parameter γ` derived on the basis of the critical point c1−α, and by

solving inequality of the type in (5.3). The SCI are determined by solving

inequalities of the type in (5.4) for each ratio separately.

5.4.1 Probability Inequalities

Here we present three basic probability inequalities used in multiple compar-

ison procedures.

a) Bonferroni method. The Bonferroni simultaneous confidence limits can

be obtained by using the usual Bonferroni adjusted critical point in Fieller

intervals (see, e.g., Malley (1982)). For r ratios, the critical point for a two-

sided SCI is t1− α
2r

(ν). Therefore, the Bonferroni SCI for γ are the solutions
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of the inequalities

Q`(γ`, t1− α
2r

(ν)) ≤ 0, ` = 1, . . . , r.

Note that from the general Bonferroni inequality it follows that,

P{|T`| < c′1−α(R(γ)), ` = 1, . . . , r} ≥ 1− r
[
1− P{|T1| < c′1−α(R(γ))}] .

And since 1− r
[
1− P{|T1| < t1− α

2r
(ν)}] = 1− α, we have that

c′1−α(R(γ)) ≤ t1− α
2r

(ν), (5.10)

for every correlation matrix R(γ). Therefore, the SCS are always bounded

by the Bonferroni SCI. Similarly, the inequality in (5.10) can be written for

the one-sided case, c1−α(R(γ)) ≤ t1−α
r
(ν).

b) Mtr(ν, Ir) method. For a two-sided SCI, according to Jensen (1989),

we apply an inequality due to Šidák (1967) for multivariate normal distri-

butions which can be generalized for the multivariate t-distribution. For

a detailed account of this inequality, we refer to Hochberg and Tamhane

(1987). The correlation matrix R = [ρij] in (5.2) can be written in the form

ρij = δiδjcij, δi, δj ∈ [0, 1], i 6= j and ρii = 1, where C = {cij} is a positive

(semi) definite correlation matrix. According to Šidák (1967), c′1−α(R(θ)) is

decreasing in all δi. Therefore, for all vectors θ we get c′1−α(R(θ)) ≤ c′1−α(Ir),

where Ir is an identity matrix of rank r. This means that SCI based on the

critical point of Mtr(ν, Ir) (or MtI-SCI for short), completely covers the exact
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SCS and hence it is conservative. But from (5.10), MtI-SCI is less conser-

vative than the Bonferroni-SCI. The two-sided MtI-SCI are the solutions

of

Q`(γ`, c
′
1−α(Ir)) ≤ 0, ` = 1, . . . , r.

For the one-sided case, Slepian inequality (see Hochberg and Tamhane, 1987)

can be applied instead of Šidák’s inequality. According to Slepian, c1−α(R(θ))

is decreasing in all elements ρij of R(θ). This means that c1−α(R(θ)) ≤

c1−α(Ir) for all θ having only non-negative elements ρij of R(θ). Therefore,

if such θ belongs to the exact SCS, then it also belongs to the MtI-SCI. But,

if for a point θ some ρij’s are negative, then the last statement does not hold

true. In Section 5.5, the geometrical forms of the exact SCS and MtI-SCI

will be demonstrated for the special case of many-to-one comparisons.

5.4.2 Projection Method

A method due to Scheffé (1970) is called the projection method and it uses

quantiles of the F -distribution. Basically, it consists of projecting the simul-

taneous confidence sets onto the coordinate axes of the γls. The two-sided

SCI are the solutions of

Q`(γ`, [mF1−α(m, ν)]
1
2 ) ≤ 0, ` = 1, . . . , r,
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where m is the dimension of the space spanned by the vectors c` − γ`d`,

` = 1, . . . , r. More details on this can be found in Scheffé (1970) and Zerbe

et al. (1982). Note that the Scheffé-SCI is a simultaneous confidence interval

not only for the r contrasts under study, but for all possible combinations

of the m basic contrasts. Therefore, when m = r (e.g., when all ratios have

the same denominator), the conservativeness of the Scheffé method rapidly

increases with r.

5.4.3 The Plug-in Approach

The idea of this competing approach is to derive approximate SCI by esti-

mating R(γ) which depends on the unknown γ. Under the ANOVA model

in Section 5.2, the maximum likelihood estimator of µ is Y. Hence, by the

invariance property, the maximum likelihood estimators of the ratio param-

eters in (5.1) are γ̂` = c′`Y
/
d′`Y , ` = 1, . . . , r. Plugging these in R(γ),

we obtain R(γ̂) = [ρ̂ij], where ρ̂ij = h(γ̂i, γ̂j), 1 ≤ i 6= j ≤ r. We call

this method the ‘plug-in’ approach. Let c′1−α(R(γ̂)) denote the two-sided

equicoordinate critical point associated with R(γ̂). The approximate SCI

are obtained by solving

Q`(γ`, c
′
1−α(R(γ̂)) ≤ 0, ` = 1, . . . , r.

The one-side SCI can be obtained similarly.
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5.4.4 Resampling Techniques

In this section we describe two resampling methods. Let y
(b)
ij denote the jth

observation under the ith treatment for the bth bootstrap sample, i = 1, . . . , k;

j = 1, . . . , ni; b = 1, . . . , N . The bootstrap version of the test statistic

T` = L` /SL`
is given by

T
∗(b)
` =

(γ̂`d` − c`)
′y∗(b)

s∗(b)[γ̂`
2d′`Md` − 2γ̂`c′`Md` + c′`Mc`]

1
2

,

where y∗(b) =
(
y
∗(b)
1 , . . . , y

∗(b)
k

)′
and s∗(b), respectively denote the vector of

sample means and an estimate of the common standard deviation com-

puted from the bth bootstrap sample. The observations are mean-centred

and pooled into one single dataset prior to resampling (Westfall and Young,

1993). The following procedures are considered for the estimation of the

critical point(s).

a) TMax. This is an adaptation of the method discussed by Westfall and

Young (1993, p82) for ratios. For a two-sided SCI, an estimate of the critical

point of interest, say ĉ∗1−α, is obtained by computing the (1 − α)th quantile

of the values

T
∗(b)
Max = Max

{∣∣T ∗(b)
1

∣∣, . . . ,
∣∣T ∗(b)

r

∣∣
}

, b = 1, . . . , N.

Therefore, the two-sided SCI are the solutions of

Q`(γ`, ĉ
∗
1−α) ≤ 0, ` = 1, . . . , r.



5.4 Simultaneous Confidence Intervals 65

To construct one-sided SCI, we follow similar steps except that we drop the

sign for the absolute value in the above expression for T
∗(b)
Max.

We remark that unlike in the case of inference for the difference of means,

the means do not vanish under the null hypothesis in the test statistics. The

scheme in Westfall and Young (1993) works best for location shift problems.

b) Balanced SCI. This is a technique based on the idea of pre-pivoting

and balance as described by Beran (1987, 1988). The purpose of balancing

is to correct for uneven coverage probabilities for the individual parameters.

The steps are as follows. Let H` be the left continuous cdf of the statistic T`,

and let H be the cdf of Sup{H`(T`), ` = 1, . . . , r}. Thus, H is a mapping

from [0,1] to [0,1]. The bootstrap estimates of the critical points for a lower

one-sided SCI are obtained as

ĉ∗`,1−α = Ĥ−1
`

[
Ĥ−1(1− α)

]
,

where Ĥ` and Ĥ are empirical estimates of H` and H, respectively. Note

that in this case the critical points are estimated separately for each ratio

parameter.

In summary, a two-sided approximate (1 − α)100% SCI for (γ1, . . . , γr)
′

is given by
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(
−B` −

√
B2

` − 4A`C`

2A`

,
−B` +

√
B2

` − 4A`C`

2A`

)
, ` = 1, 2, . . . r

where

A` = (d′`Y)2 − q2S2d′`Md`,

B` = −2
[
(c′`Y)(d′`Y)− q2S2c′`Md`)

]
,

C` = (c′`Y)2 − q2S2c′`Mc`,

and

q =





t1− α
2r

(ν) if Bonferroni adjustment,

c′1−α(Ir) if Šidák,

c′1−α(R(γ̂)) if plug-in,

ĉ∗1−α if resampling (TMax).

Before providing some examples on the methods discussed in Sections 5.2

to 5.4, we give some general remarks.

(i) Applications to the general linear model

The methods discussed in the previous sections are equally applicable to the

problems of constructing SCS and SCI for the ratios of regression coefficients

in the general linear model. Let X be an n × p design matrix and β =

(β1, . . . , βp)
′ be a vector of unknown regression coefficients. The model is

Y = Xβ + ε, ε ∼ Nn(0, σ2I).
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Interest lies in simultaneous confidence sets (intervals) for the ratios

γ` =

∑p
i=1 c`iβi∑p
i=1 d`iβi

=
c′`β
d′`β

,

where c` and d` are known vectors of real constants of length p associated

with the `th ratio, ` = 1, . . . , r. In order to get estimable linear combinations,

the vectors c` and d` must be linear combinations of the rows of X. Let S2 be

the unbiased estimator of σ2 based on ν = n−Rank(X) degrees of freedom.

Following the discussions in Section 5.2, the test statistic

T` =
(γ`d` − c`)

′β̂

S[γ2
` d

′
`Md` − 2γ`c′`Md` + c′`Mc`]

1
2

is distributed as t(ν), ` = 1, . . . , r, where β̂ = (X′X)−X′Y, M = (X′X)−

and A− denotes a generalized inverse of A. Jointly, T = (T1, . . . , Tr)
′ ∼

Mtr(ν,R), where R = [ρij ] is as defined in (5.2). Therefore, SCS and SCI

can be developed for γ as discussed in Sections 5.3 and 5.4.

(ii) Multiple assays

The multiple assays (parallel-line and slope-ratio) discussed by Jensen (1989)

can be written in the form of the general linear model, and hence all of the

methods discussed above are equally applicable to these problems.

(iii) Limit of the correlation matrix R(γ)
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The limit of the correlation matrix in (5.2) is

lim
γi,γj→+∞

ρij = lim
γi,γj→−∞

ρij =
d′iMdj√

d′iMdi

√
d′jMdj

lim
γi→−∞,γj→+∞

ρij = lim
γi→+∞,γj→−∞

ρij = − d′iMdj√
d′iMdi

√
d′jMdj

.

A remarkable result is that R is free of γ asymptotically. Thus, it sounds

that in some multiple ratio problems, the limit of the correlation matrix can

be used to derive SCI. It is also interesting to note that the limit matrix

depends only on the di’s, the vectors which appear in the denominator of

the ratios. Furthermore, if di = dj, 1 ≤ i < j ≤ r; in other words, if all

ratios have the same denominator, then the limit of the correlation in (5.2)

will be 1 or −1 depending on whether γi and γj have the same or different

signs. In all cases considered, the correlations do not depend on M if the

design is balanced.

5.5 Many-to-One Comparisons

Many-to-one comparisons are often of interest in many areas of applications.

As the name implies, the design consists of comparing many treatments to

one treatment, often a control treatment. This comparison appears to be the

simplest design on which to apply simultaneous inference for several ratios

since all ratios have the same denominator.
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Suppose that we have k+1 treatments (including the control). We assume

that the responses of interest Yij are independent observations from

N (µi, σ
2), i = 0, 1, . . . , k; j = 1, . . . , ni,

where i = 0 refers to the control treatment. The aim is to construct confi-

dence sets and SCI for the ratios of means γ` = µ` /µ0 , ` = 1, . . . , k. As

described in Chapter 4, this formulation can be utilized for ratio-based in-

ference for non-inferiority (or superiority) trials.

Now the pivotal quantity

T` =
γ`Y0 − Y`

S
√

1
n`

+
γ2

`

n0

has a t-distribution with ν =
∑k

i=0(ni − 1) degrees of freedom, ` = 1, . . . , k.

Jointly, T = (T1, . . . , Tk)
′ ∼ Mtk(ν,R). In many-to-one comparisons, the

elements of the correlation matrix R simplify to

ρij =
γiγj√

γ2
i + n0

ni

√
γ2

j + n0

nj

, 1 ≤ i 6= j ≤ k.

Equivalently, the correlations can be written as ρij = λiλj, where

λi =
sign(γi)√
1 + τ−2

i

, (5.11)

τi = γi

√
ni /n0 and sign(γi) refers to the the sign of γi, with sign(γi) = −1

if γi < 0 and sign(γi) = 1 if γi > 0. The expression in (5.11) shows how the

correlations are related to the ratios and the sample sizes. The correlations
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tend to zero as τi’s approach zero (i.e., as we increase the sample size for the

control group or as the ratios tend to zero). More importantly, the index τi

enables us to better compare the various methods of constructing SCI with

respect to their coverage probabilities. T` is t-distributed with ν degrees of

freedom and c1−α(R) depends only on ν and the τi’s as can be seen from

(5.11). Therefore, for many-to-one comparisons, the coverage probability of

the one-sided SCS (5.8) and analogously that of the two-sided SCS (5.9)

depends only on ν and the τi’s. Moreover, note that after little algebra T`

can also be expressed as

T` =
τ` − τ̂`

ĈV Y 0

√
1 + τ 2

`

,

where τ̂` = Y `
√

n`

/
(Y 0

√
n0) = ĈV Y 0

/
ĈV Y `

and ĈV Y `
is an estimator

of the coefficient of variation of Y `. Since the SCS for τ = (τ1, . . . , τr)
′ is

defined analogously to (5.8) or (5.9), its shape depends only on ν, ĈV Y 0
and

the τ̂`’s. From the SCS of τ , we get the SCS of γ by the linear transformations

γ` = τ`

√
n0 /n` .

In the following sections, a wide variety of examples in many-to-one com-

parisons are used to illustrate the methodologies described in Sections 5.2 to

5.5. Since all ratios have the same denominator, the corresponding g values

defined in (5.5) are identical.
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Figure 5.2: Two-sided 95% SCS and Bonferroni SCI for γ = (γ1, γ2)′ with τ̂1 =

0.85, τ̂2 = 0.65 and ĈV Y 0
= 0.05 (Body weight data).

Example 1 (Two-sided SCI and small g value, k = 2). Recall the body

weight data described in Section 2.2. Let µ0, µ1 and µ2 denote the true aver-

age weight gain for the control, Thyroxin, and Thiouracil treatment, respec-

tively. The interest is to simultaneously compare Thyroxin and Thiouracil

with the control based on the ratios of means γ1 = µ1 /µ0 and γ2 = µ2 /µ0 .

The summary statistics are y0 = 106.6, y1 = 108.7, y2 = 69.3, s2 =

240.66 (an estimate of σ2 under the assumption of variance homogeneity)

and ĈV Y 0
= 0.05 (an estimate of the coefficient of variation for the mean

of the control group). The two-sided 95% SCI for γ1 and γ2 are constructed
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Table 5.1: Two-sided 95% SCI (Body weight gain data)

Ratio Bonferroni MtI Plug-in TMax

γ1 (0.858, 1.207) (0.859, 1.206) (0.860, 1.205) (0.860, 1.205)

γ2 (0.526, 0.790) (0.526, 0.790) (0.527, 0.789) (0.528, 0.789)

by using the various methods described in Section 5.4. The results are sum-

marized in Table 5.1. In this example, the confidence limits for all methods

are very close to each other. Moreover, the exact confidence set (the shaded

region) and the Bonferroni SCI are almost identical, as seen from Figure

5.2. The value of g associated with the Bonferroni SCI is 0.009, which is

quite small. This is computed by using t1− α
2r

(ν) in (5.5). In the figure, the

point estimate of γ = (γ1, γ2)
′ is shown by a heavy dot which corresponds

to γ̂1 = 1.02 and γ̂2 = 0.65, and the estimates of τ1 and τ2 are 0.85 and

0.65, respectively. From the upper confidence limits for γ2, we infer that the

weight gain induced by Thiouracil is by at least 20 per cent less than that of

the control. The plug-in confidence interval for γ1 varies from 0.860 to 1.205,

and therefore we cannot exclude that Thyroxin and the control have similar

effects (Table 5.1).

Example 2 (Two-sided SCI and large g value, k = 2). In order to illustrate

the influence of g, we show in Figure 5.3 the two-sided SCS and SCI based on
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Figure 5.3: Two-sided 95% SCS, Bonferroni and MtI-SCI for γ = (γ1, γ2)′ with

n0 = n1 = n2 = 10, τ̂1 = 0.086, τ̂2 = 0.0571, ĈV Y 0
= 0.41 (Example 2).

a balanced hypothetical dataset with relatively large coefficient of variation

for the mean of the control group (ĈV Y 0
= 0.41). In this example, the dif-

ferences between the exact simultaneous confidence sets, the Bonferroni SCI

and the MtI-SCI are visible. The g values associated with the Bonferroni

and MtI-SCI are computed to be 0.931 and 0.923, respectively. The exact

SCS is circumscribed by the MtI-SCI rectangle as is expected from Šidák

inequality. Note also the irregularity in the shape of the SCS and the absence

of any symmetry.
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Table 5.2: Two-sided 95% SCI for ratios to the control (leaf chroma value)

Ratio Bonferroni MtI Plug-in TMax

γ1 (0.895, 1.216) (0.896, 1.216) (0.899, 1.211) (0.917, 1.187)

γ2 (0.948, 1.278) (0.949, 1.278) (0.952, 1.273) (0.970, 1.248)

γ3 (1.296, 1.692) (1.296, 1.691) (1.300, 1.685) (1.322, 1.655)

Table 5.3: Two-sided 95% SCI for ratios to the control (chlorophyll content)

Ratio Bonferroni MtI Plug-in TMax

γ1 (0.805, 0.939) (0.805, 0.939) (0.806, 0.939) (0.854, 0.886)

γ2 (0.649, 0.773) (0.649, 0.773) (0.650, 0.773) (0.614, 0.725)

γ3 (0.405, 0.517) (0.406, 0.517) (0.406, 0.516) (0.447, 0.475)

Example 3 (Two-sided SCI and small g values, k = 3). Recall the data

on leaf chroma and leaf chlorophyll content described in Section 2.1. The

two-sided 95% SCI for the ratios to control are shown in Tables 5.2 and 5.3.

The details of the raw data used to obtain the results for the resampling

method (under TMax) can be found in Mutui (2005). From the lower confi-

dence limits for γ3 (Table 5.2), we see that the average chroma value at the

2 µl/l level of Ethylene is by at least 30% greater than that of the control.

Since the confidence intervals for γ1 and γ2 do cover 1, there is no statistically

significant increase in the chroma values at Ethylene levels 0.5 and 1. On
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the other hand, for the leaf chlorophyll content, the simultaneous confidence

intervals fall to the left of 1. This implies that the three levels of Ethylene

induced a reduction in the percentage of chlorophyll content as compared to

the control. More specifically, Table 5.3 indicate a reduction of about 5%,

25% and 50% for the ethylene levels 0.5, 1 and 2, respectively.

Example 4 (One-sided SCI and large g value, k = 2). To illustrate one-

sided SCS and SCI, we again shall use hypothetical data. Figure 5.4 consists

of the lower 95% exact confidence set and the Bonferroni SCI for two ratios.

Both the iterative and point-wise testing described in Section 5.3 produce

the same confidence set. The g value for the Bonferroni SCI is 0.269. In

the figure, it appears as if the exact SCS coincides with the Bonferroni SCI

in the second and fourth quadrants. However, there are some discrepancies

as can be seen from Figure 5.5, which is a zoom of Figure 5.4 in the neigh-

bourhood of γ1-intercept. Note that γ1 and γ2 have different signs in the

second and fourth quadrants. This implies that ρ12 = λ1λ2 < 0, and hence

c1−α(R(γ)) ≥ c1−α(I2) in these quadrants. Therefore, if γ belongs to the

MtI-SCI, then it also belongs to the exact confidence set. In other words,

the exact confidence set completely covers the MtI-SCI in these regions.

Another point of interest is the corner points of the confidence sets. For the

one-sided confidence set in Figure 5.4, the point is denoted by C. This point



5.5 Many-to-One Comparisons 76

−2 −1 0 1 2 3 4 5

−
2

0
2

4
6

γ1

γ 2
C

Bonferroni

E

Figure 5.4: Lower 95% SCS and Bonferroni SCI for γ = (γ1, γ2)′ with n0 = n1 =

n2 = 10, τ̂1 = 2, τ̂2 = 3, ĈV Y 0
= 0.25 (Example 4).

can easily be obtained by iterating both components of γ simultaneously in

the iterative approach described in Section 5.3. In fact, in order to effectively

choose the grid points in the iterative approach, one has to locate the corner

point in advance. This point can serve as a measure of deviation of the exact

confidence set from the Bonferroni SCI.

Example 5 (One-sided SCI and large g value, k = 3). Consider another hy-

pothetical data set with relatively large coefficient of variation for the mean

of the control group. The summary statistics are y0 = 0.82, y1 = 2.19,
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Figure 5.5: Zoom of part of Fig. 3 (Example 4).

y2 = 2.75, y3 = 3.75, s = 0.80. The sample sizes are taken to be n0 = 10,

n1 = 11, n2 = 13 and n3 = 13. For this data, we construct a one-sided

95% SCS and SCI. The 95% exact one-sided SCS along with the Bonferroni

SCI is shown in Figure 5.6. By definition, the lower confidence limits extend

to −∞. In Figure 5.6, only part of the SCS in the first octant (where γ1,

γ2 and γ3 are all positive) is shown for illustration purposes. In this ex-

ample, τ̂1 = 2.80, τ̂2 = 3.83, τ̂3 = 5.22, and they are all greater than one.

Consequently, we see a marked discrepancy between the exact SCS and the

Bonferroni SCI. The estimate of CVY 0
is 0.307. For this dataset, the Bonfer-

roni SCI is clearly too conservative. Suppose that the ratio parameters are a
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Figure 5.6: Lower 95% SCS and Bonferroni SCI (Example 5).

priori known to be positive, thus the elements of the correlation matrix are

positive. Therefore, as mentioned in Section 5.4.1, the MtI method yields

SCI which is slightly less conservative than Bonferroni. In this example, the

exact SCS lie well inside the SCI based on MtI method. Hence, it should

be preferred to Bonferroni SCI. On the other hand, the upper simultaneous

confidence limits associated with the plug-in and the resampling are smaller

than the MtI limits, hence the plug-in and the resampling SCI cut out part of
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Table 5.4: Upper bounds of the one-sided 95% simultaneous confidence in-

tervals for γ1, γ2 and γ3

Ratio Bonferroni Slepian Plug-in TMax

γ1 8.348 8.275 6.471 6.337

γ2 10.428 10.337 8.077 7.910

γ3 14.173 14.049 10.976 10.747

the exact SCS. Table 5.4 summarizes the estimates of the upper confidence

limits by the various methods described earlier. In this case, the estimates

of the limits are quite different. As one would expect, the Bonferroni SCI

are the most conservative.

In summary, for the many-to-one comparisons considered in this section,

it is observed that the shape of the SCS mainly depends on the coefficient

of variation of the mean of the control group. If ĈV Y 0
is small and hence

if g is very close to zero, the shape of the exact SCS is very close to that

of Bonferroni and MtI-SCI. On the other hand, if ĈV Y 0
is large (or if g is

close to 1), then there is a substantial difference between the SCS and the

SCI. However, note that there is no connection between shapes of SCS and

SCI and the coverage probabilities, as will be discussed after the following

simulation study.
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5.6 Simulation Study

In this section, a simulation study is carried out to investigate the behavior

of the different methods with respect to coverage probabilities and estimates

of the critical points. To simplify the matter, we present the simulation re-

sults for the case of two ratio parameters for the many-to-one comparisons

described in the previous section. Three values for the coefficient of varia-

tion (10%, 20% and 50%, regarded as small, intermediate and large) for the

comparison group and two sample sizes (10 and 20) in a balanced design are

selected. The number of simulation runs and the number of bootstrap sam-

ples (N) are each set to 104. The observations are generated from a normal

distribution and lower 90% SCI are constructed in each case.

In Tables 5.5 and 5.6, estimates of the coverage probabilities for the indi-

vidual ratios and for all ratios simultaneously, are displayed for the various

scenarios. For all random samples, the g values are observed to be less

than 1 as desired. The tabulated g∗ values are the population quantities

g∗ = t2CV 2
Y 0

. In Table 5.5 and 5.6, they are provided for the Bonferroni SCI.

As can be seen from Table 5.5, estimates of the coverage probabilities are

the largest for Bonferroni SCI (both for the individual and all ratios simul-

taneously) followed by MtI when the τi’s are greater than one. The results

under MtI are based on the critical points of Mt2(ν, I2). For the plug-in and
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Table 5.5: Estimates of the coverage probabilities (r = 2, τ1 = 2, τ2 =

3, 1− α = 0.90)

CV0(%) n g∗ Ratio Bonferroni MtI Plug-in TMax Balanced

10 10 0.003 γ1 0.947 0.945 0.927 0.927 0.927

γ2 0.947 0.945 0.927 0.927 0.926

γ 0.924 0.921 0.897 0.897 0.897

10 20 0.001 γ1 0.947 0.946 0.928 0.928 0.928

γ2 0.950 0.949 0.932 0.932 0.932

γ 0.926 0.924 0.903 0.902 0.902

20 10 0.012 γ1 0.951 0.950 0.932 0.932 0.932

γ2 0.953 0.951 0.933 0.933 0.933

γ 0.932 0.930 0.904 0.905 0.905

20 20 0.006 γ1 0.948 0.946 0.928 0.928 0.928

γ2 0.948 0.947 0.929 0.929 0.929

γ 0.927 0.925 0.899 0.899 0.899

50 10 0.073 γ1 0.947 0.945 0.928 0.928 0.928

γ2 0.949 0.948 0.931 0.931 0.931

γ 0.926 0.924 0.901 0.901 0.901

50 20 0.035 γ1 0.949 0.947 0.930 0.930 0.930

γ2 0.950 0.949 0.931 0.930 0.930

γ 0.929 0.926 0.902 0.902 0.902
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Table 5.6: Estimates of the coverage probabilities (r = 2, τ1 = 0.8, τ2 =

0.4, 1− α = 0.90)

CV0(%) n g∗ Ratio Bonferroni MtI Plug-in TMax Balanced

10 10 0.003 γ1 0.947 0.946 0.944 0.944 0.943

γ2 0.948 0.947 0.945 0.945 0.945

γ 0.901 0.899 0.896 0.895 0.894

10 20 0.001 γ1 0.947 0.946 0.944 0.943 0.944

γ2 0.951 0.949 0.947 0.948 0.947

γ 0.904 0.900 0.897 0.898 0.898

20 10 0.012 γ1 0.948 0.947 0.946 0.946 0.946

γ2 0.952 0.952 0.950 0.950 0.950

γ 0.907 0.905 0.903 0.903 0.903

20 20 0.006 γ1 0.948 0.947 0.946 0.945 0.946

γ2 0.948 0.946 0.944 0.944 0.944

γ 0.903 0.900 0.897 0.897 0.897

50 10 0.073 γ1 0.951 0.950 0.949 0.949 0.948

γ2 0.949 0.948 0.948 0.948 0.947

γ 0.907 0.905 0.904 0.904 0.903

50 20 0.035 γ1 0.951 0.949 0.948 0.948 0.948

γ2 0.949 0.948 0.946 0.946 0.947

γ 0.906 0.903 0.901 0.901 0.901
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the two resampling approaches, the estimates of the simultaneous coverage

probabilities are pretty close to the nominal level of 0.90. The estimates of

the coverage probabilities for the individual ratios for the balanced resam-

pling approach and for the TMax are very similar. Thus, there is no important

difference between the two resampling methods for the particular situation

considered in the simulation. The simulation results for the two-sided SCI

are very similar to the one-sided case (results not shown here). For three

ratio parameters, the behavior of the coverage probabilities is observed to

be similar to the case of two ratios (results not shown here). That is, the

plug-in and the resampling methods have coverage probabilities close to the

nominal level, and the Bonferroni and the MtI methods are conservative if

the τi’s are greater than one.

Graphical comparisons of the estimates of the critical points for two of

the cases in Table 5.5 (with the smallest and the largest g∗ value) are shown

in Figures 5.7 and 5.8. From both figures, we see that the estimates of the

critical points are symmetrically distributed about the actual value which is

computed by substituting γ = (2, 3)′ in R. For relatively small CVY 0
(2.24%,

CVY0 = 10% and n0 = 20), there are small variabilities in the estimates of the

critical point based on the plug-in and the two resampling approaches as can

be seen from Figure 5.7. In the figure, balanced C1 and balanced C2 refer to

estimates of the critical points associated with the first and the second ra-
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Figure 5.7: Density estimate of the estimates of the critical point (τ1 = 2, τ2 =

3, CV0 = 0.1, n0 = n1 = n2 = 20, 1− α = 0.90).

tio based on the balanced resampling approach. The conservativeness of the

Bonferroni and MtI methods relative to the actual and the estimated critical

points is also clear from the figure. In contrast, when CVY 0
is relatively large

(15.8%), the variability in the estimated critical points increases as can be

seen from Figure 5.8. However, estimates of the critical points based on the

plug-in appear to be more stable than that of the resampling approaches.
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Figure 5.8: Density estimate of the estimates of the critical point (τ1 = 2, τ2 =

3, CV0 = 0.5, n0 = n1 = n2 = 10, 1− α = 0.90).

5.7 Discussion

It is trustworthy to note the following points regrading shapes of SCS and

conservativeness of SCI based on probability inequalities. The shape of exact

SCS can appear to be rectangular and almost identical with the Bonferroni

and MtI SCI, but yet the SCI can be conservative. This happens when the

true ratio is very close to the border of the SCS. On the other hand, the shapes

of SCS can be quite different from the SCI box, but the coverage probabilities
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of Bonferroni and MtI methods can be as good as that of the exact SCS (or

the same as the nominal confidence level). In other words, the shapes are

different but the coverage probabilities of the exact SCS, Bonferroni and

MtI-SCI methods are almost identical. This happens when the vector of

ratio parameters is not close to the boundary of the SCS. Therefore, the

discrepancy between the shapes of SCS and the SCI boxes is not a good

indicator of conservatism.



Chapter 6

Conclusions and Further

Research

6.1 Summary and Conclusions

In this research, simultaneous inference for ratios is considered with a special

focus on sample size determinations in non-inferiority trials and simultaneous

estimation of several ratios like, for example, in multiple assays. In the first

part, a numerical study revealed that the sample sizes required for ratio-based

inferences is smaller than that of the difference-based inferences when the rel-

ative non-inferiority margin is less than one and when large response values

indicate better treatment effects. The designs of non-inferiority trials (or

superiority trials) based on the ratio view are also illustrated using two data
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examples. From the examples and the numerical study, we can conclude that

the ratio view has an advantage in selected multiple tests for non-inferiority

(or superiority). If small response values indicate better treatment effects,

one may still take advantages of the ratio view by making inference for the

ratio of control mean to that of the test treatments (instead of the test treat-

ments to the control).

In Chapter 5, methods for constructing simultaneous confidence sets and

confidence intervals for multiple ratios are discussed. The main difficulty

with problems involving more than one ratio parameter is that the joint dis-

tribution of the relevant statistics (multivariate t-distribution) depends on

the vector of unknown ratios. This means that the equi-coordinate criti-

cal points depend on the ratios. Consequently, there is no direct means of

deriving the confidence sets and the SCI. Two methods of determining the

exact confidence sets and several methods of constructing SCI for the ratios

are discussed. Simulation studies based on the many-to-one comparisons are

carried out to assess the performance of the two proposed methods of con-

structing SCI, namely, the plug-in and resampling methods. It is found that

when the ratio of the coefficient of variation of the mean of the control group

to that of the other treatments are greater than one (i.e., τi > 1), estimates

of the simultaneous coverage probabilities of the plug-in and the resampling

methods are substantially closer to the nominal level than Bonferroni and
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MtI methods. Therefore, we infer that for datasets with τ̂i > 1, the Bonfer-

roni and MtI methods are too conservative. However, if all τi’s are less than

one, the coverage probabilities for all methods are very similar, and hence all

methods are equally effective. It is also observed that the estimates of the

critical points based on the plug-in method are more stable than estimates

based on the resampling methods. In summary, the plug-in method behaved

very well for any configuration of the τi’s. The resampling methods have also

good coverage probabilities, but, in practice, this approach can be computa-

tionally expensive. Both parametric and nonparametric bootstrap methods

produced similar results.

6.2 Further Researches

The methods discussed in this thesis can be extended in several directions

for further researches.

Linear mixed model - The first extension of this research can be simulta-

neous confidence intervals estimation in linear mixed models. These models

are becoming increasing important in agricultural and medical researches.

For example, Young et al. (1997) discuss simultaneous confidence estimation

based on the Scheffé (1970) approach. However, this approach can be too

conservative. Therefore, it remains to search for other methods (based on
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multivariate t) of constructing SCI for ratios of the levels of a fixed factor in

the presence of random factor(s).

Sequential analysis- Sequential approaches can alleviate difficulties with

the coverage probabilities and expected diameter of Fieller confidence inter-

vals in non-sequential settings. Gleser and Hwang (1987) showed the im-

possibility of constructing confidence intervals (for ratios) which have both

positive confidence and finite expected length. This problem is also discussed

by Hwang and Liu (1990, 1992). In particular, Hwang and Liu (1990) pro-

posed a fully sequential procedure of constructing simultaneous confidence

sequences which overcomes the problems with non-sequential and finite stage

sequential procedures. They also compared with the Scheffé type confidence

intervals. Therefore, in situations where it gives sense to implement a fully

sequential procedure, it might be of interest to further investigate these meth-

ods with a possible improvement.

Variance heterogeneity- Variance homoscedasticity is a very common as-

sumption in the general linear model. However, this can be an unrealistic

assumption for some datasets. In inference for ratio of means of two nor-

mal distributions with unknown and heterogeneous variances, Mendoza and

Gutiérrez-Pena (1999) discuss Bayesian methods of constructing confidence

intervals for the ratio while Lee and Lin (2004) use generalized confidence in-

tervals. In multiple comparisons, Tamhane and Logan (2004) utilized Welch-
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Satterthwaite approximations. This problem is not adequately addressed in

the context of simultaneous estimation of ratios. We conjecture that similar

approximations (with a plug-in estimate for the number of degrees of freedom

and/or the correlation matrix) can be used to develop SCI for ratios from

heteroscedastic data.

Bayesian analysis- The Bayesian approach is also an intuitively attracting

area of research. As pointed out in Section 5.2, Fieller solutions can result

in unbounded (simultaneous) confidence intervals. See also Appendix C for

several examples on unbounded two-sided confidence sets in the case of two

ratios. This is not much a problem in Bayesian statistics. For example,

Gelman et al. (2004) analyzed a bioassay data in which the two-sided Fieller

confidence interval for LD50 results in (−∞,∞). Whereas, the Bayesian

interval with independent non-informative priors is given by (-0.277, 0.125).

As described by Buonaccorsi and Gatsonis (1988), an obvious advantage of a

Bayesian approach is that it enables one to express the posterior information

on the parameter of interest (ratio) using finite length probability regions.

Even when we have finite length Fieller intervals, another important feature

of the Bayesian approach is that the prior distributions can be tuned to have

desirable credible intervals for the ratios (e.g., not to include negative values

in the intervals). Bayesian approach for ratios is also addressed by Mendoza

(1990) for slope-ratio bioassay, Mendoza and Gutiérrez-Pena (1999) for the
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ratio of the means of two normal populations, Ghosh et al. (2003) for ratios

of regression coefficients in linear models, Heitjan et al. (1999) for cost-

effectiveness ratios analysis, and others.

The idea is now to extend the existing Bayesian confidence intervals (cred-

ibility intervals) for a single ratio to that of constructing joint credibility in-

tervals for multiple ratios. There are already methods for constructing joint

credibility intervals for inferences based on the difference of means (Westfall

et al., 1999; Liu and Hayter, 2001). We leave a detailed discussion of Bayesian

simultaneous confidence intervals for multiple ratios for a future research, but

here we give two general steps on how these intervals can be obtained. First,

generate samples from the posterior distributions of the ratios of interest.

This can be done, for example, using WinBUGS (see Spiegelhalter et al.,

2003). Then, use the BayesIntervals Macro in SAS (Westfall et al., 1999, p.

358) to get the simultaneous confidence intervals.
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Appendix A

R Code for Sample Size Determination

Power and sample size computations are done in R, an open source statis-

tical software package available at www.r-project.org. For the computation

of multivariate t probabilities and the equi-coordinate percentage points c,

the pmvt function from the mvtnorm package (a package which computes

multivariate normal probabilities and critical points) is used, which is also

available under the URL above. See Hothorn et al. (2001) for further de-

tails. The code below is for the ratio-based inference when large response

values indicate better treatment effects, but it can also be easily modified

for inferences based on differences by redefining the correlation matrix and

the non-centrality parameters. In the program, n.ratio is a function that

computes the smallest sample size per treatment (balanced design) given the

number of comparisons r, the value of m1 (often there is no prior informa-

tion about m, therefore, m1 = 1), the relative non-inferiority margin (psi),

the minimal power (min.power), the coefficient of variation of the control

group (CV 0), the clinically irrelevant percentage of the control to be de-

tected (theta.star), the familywise type I error rate (alpha), and a starting

value for the sample size (n.start).
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library (mvtnorm)

n.ratio <- function (r, m1, psi, min.power, CV0,theta.star,

alpha,n.start) {

rho <- (psi^2)/sqrt((psi^2 + 1)*(psi^2 +1))

RHO <- matrix(rep(rho,r*r), nr=r)

diag(RHO) <- rep(1,r) # correlation matrix (balanced design)

n <- n.start

power <- 0

eps <- 0.00001

while(power < min.power) {

nu <- (r+1)*(n-1)

probq <- function(q){

pmvt(lower=rep(-Inf,r),upper=rep(q,r),nu,corr=RHO,

delta=rep(0,r),abseps=eps)-(1-alpha)}

cp <- uniroot(probq, lower=0, upper=4)$root #computes c

theta.vec <- rep(theta.star,m1)

deltaR <- (theta.vec - psi)/(CV0*sqrt(1/n + (psi^2)/n)) #ncp

RHO.LFC <- matrix(rep(rho,m1*m1), nr=m1)

diag(RHO.LFC) <- rep(1,m1)

power <- 1-pmvt(lower=rep(-Inf,m1),upper=rep(cp,m1),nu,
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corr=RHO.LFC,delta=deltaR,abseps=eps)

n <- n + 1

}

cbind(c(sample.size=round(n-1,0),power=round(power,4))) }

For example, for the pharmacological study in Sections 2.3 and 4.9, we have

r = 3, m1 = 1, ψ = 0.70, 1 − β = 0.80, CV0 = 0.5, θ∗ = 0.95 and α = 0.05.

Set the starting value for the sample size to 2 and run the following command.

n.ratio(r=3, m1=1, psi=0.7, min.power=0.8, CV0=0.5,

theta.star=0.95,alpha=0.05, n.start=2)

For sample size computations based on the complete power, we change only

the fifth line from the end of the n.ratio function to the following command

(replacing m1 by m2 and min.power by com.power).

power <- pmvt(lower=rep(cp,m2),upper=rep(Inf,m2),nu,

corr=RHO,delta=deltaR,abseps=eps)

It should also be remarked that sample size calculation based on the

normal approximation (Section 4.6) is very fast and can be directly calculated

in many standard statistical softwares.
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Appendix B1: An R function for constructing simultaneous confidence in-

tervals

## Description: The function sci.ratio constructs SCI for ratios to

## the control treatment using the Bonferroni adjustment,

## Sidak (Slepian) and the plug-in approaches.

## Inputs: User dataframe with two columns (treatment and response)

## control.T - the control group

## alternative - two.sided or one.sided

## conf.level - confidence level

sci.ratio <- function(User.DataFr, control.T=’’,alternative = ’two.sided’,

conf.level = 0.95) {

library(mvtnorm)

if (is.numeric(User.DataFr[,1])){

Response <- User.DataFr[,1]

Treatment<- User.DataFr[,2]}

else {

Response <- User.DataFr[,2]

Treatment<- User.DataFr[,1]}
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Cont.Flag <- Treatment==control.T

Cont.Posi <- order(unique(Treatment))[unique(Treatment)==control.T]

if (control.T==’’) stop(’The control group is not specified.’)

if (sum(unique(Treatment)==control.T)==0)

stop(’Incorrect name of the control group’)

n.Control <- length(Response[Cont.Flag])

ybar.Contr <- mean(Response[Cont.Flag])

n.Treat <- tapply(Response[!Cont.Flag],Treatment[!Cont.Flag],

length)[-Cont.Posi]

k <- length(n.Treat) # Number of comparisons with a control

d.f <- n.Control + sum(n.Treat) - (k+1)

ybar.Treat <- tapply(Response[!Cont.Flag],Treatment[!Cont.Flag],

mean)[-Cont.Posi]

var.vec <- tapply(Response,Treatment,var) # k+1 groups

n.vec <- tapply(Response,Treatment,length)

s <- sqrt(sum(var.vec*(n.vec - 1)/d.f)) # estimate of sigma

gammaC.vec <- ybar.Treat/ybar.Contr

Quad.root <- function(ratioV, gValue, nC, nT){
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Discrimi <- gValue*(ratioV^2 + (1-gValue)*nC/nT)

if ((gValue < 1)&(Discrimi >= 0)) {

Limit.s <- (ratioV + plus.minus*sqrt(Discrimi))/(1-gValue)}

else Limit.s <- ’NSC’

return(Limit.s)}

cat(" ","\n")

if (alternative==’two.sided’){

side <- 2

plus.minus <- c(-1,1)

#

# BONFERRONI

#

cpBon <- qt(1- (1-conf.level)/(side*k), d.f, lower.tail = TRUE)

gBon <- (cpBon^2)*(s^2)/(n.Control*(ybar.Contr^2))

#

# MtI

#

qmt <- function(q) {pmvt(rep(-q,k),rep(q,k),d.f,corr=diag(k),

delta=rep(0,k))-conf.level}

cpMtI <- uniroot(qmt, lower=0, upper=4)$root

gMtI <- (cpMtI^2)*(s^2)/(n.Control*(ybar.Contr^2))

#
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# Plug-in

#

Corr.Mat <- matrix(rep(NA,k*k),nr=k)

for(i in 1:k) {

for(j in 1:k) {

Corr.Mat[i,j] <- (gammaC.vec[i]*gammaC.vec[j])/

sqrt((gammaC.vec[i]^2 + n.Control/n.Treat[i])*(gammaC.vec[j]^2

+ n.Control/n.Treat[j]))

}

}

diag(Corr.Mat) <- rep(1,k)

qmt0 <- function(q) {pmvt(rep(-q,k),rep(q,k),d.f,corr=Corr.Mat,

delta=rep(0,k))-conf.level}

Cplug <- uniroot(qmt0, lower=0, upper=4)$root

gPlug <- (Cplug^2)*s^2/(n.Control*(ybar.Contr^2))

} # End of two-sided CI

if ((alternative==’less’)|(alternative==’greater’)){

side <- 1

if (alternative==’less’) plus.minus <- 1

else plus.minus <- -1



Appendix B1 111

#

# BONFERRONI

#

cpBon <- qt(1- (1-conf.level)/(side*k), d.f, lower.tail = TRUE)

gBon <- (cpBon^2)*(s^2)/(n.Control*(ybar.Contr^2))

#

# MtI

#

qmt <- function(q) {pmvt(rep(-Inf,k),rep(q,k),d.f,corr=diag(k),

delta=rep(0,k))-conf.level}

cpMtI <- uniroot(qmt, lower=0, upper=4)$root

gMtI <- (cpMtI^2)*(s^2)/(n.Control*(ybar.Contr^2))

#

# Plug-in

#

Corr.Mat <- matrix(rep(NA,k*k),nr=k)

for(i in 1:k) {

for(j in 1:k) {

Corr.Mat[i,j] <- (gammaC.vec[i]*gammaC.vec[j])/

sqrt((gammaC.vec[i]^2 + n.Control/n.Treat[i])*(gammaC.vec[j]^2

+ n.Control/n.Treat[j]))

}
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}

diag(Corr.Mat) <- rep(1,k)

qmt0 <- function(q) {pmvt(rep(-Inf,k),rep(q,k),d.f,corr=Corr.Mat,

delta=rep(0,k))-conf.level}

Cplug <- uniroot(qmt0, lower=0, upper=4)$root

gPlug <- (Cplug^2)*s^2/(n.Control*(ybar.Contr^2))

} # End of one-sided CI

BonCL <- MtICL <- PlugCL <- matrix(rep(NA,side*k),nr=k)

for(j in 1:k) {

BonCL[j,] <- Quad.root(gammaC.vec[j], gBon, n.Control, n.Treat[j])

MtICL[j,] <- Quad.root(gammaC.vec[j], gMtI, n.Control, n.Treat[j])

PlugCL[j,] <- Quad.root(gammaC.vec[j], gPlug, n.Control, n.Treat[j])

}

sci.table <- round(data.frame(gammaC.vec,PlugCL,MtICL,BonCL),3)

cat(" ","\n")

cat(" ","\n")

if (alternative==’two.sided’){

names(sci.table) <- c(’Point.Estimate’,’Plug.Lower’,’Plug.Upper’,

’Sidak.Lower’,’Sidak.Upper’,’Bon.Lower’,’Bon.Upper’)
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cat("Two-sided",conf.level*100, "%",

"simultaneous confidence intervals for ratios to control:","\n")}

if (alternative==’less’){

names(sci.table) <- c(’Point.Estimate’,’Plug.Upper’,

’Slepian.Upper’,’Bon.Upper’)

cat("Upper",conf.level*100, "%",

"simultaneous confidence limits for ratios to control:","\n")}

else if (alternative==’greater’){

names(sci.table) <- c(’Point.Estimate’,’Plug.Lower’,

’Slepian.Lower’,’Bon.Lower’)

cat("Lower",conf.level*100, "%",

"simultaneous confidence limits for ratios to control:","\n")}

cat(" ","\n")

print(sci.table)

if (sum(sci.table[,2]==’NSC’)>0){

cat(" ","\n")

cat(" NSC = Mean of the control group is not significantly

different from zero. ","\n")}

cat(" ","\n")

} # END OF sci.ratio
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##############

## EXAMPLE #

##############

sample0 <- c( 107,91,115,90,133,95,112,115,117,91) # Control

sample1 <- c(119,88,84,133,87,118,132) # Thyroxin

sample2 <- c(61,68,89,80,69,52,80,63,63,68) # Thiouracil

Y <- c(sample0,sample1,sample2)

Treat <- factor(rep(c(’Control’,’Thyroxin’,’Thiouracil’),c(10,7,10)))

Data <- data.frame(Treat,Y)

sci.ratio(Data,control.T=’Control’)

Two-sided 95 % simultaneous confidence intervals for ratios to control:

Point.Estimate Plug.Lower Plug.Upper Sidak.Lower Sidak.Upper

Thiouracil 0.65 0.527 0.789 0.526 0.790

Thyroxin 1.02 0.860 1.205 0.859 1.206

Bon.Lower Bon.Upper

Thiouracil 0.526 0.790

Thyroxin 0.858 1.207



Appendix B2 115

Appendix B2: Example of an R code for constructing one-sided simulta-

neous confidence set (k = 3)

library(mvtnorm)

CLevel <- 0.95

gridsize <- 20

n0<-10; n1<- 11; n2<- 13; n3<-13

xbar0 <- 0.82; xbar1 <- 2.19; xbar2 <- 2.75; xbar3<- 3.75; s<- 0.8

gamma1C<-xbar1/xbar0; gamma2C<-xbar2/xbar0; gamma3C<-xbar3/xbar0

cpBon <- qt(1- (1-CLevel)/3,df,lower.tail = TRUE) #Bon. adjustment

gBon <- (cpBon^2)*(s^2)/(n0*xbar0*xbar0)

Qroot.U <- function(ratioV, gValue, nC, nT){

(ratioV + sqrt(gValue*(ratioV^2 + (1-gValue)*nC/nT)))/(1-gValue)}

BonSUCL1 <- Qroot.U(gamma1C, gBon, n0, n1)

BonSUCL2 <- Qroot.U(gamma2C, gBon, n0, n2)

BonSUCL3 <- Qroot.U(gamma3C, gBon, n0, n3)
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BonSUCL1; BonSUCL2; BonSUCL3

thetha1s <- seq(0, BonSUCL1,length=gridsize)

thetha2s <- seq(0, BonSUCL2,length=gridsize)

thetha3s <- seq(0, BonSUCL3,length=gridsize)

thethaH0 <- matrix(NA,nr=gridsize^3,nc=3)

##

## ONE-SIDED CONFIDENCE SET

##

L <- 1

for (i in 1:gridsize) {

for (j in 1:gridsize) {

for (l in 1:gridsize) {

rho012 <- (thetha1s[i]*thetha2s[j])/

sqrt((thetha1s[i]^2 +n0/n1)*(thetha2s[j]^2 +n0/n2))

rho013 <- (thetha1s[i]*thetha3s[l])/

sqrt((thetha1s[i]^2 +n0/n1)*(thetha3s[l]^2 +n0/n3))

rho023 <- (thetha2s[j]*thetha3s[l])/

sqrt((thetha2s[j]^2 +n0/n2)*(thetha3s[l]^2 +n0/n3))

Rho0 <-matrix(c(1,rho012,rho013,rho012,1,rho023,rho013,

rho023,1),nrow=3,byrow=T)
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qmt <- function(q) {pmvt(c(-Inf,-Inf,-Inf),c(q,q,q),df,

corr=Rho0,delta=c(0,0,0))-CLevel}

cp <- uniroot(qmt, lower=0, upper=4)$root

T1 <- (thetha1s[i]*xbar0-xbar1)/

(s*sqrt((1/n1 + (thetha1s[i]^2)/n0)))

T2 <- (thetha2s[j]*xbar0-xbar2)/

(s*sqrt((1/n2 + (thetha2s[j]^2)/n0)))

T3 <- (thetha3s[l]*xbar0-xbar3)/

(s*sqrt((1/n3 + (thetha3s[l]^2)/n0)))

if ((T1 <= cp)&(T2 <= cp)&(T3 <= cp))

thethaH0[L,] <- c(thetha1s[i],thetha2s[j],thetha3s[l])

L <- L + 1

}

}

}

thethaH02 <- thethaH0

thethaH02[is.na(thethaH02)] <- 0 # This works for gammas >= 0

group <- c(1:gridsize)
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BoundZ <- matrix(NA,nr=gridsize,nc=gridsize)

for (i in 1:gridsize) {

for (j in 1:gridsize) {

BoundZ[i,j] <- max(thethaH02[group,3])

group <- group + gridsize

}

}

BoundZ[BoundZ==0] <- NA

x <- thetha1s; y <- thetha2s; z <- BoundZ

persp(x, y, z, theta = 120, phi = 40, expand=0.7, col="grey91",

ltheta = 120, shade = 0.75, ticktype = "detailed",ntick=6,

xlab = ’’, ylab = ’’,xlim=c(0,BonSUCL1),ylim=c(0,BonSUCL2),

zlim=c(0,BonSUCL3), zlab = ’’, box=TRUE) ->res

## ADDING POINTS & LINES TO 3D PLOT

trans3d <- function(x,y,z, pmat) {

tr <- cbind(x,y,z,1) %*% pmat

list(x = tr[,1]/tr[,4], y= tr[,2]/tr[,4])

}
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text(trans3d(4, 12, z= 0, pm = res),expression(gamma[1]))

text(trans3d(10, 5, z= 0, pm = res),expression(gamma[2]))

mtext(side=2,expression(gamma[3]))

## Superimposing Bonferroni SCI

##

lines (trans3d(x, y=BonSUCL2, z= BonSUCL3, pm=res), lty=2,lwd=3)

lines (trans3d(BonSUCL1, y, z=BonSUCL3, pm=res), lty=2,lwd=3)

lines (trans3d(BonSUCL1, BonSUCL2,seq(0,BonSUCL3,length=20),

pm = res), lty=2,lwd=3)

points(trans3d(BonSUCL1,BonSUCL2,BonSUCL3,pm=res),pch=16,cex=1.4)
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Appendix B3: Simulation program for comparing the coverage probabili-

ties of methods for constructing SCI (Section 5.6)

# Inputs:

#

# N = Number of iterations

# B = Number of bootstrap samples

# CV0 = Coefficient of variation of the control group

# mu0 = mean of the control group

# mu1 = mean of treatment 1

# mu2 = mean of treatment 2

# mu3 = mean of treatment 3

SIM <- function(N,B,CLevel,CV0,mu0,mu1,mu2,mu3,n0,n1,n2,n3) {

print(paste(" "), quote=FALSE)

print(paste(" =============================== "), quote=FALSE)

print(paste(" "), quote=FALSE)

print(paste(" SIMULATION PARAMETERS: "), quote=FALSE)

print(paste(" "), quote=FALSE)

print(paste(" N = ",N, " B = ",B), quote=FALSE)

print(paste(" Confidence Level = ", CLevel*100, "%"), quote=FALSE)

print(paste(" mu0 = ",mu0, " mu1 = ",mu1, " mu2 = ",mu2,
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" mu3 = ",mu3, " CV0 = ", CV0*100, "%"), quote=FALSE)

print(paste(" n0 = ",n0, " n1 = ",n1,

" n2 = ",n2," n3 = ",n3), quote=FALSE)

print(paste(" "), quote=FALSE)

sigma <- mu0*CV0

df <- n0+n1+n2+n3 - 4

Gamma1 <- mu1/mu0; Gamma2 <- mu2/mu0; Gamma3 <- mu3/mu0

# Elements of the true correlation matrix

rt12 <- (Gamma1*Gamma2)/

sqrt((Gamma1^2 +n0/n1)*(Gamma2^2 +n0/n2))

rt13 <- (Gamma1*Gamma3)/

sqrt((Gamma1^2 +n0/n1)*(Gamma3^2 +n0/n3))

rt23 <- (Gamma2*Gamma3)/

sqrt((Gamma2^2 +n0/n2)*(Gamma3^2 +n0/n3))

Rhot<-matrix(c(1,rt12,rt13,rt12,1,rt23,rt13,rt23,1),nrow=3,byrow=T)

library(mvtnorm)

qmt <- function(q) {pmvt(c(-Inf,-Inf,-Inf),c(q,q,q),df,corr=Rhot,

delta=c(0,0,0))-CLevel}

Ct <- uniroot(qmt, lower=0, upper=4)$root
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Ratio<- matrix(NA,nrow=N,ncol=3)

Rp <- Cplug <- Corrboot <- rep(NA,N)

Cpb1 <- CTMax <- cnp <- dpn1 <- dpn2 <- dpn3 <- rep(NA,N)

## Vectors for computing overall coverage probabilities

##

CovPrBon<-CovPrMtI<-CovPrC<-CovPrTMa<-CovPrBab <- rep(NA,N)

## Vectors for computing individual coverage probabilities

##

L1BonCov<-L2BonCov<-L3BonCov<-L1MtICov<-L2MtICov<-L3MtICov<-rep(NA,N)

L1CCov<-L2CCov<-L3CCov<-L1TMaCov<-L2TMaCov<-L3TMaCov<-rep(NA,N)

L1babCov<-L2babCov<-L3babCov<-rep(NA,N)

step <- round(N/10,0)

stage <- step

# Critical points for Bonferroni & MtI (Slepian) SCIs:

cpBon <- qt(1- (1-CLevel)/3, df, lower.tail = TRUE)

qmt <- function(q) {pmvt(c(-Inf,-Inf,-Inf),c(q,q,q),df,

corr=diag(3), delta=c(0,0,0))-CLevel}

cpMtI <- uniroot(qmt, lower=0, upper=4)$root
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## QUADRATIC ROOT (Upper confidence limit)

##

Qroot.U <- function(ratioV, gValue, nC, nT){

(ratioV + sqrt(gValue*(ratioV^2 + (1-gValue)*nC/nT)))/(1-gValue)}

##

## Loop i

for (i in 1:N) {

sample0 <- rnorm(n0,mu0,sigma)

sample1 <- rnorm(n1,mu1,sigma)

sample2 <- rnorm(n2,mu2,sigma)

sample3 <- rnorm(n3,mu3,sigma)

xbar0 <- mean(sample0); xbar1 <- mean(sample1)

xbar2 <- mean(sample2); xbar3 <- mean(sample3)

v0 <- var(sample0); v1 <- var(sample1)

v2 <- var(sample2); v3 <- var(sample3)

s2 <- ((n0-1)*v0 + (n1-1)*v1 + (n2-1)*v2

+ (n3-1)*v3)/(n0+n1+n2+n3-4)
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Ratio[i,1] <- xbar1/xbar0

Ratio[i,2] <- xbar2/xbar0

Ratio[i,3] <- xbar3/xbar0

#

# BONFERRONI

#

gBon <- (cpBon^2)*(s2)/(n0*xbar0*xbar0)

L1Bon <- Qroot.U(Ratio[i,1], gBon, n0, n1)

L2Bon <- Qroot.U(Ratio[i,2], gBon, n0, n2)

L3Bon <- Qroot.U(Ratio[i,3], gBon, n0, n3)

L1BonCov[i] <- Gamma1 <= L1Bon

L2BonCov[i] <- Gamma2 <= L2Bon

L3BonCov[i] <- Gamma3 <= L3Bon

CovPrBon[i] <- (Gamma1 <= L1Bon)&(Gamma2 <= L2Bon)&(Gamma3 <= L3Bon)

#

# MtI (one-sided SCI based on Slepian inequality)

#

gMtI <- (cpMtI^2)*(s2)/(n0*xbar0*xbar0)
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L1MtI <- Qroot.U(Ratio[i,1], gMtI, n0, n1)

L2MtI <- Qroot.U(Ratio[i,2], gMtI, n0, n2)

L3MtI <- Qroot.U(Ratio[i,3], gMtI, n0, n3)

L1MtICov[i] <- Gamma1 <= L1MtI

L2MtICov[i] <- Gamma2 <= L2MtI

L3MtICov[i] <- Gamma3 <= L3MtI

CovPrMtI[i] <- (Gamma1 <= L1MtI)&(Gamma2 <= L2MtI)&(Gamma3 <= L3MtI)

#

# PLUG-IN

#

rp12 <- (Ratio[i,1]*Ratio[i,2])/

sqrt((Ratio[i,1]^2 +n0/n1)*(Ratio[i,2]^2 +n0/n2))

rp13 <- (Ratio[i,1]*Ratio[i,3])/

sqrt((Ratio[i,1]^2 +n0/n1)*(Ratio[i,3]^2 +n0/n3))

rp23 <- (Ratio[i,2]*Ratio[i,3])/

sqrt((Ratio[i,2]^2 +n0/n2)*(Ratio[i,3]^2 +n0/n3))

Rp <-matrix(c(1,rp12,rp13,rp12,1,rp23,rp13,rp23,1),nrow=3,byrow=T)

qmt0 <- function(q)

{pmvt(c(-Inf,-Inf,-Inf),c(q,q,q),df,corr=Rp,

delta=c(0,0,0))-CLevel}

Cplug[i] <- uniroot(qmt0, lower=0, upper=4)$root
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#

# Sim_CI:

gplug <- (Cplug[i]^2)*s2/(n0*xbar0*xbar0)

L1plug <- Qroot.U(Ratio[i,1], gplug, n0, n1)

L2plug <- Qroot.U(Ratio[i,2], gplug, n0, n2)

L3plug <- Qroot.U(Ratio[i,3], gplug, n0, n3)

L1CCov[i] <- Gamma1 <= L1plug

L2CCov[i] <- Gamma2 <= L2plug

L3CCov[i] <- Gamma3 <= L3plug

CovPrC[i] <- (Gamma1 <= L1plug)&(Gamma2 <= L2plug)&(Gamma3 <= L3plug)

#################################

# Resampling methods #

#################################

TMat<-matrix(NA,nrow=B,ncol=3)

TMax <- rep(NA,B)

E0 <- sample0 - mean(sample0)

E1 <- sample1 - mean(sample1)

E2 <- sample2 - mean(sample2)
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E3 <- sample3 - mean(sample3)

#PoolErr <- c(E0,E1,E2,E3) # For non-parametric resampling

s <- sqrt(s2)

for (b in 1:B) {

#

# Non-parametric

#

#bE0 <- sample(PoolErr,n0,replace =TRUE)

#bE1 <- sample(PoolErr,n1,replace =TRUE)

#bE2 <- sample(PoolErr,n2,replace =TRUE)

#bE3 <- sample(PoolErr,n3,replace =TRUE)

#

# Parametric

#

bE0 <- rnorm(n0,xbar0,s)

bE1 <- rnorm(n1,xbar1,s)

bE2 <- rnorm(n2,xbar2,s)

bE3 <- rnorm(n3,xbar3,s)



Appendix B3 128

bEbar0 <- mean(bE0)

bEbar1 <- mean(bE1)

bEbar2 <- mean(bE2)

bEbar3 <- mean(bE3)

bv0 <- var(bE0)

bv1 <- var(bE1)

bv2 <- var(bE2)

bv3 <- var(bE3)

bs <- sqrt(((n0-1)*bv0 + (n1-1)*bv1 + (n2-1)*bv2

+ (n3-1)*bv3)/(n0+n1+n2+n3-4))

TMat[b,1] <- (Ratio[i,1]*bEbar0-bEbar1 )/

(bs*sqrt((1/n1 + (Ratio[i,1]^2)/n0)))

TMat[b,2] <- (Ratio[i,2]*bEbar0-bEbar2 )/

(bs*sqrt((1/n2 + (Ratio[i,2]^2)/n0)))

TMat[b,3] <- (Ratio[i,3]*bEbar0-bEbar3 )/

(bs*sqrt((1/n3 + (Ratio[i,3]^2)/n0)))

TMax[b] <- max(TMat[b,1],TMat[b,2],TMat[b,3])

}

#

# Tmax, max{T1,T2,T3}
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#

TMax <- sort(TMax)

CTMax[i] <- TMax[ceiling(CLevel*B)]

gTMax <- (CTMax[i]^2)*s2/(n0*xbar0*xbar0)

L1TMax <- Qroot.U(Ratio[i,1], gTMax, n0, n1)

L2TMax <- Qroot.U(Ratio[i,2], gTMax, n0, n2)

L3TMax <- Qroot.U(Ratio[i,3], gTMax, n0, n3)

L1TMaCov[i] <- Gamma1 <= L1TMax

L2TMaCov[i] <- Gamma2 <= L2TMax

L3TMaCov[i] <- Gamma3 <= L3TMax

CovPrTMa[i]<-(Gamma1 <= L1TMax)&(Gamma2 <= L2TMax)&(Gamma3 <= L3TMax)

#

# BALANCED RESAMPLING

#

Rn1b <- TMat[,1] # test statistics, bootstrap version

Rn2b <- TMat[,2]

Rn3b <- TMat[,3]

HpRb1 <- (rank(Rn1b)-1)/B # left-cont. cdfs of the boot. test stat.

HpRb2 <- (rank(Rn2b)-1)/B

HpRb3 <- (rank(Rn3b)-1)/B
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Snj <- rep(NA,B)

# superimum of the three cdfs at the data

# points in the bootstrap sample

for (j in 1:B) {Snj[j] <- max(HpRb1[j],HpRb2[j], HpRb3[j])}

cnp[i] <- quantile(Snj, CLevel + 1/B)

dpn1[i] <- quantile(Rn1b, cnp[i])

dpn2[i] <- quantile(Rn2b, cnp[i])

dpn3[i] <- quantile(Rn3b, cnp[i])

gbab1 <- (dpn1[i]^2)*s2/(n0*xbar0*xbar0)

gbab2 <- (dpn2[i]^2)*s2/(n0*xbar0*xbar0)

gbab3 <- (dpn3[i]^2)*s2/(n0*xbar0*xbar0)

L1bab <- Qroot.U(Ratio[i,1], gbab1, n0, n1)

L2bab <- Qroot.U(Ratio[i,2], gbab2, n0, n2)

L3bab <- Qroot.U(Ratio[i,3], gbab3, n0, n3)

L1babCov[i] <- Gamma1 <= L1bab
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L2babCov[i] <- Gamma2 <= L2bab

L3babCov[i] <- Gamma3 <= L3bab

CovPrBab[i] <- (Gamma1 <= L1bab)&(Gamma2 <= L2bab)&(Gamma3 <= L3bab)

# Indicator of the simulation stage:

#

if (i==stage) {print(paste(round(100*(i/N),0), "% completed:",

date()), quote=FALSE)

stage <- stage + step }

} ##

## End of loop i

##

Covstats <- data.frame(L1BonCov,L2BonCov,L3BonCov,CovPrBon,

L1MtICov,L2MtICov,L3MtICov,CovPrMtI,

L1CCov, L2CCov,L3CCov,CovPrC,

L1TMaCov,L2TMaCov,L3TMaCov,CovPrTMa,

L1babCov,L2babCov,L3babCov,CovPrBab)

CovprMAT <- apply(Covstats+0,2, sum) # changes T & F to 1 & 0

CovprMAT <- matrix(CovprMAT,nr=4,byrow=FALSE)

CovprMAT
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EstCover <-data.frame(CovprMAT/N) # Estimate of coverage prob.

names(EstCover) <- c(’Bonf’,’MtI’,’Plug-in’,’Tmax’,’Balanced’)

row.names(EstCover) <- c(’Gamma1’,’Gamma2’,’Gamma3’,’Gamma’)

print(paste(" "), quote=FALSE); print(paste(" "), quote=FALSE)

print(paste(" Estimates of the coverage probabilities: "), quote=FALSE)

print(paste(" "), quote=FALSE)

print(EstCover)

print(paste(" "), quote=FALSE)

################################

} # End of function SIM ##########################

################################

SIM(N=1000,B=1000,CLevel=0.90,CV0=0.20,mu0=1,mu1=2,mu2=3,mu3=4,

n0=10,n1=10,n2=10,n3=10)

Output:

[1]

[1] ===============================
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[1]

[1] SIMULATION PARAMETERS:

[1]

[1] N = 1000 B = 1000

[1] Confidence Level = 90 %

[1] mu0 = 1 mu1 = 2 mu2 = 3 mu3 = 4 CV0 = 20 %

[1] n0 = 10 n1 = 10 n2 = 10 n3 = 10

[1]

[1] 10 % completed: Fri May 20 00:53:15 2005

[1] 20 % completed: Fri May 20 00:54:25 2005

[1] 30 % completed: Fri May 20 00:55:35 2005

[1] 40 % completed: Fri May 20 00:56:45 2005

[1] 50 % completed: Fri May 20 00:57:56 2005

[1] 60 % completed: Fri May 20 00:59:07 2005

[1] 70 % completed: Fri May 20 01:00:16 2005

[1] 80 % completed: Fri May 20 01:01:26 2005

[1] 90 % completed: Fri May 20 01:02:37 2005

[1] 100 % completed: Fri May 20 01:03:48 2005

[1]

[1]

[1] Estimates of the coverage probabilities:

[1]
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Bonf MtI Plug-in Tmax Balanced

Gamma1 0.968 0.966 0.947 0.948 0.948

Gamma2 0.973 0.970 0.949 0.950 0.947

Gamma3 0.968 0.965 0.946 0.944 0.944

Gamma 0.947 0.943 0.911 0.910 0.906

[1]
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Examples on unbounded two-sided simultaneous confidence sets. Consider

the case of two ratios (r = 2): γ1 = µ1/µ0 and γ2 = µ2/µ0.
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Figure 6.1: Unbounded SCS for γ = (γ1, γ2)′ with the MtI-SCI given by γ1 ∈

(−∞,∞) and γ2 ∈ (−∞,−7.65)
⋃

(−0.131,∞). The MtI-SCI limits for γ2 are

shown by dotted lines. Data: y0 = 0.4, y1 = −0.02, y2 = 0.4, s = 0.6, n0 = n1 =

n2 = 10.
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Figure 6.2: Unbounded SCS for γ = (γ1, γ2)′ with the MtI-SCI given by γ1 ∈

(−∞,−7.848)
⋃

(0.814,∞) and γ2 ∈ (−∞,−6.151)
⋃

(0.524,∞). Both confidence

intervals are complements of finite length intervals. The limits of MtI-SCI are

shown by dotted lines. Data: y0 = 0.4, y1 = 1, y2 = 0.8, s = 0.7, n0 = n1 = n2 =

10.



Appendix C 137

−20 −10 0 10 20

−
20

−
10

0
10

20

γ1

γ 2

Figure 6.3: Unbounded SCS for γ = (γ1, γ2)′ with the MtI-SCI given by γ1 ∈

(−∞,∞) and γ2 ∈ (−∞,∞). The limits of both γ1 and γ2 extend to infinity in all

directions. Data: y0 = 0.4, y1 = 0.01, y2 = 0.2, s = 0.6, n0 = n1 = n2 = 10.
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Figure 6.4: Unbounded SCS for γ = (γ1, γ2)′ with the MtI-SCI given by γ1 ∈

(−∞,∞) and γ2 ∈ (−∞,∞). The limits of both γ1 and γ2 extend to infinity in all

directions. Data: y0 = 0.4, y1 = 0.02, y2 = 0.02, s = 0.6, n0 = n1 = n2 = 10.
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