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i

Zusammenfassung

Die vorliegende Arbeit befasst sich mit multiplen Kontrasttests für Mittelwerte nor-

malverteilter Daten. Diese haben im Vergleich zu anderen Methoden den Vorteil,

dass i) Testaussagen für jeden Einzelvergleich möglich sind, ii) deren Korrelatio-

nen berücksichtigt werden, iii) dadurch der Gesamtfehler erster Art eingehalten und

ausgeschöpft wird, und iv) sich für jeden Einzelvergleich simultane Konfidenzinter-

valle ableiten lassen. Dies wird erreicht durch die Verwendung einer gemeinsamen

multivariaten t-Verteilung aller zu betrachtenden Vergleiche. Darüber hinaus sind

multiple Kontrasttests sowohl für Differenzen als auch für Verhältnisse von Mittel-

werten formulierbar. Neben der Normalverteilung ist Varianzhomogenität der Daten

allerdings eine weitere Annahme. Zudem sind multiple Kontrasttests beschränkt auf

eine zu betrachtende Messgröße (Endpunkt).

Ziel dieser Dissertation ist es zum einen, multiple Kontrasttests für die Anwendung

auf varianzheterogene Daten zu erweitern. Hierfür werden drei mögliche Proze-

duren vorgestellt und im Hinblick auf die Einhaltung des Gesamtfehlers erster Art

verglichen. Ziel ist es weiterhin, multiple Kontrasttests für die simultane Analyse

mehrerer Endpunkte zu verallgemeinern. Beide Teilprobleme erfordern die Her-

leitung entsprechender approximativer multivariater t-Verteilungen. Simulations-

studien zeigen, dass für beide Ansätze der Gesamtfehler erster Art eingehalten wer-

den kann. Die Auswertung von Realdatenbeispielen verdeutlicht die Notwendigkeit

der Verfahren und dient ihrer Veranschaulichung.

Schlagworte: multiple Kontrasttests, Heteroskedastizität, multiple Endpunkte



ii

Abstract

This research considers multiple contrast tests for means of normally distributed

data. Their advantages, as compared to other methods, are that i) test decisions

are available for all individual comparisons, ii) correlations are taken into account,

iii) the familywise error type I is maintained and exploited for that reason, and iv)

simultaneous confidence intervals can be derived. Therefore, a joint multivariate

t-distribution of all comparisons is used. Moreover, multiple contrast tests can be

formulated for both differences and ratios of means. Besides following a normal dis-

tribution, the data are also assumed to have homogeneous variances. Furthermore,

multiple contrast tests are restricted to one single endpoint.

The aim of this dissertation is to facilitate multiple contrast tests in the presence of

heteroscedasticity. Three candidate procedures are introduced and compared with

regard to their ability to maintain the familywise error type I. On the other hand, an

extension for the case of multiple endpoints is investigated. For both tasks, approx-

imate multivariate t-distributions are derived. Simulation studies show that both

approaches control the familywise error type I. Real data examples are analyzed in

order to demonstrate the necessity of the methods, and to illustrate them.

Keywords: multiple contrast tests, heteroscedasticity, multiple endpoints
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Chapter 1

General Introduction

Usually, multiple comparison procedures (MCPs) for means of normally distributed

populations can be evaluated as multiple contrast tests (MCTs) or by related simul-

taneous confidence intervals (SCIs). Several contrasts, representing linear functions

of these means, are estimated and typically tested for deviation from zero. Be-

cause correlations between the contrasts are involved in a joint distribution, MCTs

exactly maintain the familywise error rate (FWE) over all contrasts. No further

multiplicity-adjustment is needed. The all-pair comparison of Tukey [1953] and the

many-to-one comparison of Dunnett [1955] are well-known examples. Bretz [2006]

has formulated the trend test of Williams [1971] as an approximate MCT. Also, the

user is free to create other interesting problem-specific contrasts. Moreover, Dilba

et al. [2004] have dealt with MCTs and SCIs for ratios of means. If relative changes

(e.g., in per cent) are of more interest than absolute ones, this approach is suitable.

1



2 CHAPTER 1. GENERAL INTRODUCTION

All the resulting MCTs and SCIs assume homogeneous variances as a general rule.

This fact is often attributed to an easier derivation and to mathematical convenience,

but it is not always realistic. For example, dose finding studies can have the problem

of heteroscedasticity because the data’s variance depends on the dose effect (see the

data in Westfall [1997]). It is common to apply these procedures without checking

the validity of this assumption. If no information about the data is available (e.g.

from preliminary tests) before statistical analysis, it is not advisable to presume

homogeneous variances. Existing effects or negligible differences may be under- or

overestimated, respectively, leading to wrong decisions.

Furthermore, MCTs are restricted to data with a single outcome (endpoint). How-

ever, measurements for multiple endpoints frequently appear in experiments (see

the data in Schulte et al. [2002]). The number of endpoints must then be taken

into account too, for the FWE. Their correlations are also important because, e.g.,

highly correlated endpoints do not contain the same amount of information about

the data as uncorrelated ones.

The outline of this work is as follows. In Chapter 2, basic underlying concepts

and distributions are recalled and investigated. Chapter 3 describes and compares

adequate approaches to handle the problem of heteroscedasticity, while Chapter 4

deals with an extension for multiple endpoints. Conclusions and a discussion are

given in Chapter 5.



Chapter 2

Statistical Concepts and

Distributions

Before turning to the main parts of this work, some important underlying concepts

and distributions, which build a base of the following methodology, are recalled and

investigated.

2.1 Some Basic Concepts

Multiple testing problems first of all raise the question how to construct suitable

hypotheses. There are two basic approaches. The intersection-union method of test

construction may be useful if the null hypothesis can be conveniently expressed as

3



4 CHAPTER 2. STATISTICAL CONCEPTS AND DISTRIBUTIONS

a union, that is,

H0 =
k⋃
i=1

H0i.

Suppose that a suitable test is available for each H0i : θ ∈ Θi versus H1i : θ ∈ Θc
i .

We can then write

H0 : θ ∈
k⋃
i=1

Θi.

Say the rejection region for the test of H0i is {x : Ti(x) ∈ Ri}. Then, the rejection

region for the intersection-union test (IUT) of H0 is

k⋂
i=1

{x : Ti(x) ∈ Ri}.

This means that the global null hypothesis H0 is rejected if and only if each of its

component (local null) hypotheses H0i is rejected. Depending on the test direction,

let the local rejection region for each of the individual tests be {x : Ti(x) > c} with

a common c for all these tests. The global rejection region of the IUT is therefore

k⋂
i=1

{x : Ti(x) > c} = {x : min
i=1,...,k

Ti(x) > c}.

Thus, the test statistic for testing H0 is

T (x) = min
i=1,...,k

Ti(x).

Information about the IUT’s size is given by the following

Theorem 2.1.1. Let αi be the size of the test of H0i with rejection region Ri (i =

1, . . . , k). Then the IUT with rejection region R =
⋂k
i=1Ri is a level-α test, that is,

its size is at most α with

α = max
i=1,...,k

αi.
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Some simple but typical examples for IUT are as follows.

Example 2.1.1. The TOST concept can be used to test the equivalence of two

groups by performing two one-sided tests. The first test is used to ensure that the

groups do not differ by more than a specified positive amount (e.g., δ); the second one

is to ensure that they do not differ by more than a specified negative amount (e.g.,

−δ). Only if both can be shown, equivalence can be stated. The null hypothesis can

be expressed as a union of two partial hypotheses. Both can be tested at level α.

Example 2.1.2. If two groups with multiple endpoints have to be compared, the

aim may be to show non-inferiority (or superiority) of the first over the second group

for all endpoints. For example, when testing for side effects, safety is only declared

when all endpoints are safe. That is to say, the first group (new compound) is

safe only if it is non-inferior to the second group (control) for all endpoints. Each

endpoint is then related to a partial hypothesis; the overall null hypothesis is the

union of them. All the endpoints can be tested at level α.

In addition to the intersection-union method of test construction there is the union-

intersection method. It is useful if the null hypothesis can be conveniently expressed

as an intersection, i.e.,

H0 =
k⋂
i=1

H0i.

Supposing again that a suitable test is available for each H0i : θ ∈ Θi versus H1i :

θ ∈ Θc
i , we can write

H0 : θ ∈
k⋂
i=1

Θi.

The rejection region for the test of H0i is then {x : Ti(x) ∈ Ri}. Hence, the rejection
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region for the union-intersection test (UIT) of H0 is

k⋃
i=1

{x : Ti(x) ∈ Ri}.

The global null hypothesis H0 is thus rejected if and only if at least one of its

component (local null) hypotheses H0i is rejected. Suppose the test direction for

which the local rejection region for each of the individual tests is {x : Ti(x) > c}

with a common c for all these tests. Then, the global rejection region of the UIT is

k⋃
i=1

{x : Ti(x) > c} = {x : max
i=1,...,k

Ti(x) > c},

so that the test statistic for testing H0 is

T (x) = max
i=1,...,k

Ti(x).

Examples for UITs are as follows.

Example 2.1.3. Two-sided testing is used if the aim is to show a difference between

two groups, regardless of the algebraic signs of this difference. Formally, two tests

are performed with opposite test direction. The first serves to show whether the

groups differ by a positive amount; the second one is to show whether they differ

by a negative amount. If at least one case can be shown, a significant difference can

be stated. The null hypothesis can be expressed as an intersection of two partial

hypotheses. Both must be tested at level α/2.

Example 2.1.4. The Dunnett procedure [Dunnett, 1955] compares several groups

with one control. The null hypothesis is an intersection of partial hypotheses, one for

each non-control group. To maintain the error type I for the overall null hypothesis

at level α, a multivariate t-distribution is used that takes the number and correlations

of the involved comparisons into account.
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Example 2.1.5. If two groups with multiple endpoints have to be compared, the

aim may be to show for which endpoints they differ. For example, when testing

for side effects, the first group (new compound) is declared hazardous if at least

one endpoint is hazardous as compared to the second group (control). Then each

endpoint is related to a partial hypothesis and the overall null hypothesis is the

intersection of them. All endpoints must be tested at level α/k, where k is the

number of endpoints.

These and further considerations about IUT and UIT may be found in Casella and

Berger [2002]. Of course, testing problems can also be mixtures between IUTs and

UITs; see Bofinger and Bofinger [1995] and Quan et al. [2001] for example. The

testing problems in the following chapters will turn out to be UITs. We therefore

recall some definitions and theorems related to these test procedures. They may

also be found in Hochberg and Tamhane [1987] and Gabriel [1969], together with

the related proofs which are omitted here for brevity. The IUT was mentioned here

for reasons of completeness and is not considered below.

A hypothesis H(s)
0 is said to imply H

(r)
0 when the parameter values postulated by

H
(s)
0 form a subset of the parameter values postulated by H

(r)
0 . A family of hy-

potheses is said to be hierarchical if an implication relation holds between at least

two hypotheses. If a hypothesis H(s)
0 implies H(r)

0 , then H(r)
0 is called a component

of H(s)
0 , according to Gabriel [1969]. A hypothesis with no components is called

minimal ; all other hypotheses are called non-minimal [Gabriel, 1969]. An MCP is

called coherent, if the following property holds: If H(s)
0 is not rejected, then H(r)

0 is
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also not rejected for any pair of hypotheses (H
(r)
0 , H

(s)
0 ) such that H(s)

0 implies H(r)
0 .

This requirement has been introduced by Gabriel [1969] and earlier by Lehmann

[1957] as compatibility. A coherent MCP that rejects a hypothesis also rejects all

hypotheses implying it. For a hierarchical family of hypotheses, consonance refers

to the property that whenever any non-minimal hypothesis is rejected, at least one

of its components is also rejected (see Gabriel [1969]). An MCP with this property

is called consonant. A simultaneous test procedure for a hierarchical family of hy-

potheses is characterized by a collection of test statistics Zs, s ∈ I, and a common

critical constant c such that the procedure rejects H(s)
0 if Zs ≥ c, s ∈ I. The test

statistics Zs are said to be monotone if Zs ≥ Zr with probability one whenever H(s)
0

implies H(r)
0 . The above UIT is such a simultaneous test procedure because it com-

pares each Ti with the same quantile c and Zs can be defined as maxi=1,...,s Ti and

I = {1, . . . , k}. The following theorems clarify the need for the above definitions

and connects them.

Theorem 2.1.2. The simultaneous test procedure stated above is coherent for any

choice of the critical constant c if and only if the test statistics Zi are monotone.

Theorem 2.1.3. For a hierarchical family of hypotheses, a single-step test procedure

is coherent and consonant if and only if it is a UIT.

Theorem 2.1.4. The above UIT is a level-α test if c is chosen to be the upper α

quantile of the distribution of maxs∈I Zs.

Furthermore, it can be shown that associated confidence sets have level (1 − α).

In summary: If a test procedure is known to be a UIT, constructed in the above

manner, it is coherent and consonant; the proper choice of a quantile c guaranties a
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level-α test.

2.2 Multivariate Normal and t-distribution

The multivariate normal distribution plays a dominant role in both the historical

and actual development of statistical theory. Indeed, even its name points up its

central meaning. Its application areas are various. A comprehensive and coherent

treatment of classical and new results related to the multivariate normal distribution

is provided by Tong [1990], for example.

A random vector X = (X1, ..., Xk)
′ is said to have a k-variate normal distribution

with mean vector µ ∈ Rk and covariance matrix Σ ∈ Rk×k if its characteristic

function ψX(u) = E(eiu
′X) is given by

ψX(u) = eiu
′µ− 1

2
u′Σu (u ∈ Rk),

where i is the imaginary unit. We write X ∼ Nk(µ,Σ). If Σ is positive definite,

then the density function of X exists and is given by

φ(x) =
1

(2π)
k
2 |Σ| 12

e−
1
2
(x−µ)′Σ−1(x−µ) (x ∈ Rk).

In this case we say thatX has a nonsingular distribution. If the Xi (i = 1, ..., k) are

standardized so that E(Xi) = 0 and V ar(Xi) = 1, then Σ is a correlation matrix

denoted by R = (ρij)i,j with off-diagonal elements ρij = corr(Xi, Xj) for i 6= j and

we write X ∼ Nk(µ,R).

The multivariate t-distribution is of increasing importance in statistical modeling.
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It has been found useful in inference problems concerning the mean vector of a

multivariate normal distribution. A large number of modifications and extensions

of the standard multivariate t-distribution has been proposed in the literature. A

comprehensive review is given by Nadarajah and Dey [2005]. For a more detailed

account, see Kotz and Nadarajah [2004]. The following and further considerations

may also be found in Tong [1990] or in Hochberg and Tamhane [1987] p.365 ff,

together with the related proofs which are omitted here for brevity.

Let X = (X1, ..., Xk)
′ ∼ Nk(µ,R), let U be a χ2

ν random variable which is dis-

tributed independently of X and denote

Ti =
Xi√
U/ν

(i = 1, . . . , k). (2.1)

For µ = 0 the distribution of T = (T1, ..., Tk)
′ is called a central k-variate t-

distribution with ν degrees of freedom and associated correlation matrix R and we

write T ∼ tk(ν,R). Otherwise (2.1) is called a non-central k-variate t-distribution

with non-centrality parameter µ, and is denoted by T ∼ tk,µ(ν,R). If R is positive

definite, then the density function of T exists and is given by

gk(t; ν,R) =
Γ(1

2
(ν + k))

(πν)
k
2 Γ(ν

2
)|R| 12

(
1 +

1

ν
t′R−1t

)− 1
2
(ν+k)

(t ∈ Rk). (2.2)

Important characteristics are given by the following

Lemma 2.2.1. Let T ∼ tk(ν,R). Then for ν > 2:

E(Ti) = 0 (i = 1, . . . , k),

V ar(Ti) =
ν

ν − 2
(i = 1, . . . , k),

Cov(Ti, Tj) =
νρij
ν − 2

(i, j = 1, . . . , k).
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This result ensures that the matrix R in (2.2) is the correlation matrix of T . Fur-

thermore, note that the multivariate t-distribution belongs to the class of elliptically

countered distributions. It is ellipsoidally symmetric about µ (see Tong [1990]). The

next lemma delimits the possible correlations, e.g., for simulating random numbers.

Lemma 2.2.2. Let there be random variables T ∼ tk,µ(ν,R) or X ∼ Nk(µ,R),

and let the elements of R be ρij = ρ for all i 6= j = 1, . . . , k. Then the smallest valid

value ρmin for ρ depends on the dimension k according to

ρmin = − 1

k − 1
. (2.3)

Proof. A condition for the density function of T orX to exist is that the correlation

matrix R is positive definite (positive semidefinite). Hence, each principal minor of

R has to be positive (non-negative). Complete induction with respect to k leads to

(2.3).

To give an example, Figure 2.1 illustrates the behavior of a random variable T ∼

t3(20,R) depending on its correlation structure. Here, all the variable’s components

are equicorrelated, ρij = ρ for all i, j = 1, . . . , k, i 6= j. The red points representing

realizations of T for the case of maximal negative correlation ρ = −1
2
lie exactly

on a disk. The green points having correlation ρ = 0 form a ball, while the blue

points have maximal positive correlation, i.e., ρ = 1. They are located on a line

which is orthogonal to the disk of the red points. A general conclusion is given by

the following

Corollary. The realizations of the k-variate random variables T ∼ tk,µ(ν,R) or

X ∼ Nk(µ,R) with maximal negative correlation ρ = − 1
k−1

form a (k − 1)-
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Figure 2.1: Trivariate t-distributed random variable with ν = 20 and maximal nega-

tive correlation (red), correlation 0 (green), and maximal positive correlation (blue).

dimensional subspace of Rk, for correlation ρ = 0 a k-dimensional ball, and for

maximal positive correlation ρ = 1 a line that is orthogonal to the subspace obtained

by maximal negative correlations.

A relationship between multivariate t- and normal distribution is considered by

Lemma 2.2.3. Let gk(t; ν,R) and fk(x; 0,R) be the density functions of the random

variables T ∼ tk(ν,R) and X ∼ Nk(0,R), respectively. Then

lim
ν→∞

gk(t; ν,R) = fk(t; 0,R) ∀t ∈ Rk.

Corollary. With T ∼ tk(ν,R) and X ∼ Nk(0,R), define the equicoordi-

nate quantiles cν,α and cα for α ∈ (0, 1) as P
(⋂k

i=1{Ti ≤ cν,α}
)

= α and
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P
(⋂k

i=1{Xi ≤ cα}
)

= α. Then

lim
ν→∞

cν,α = cα.

A practical consequence of Lemma 2.2.3 and its corollary for test decisions is hence

that the use of quantiles of a multivariate normal distribution instead of those of a

t-distribution may be an acceptable approximation in the case of large sample sizes.

However, this leads to liberal decisions.

In addition to the random variable T defined in (2.1), another commonly used

multivariate t variable is defined in the literature, e.g. by Tong [1990], p. 202.

For j = 1, . . . , N let Xj = (X1j, . . . , Xkj)
′ be independent Nk(0,Σ) variables. For

i = 1, ..., k and

X̄i =
1

N

N∑
j=1

Xij, V 2
i =

1

N − 1

N∑
j=1

(Xij − X̄i)
2

let

T ∗i =

√
NX̄i

Vi
(i = 1, ..., k). (2.4)

The random variable T ∗ = (T ∗1 , ..., T
∗
k )′ is also called a multivariate t-variable. The

marginal distribution of
√
NX̄i/Vi is a t-distribution with N − 1 degrees of freedom

(i = 1, ..., k). While (2.1) takes the same χ2
ν variable U for each component Ti, the

χ2
N−1 variables (N − 1)V 2

i in (2.4) are different because of their dependence on i.

For statistical testing, this implies the assumption of homogeneous variances for the

Xi in (2.1) and of heterogeneous variances for the X̄i in (2.4). Indeed, definition

(2.4) is most appropriate for many applications, e.g for the analysis of multiple

endpoints that may have different scales and hence different variances. However, this
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multivariate t variable is rarely described correctly in the literature. Furthermore,

standard statistical software is not able to calculate the related density function.

The following considerations and test procedures are hence all based on definition

(2.1).

2.3 Skew-normal and Skew-t Distribution

Currently, there is an increasing interest in the literature on parametric families

of multivariate normal distributions. The motivation is to introduce more flexible

parametric families that still retain similarity with the multivariate normal distri-

bution. The multivariate skew normal distribution can be viewed as a result of such

ambitions. Amongst others, it has been studied by Azzalini [2005], Azzalini and

Valle [1996] and Azzalini and Capitanio [2003]. An introduction into the topic is

given by

Lemma 2.3.1. If f0 is a one-dimensional probability density function symmetric

about zero, and G is a one-dimensional distribution function such that G′ exists and

is a density symmetric about zero, then

f(z) = 2f0(z)G{w(z)} (z ∈ R) (2.5)

is a density function for any odd function w(·).

f0 is the “basis” base density, G{w(x)} the “perturbation” function. The set of

“perturbed” densities always includes the “basis” density, since w(x) ≡ 0 yields

f0 = f . A simple method for random number generation is provided by
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Corollary. If X ∼ G′ and Y ∼ f0 are independent random variables, then

Z =


Y, X < w(Y )

−Y, otherwise

(2.6)

has density function (2.5). If Y ∼ f0 and Z ∼ f , then |Y | d= |Z|, where the notation

d
= denotes equality in distribution (the cumulative distribution functions are equal).

Among other properties, the result implies that all even moments of Y and Z are

the same.

On using Equation (2.5) with f0 = φ and G = Φ, the density function and the

distribution function of a N(0, 1) variate, respectively, and w(x) = αx, where α ∈ R,

we get the density

φ(z, α) = 2φ(z)Φ(αz) (z ∈ R), (2.7)

which is called SN distribution with shape parameter α, denoted by SN(α). If

Z ∼ SN(α) and Y = ξ + ωZ, where ξ ∈ R+, then we shall write Y ∼ SN(ξ, ω2, α).

The following properties for Equation (2.7) hold:

(a) If α = 0, we obtain the N(0, 1) density.

(b) If Z ∼ SN(α), then −Z ∼ SN(−α).

(c) As α→∞, (2.7) converges pointwise to the half-normal density, namely 2φ(z)

for z ≥ 0.

(d) If Z ∼ SN(α), then Z2 ∼ χ2
1.
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(e) For fixed α, (2.7) is strongly unimodal, i.e. log f(z, α) is a concave function

of z.

(f) The corresponding distribution function is given by

Φ(z, α) = Φ(z)− 2T (z, α),

where T (z, α) is the function studied by Owen [1956], and it satisfies the

relationship

Φ(z,−α) = 1− Φ(−z, α).

(g) If U ∼ N(0, 1) is independent of Z ∼ SN(α), then

aU + bZ√
a2 + b2

∼ SN

(
bα√

a2(1 + α2) + b2

)
(2.8)

for any a, b ∈ R.

The moment generating function of SN(ξ, ω2, α) is given by

M(t) = E
(
etY
)

= 2 eξt+
ω2t2

2 Φ(δωt),

where δ = α/
√

1 + α2 ∈ (−1, 1). It follows that

E(Y ) = ξ + ωµz, V ar(Y ) = ω2(1− µ2
z),

γ1 =
4− π

2

µ3
z

(1− µ2
z)

3/2
, γ2 = 2(π − 3)

µ4
z

(1− µ2
z)

2
,

where µz =
√

2/π δ and γ1, γ2 denote the standardized third and fourth-order

cumulants, respectively. The range of γ1 is approximately (-0.9953, 0.9953).

The multivariate version is presented by
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Lemma 2.3.2. If f0 is a d-dimensional probability density function such that

f0(x) = f0(−x) for x ∈ Rd, G is a one-dimensional differentiable distribution func-

tion such that G′ is a density symmetric about 0, and w is a real-valued function

such that w(−x) = −w(x) for all x ∈ Rd, then

f(z) = 2f0(z)G{w(z)} (z ∈ Rd) (2.9)

is a density function on Rd.

Corollary. If X ∼ G′ and Y ∼ f0 are independent variables, then Z defined as in

Equation (2.6) has the distribution (2.9). If Y ∼ f0 and Z ∼ f , then t(Y )
d
= t(Z)

for any real valued function such that t(x) = t(−x) for all x ∈ Rd, irrespective of

the choice of G and w.

Consider the case that f0(x) in Equation (2.9) is φd(x,Ω), the density function of

an Nd(0,Ω) variable, where Ω is a positive definite matrix. Also assume that G = Φ

and w is a linear function. Allowing for the presence of a d-dimensional location

parameter ξ, the density function is

f(y) = 2φd(y − ξ,Ω)Φ(α′ω−1(y − ξ)) (y ∈ Rd), (2.10)

where α ∈ Rd is the shape parameter and ω is the diagonal matrix formed by

the standard deviations of Ω. If a d-dimensional continuous random variable Y

has the density (2.10), we say that its distribution is multivariate SN and write

Y ∼ SNd(ξ,Ω,α). The moment generating function of SNd(ξ,Ω,α) is given by

M(t) = 2 eξ
′t+ 1

2
t′Ωt Φ(δ′ωt) (t ∈ Rd), (2.11)

where δ = (1 + α′Ω̄α)−1/2Ω̄α and Ω̄ = ω−1Ωω−1 is the correlation matrix associ-
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ated with Ω. From (2.11), it follows that:

E(Y ) = ξ + ωµz, V ar(Y ) = Ω− ωµzµ′zω,

γ1,d =

(
4− π

2

)2
(

µ′zΩ̄
−1
µz

1− µ′zΩ̄
−1
µz

)3

, γ2,d = 2(π − 3)

(
µ′zΩ̄

−1
µz

1− µ′zΩ̄
−1
µz

)2

,

where µz =
√

2/π δ is the mean value of the reduced variable Z = ω−1(Y − ξ) ∼

SNd(0, Ω̄,α). γ1,d, γ2,d denote the multivariate indices of skewness and kurtosis

whose approximate ranges are (0, 0.9905) and (0, 0.869), respectively. Another

direct consequence of (2.11) is that the sum of a multivariate SN variate and an

independent multivariate normal variate is still SN . This fact is essentially the

multivariate version of property (2.8).

Like the considerations concerning the multivariate skew normal distribution there

is an analogous variant of the t-distribution. See Azzalini and Capitanio [2003] and

Azzalini [2005] therefore. A continuous random variable Y has a multivariate skew-t

distribution if its density is of type

fT (y) = 2td(y, ξ,Ω, ν)T1

(
α′ω−1(y − ξ)

(
ν + d

Qy + ν

)1/2

; ν + d

)
(y ∈ Rd),

(2.12)

where ξ, Ω and ω are as introduced above, Qy = (y − ξ)′Ω−1(y − ξ),

td(y, ξ,Ω, ν) =
Γ
(

1
2
(ν + d)

)
|Ω|1/2(πν)d/2Γ(1

2
ν)

1

(1 +Qy/ν)(ν+d)/2

is the density function of a d-dimensional t variate with ν degrees of freedom, and

T1(x; ν + d) denotes the scalar t-distribution function with ν + d degrees of free-

dom. We write Y ∼ ST (ξ,Ω,α, ν). Equation (2.12) can be generated by the same
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construction used for the regular multivariate t-distribution, namely

Y = ξ +
Z√
W/ν

, (2.13)

where W ∼ χ2
ν , if Z is an independent variable which is now taken to be

SNd(0,Ω,α) in place of the Nd(0,Ω) distribution used to produce the regular t-

distribution. From (2.13) it follows that, if ν → ∞, Equation (2.12) converges to

the SN density (2.10). The relation

(Y − ξ)′Ω−1(Y − ξ)/d ∼ F (d, ν)

holds. Furthermore, unlimited range for the indices of skewness and kurtosis is

allowed for the individual components.

2.4 Distribution of Maximum and Minimum of Test

Statistics

A common starting point of many multiple test procedures is the use of a maximum

or a minimum of test statistics. According to Theorem 2.1.4, the proper choice

of a quantile c, coming from the distribution of maxs∈I Zs, guarantees the UIT to

be a level-α test. Thus, the problem is to derive the corresponding distributions.

Therefore, we have considered the skew normal and skew-t distribution. In this

section, we show their connections with the maximum and minimum of test statistics.

Primarily, explicit solutions have been known only for a few special cases. Tong

[1990] (p. 126) has considered the probability density function for the maximum
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of the components of an exchangeable multivariate normal random vector, i.e., its

covariance matrix is equicorrelated. The case of two random variables with a joint

bivariate normal distribution has been considered by Roberts [1966] and rediscovered

by Loperfido [2002]. Their proofs are omitted here again for brevity.

Theorem 2.4.1. Let the random variables X1, X2, Y1, Y2, Z1, Z2 be distributed as

follows:  X1

X2

 ∼ N


 0

0

 ;

 σ11 σ12

σ21 σ22


 ,

Y1√
σ11

∼ SN

(
σ11 − σ12√
σ11σ22 − σ2

12

)
,

Y2√
σ22

∼ SN

(
σ22 − σ12√
σ11σ22 − σ2

12

)
,

Z1√
σ11

∼ SN

(
σ12 − σ11√
σ11σ22 − σ2

12

)
,

Z2√
σ22

∼ SN

(
σ12 − σ22√
σ11σ22 − σ2

12

)
.

Then the distribution of max{X1, X2} is a mixture with equal weights of the distribu-

tions of Y1 and Y2. The distribution of min{X1, X2} is a mixture with equal weights

of the distributions of Z1 and Z2.

Theorem 2.4.2. Let X1, X2 be two standardized random variables whose distribu-

tion is jointly normal: X1

X2

 ∼ N


 0

0

 ;

 1 ρ

ρ 1


 .

Then the distributions of the random variables max{X1, X2} and min{X1, X2} are

skew-normal:

max{X1, X2} ∼ SN

(√
1− ρ
1 + ρ

)
, min{X1, X2} ∼ SN

(
−
√

1− ρ
1 + ρ

)
. (2.14)

Equations (2.13) and (2.14) lead to the next
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Corollary. Let X1, X2 be two random variables which are jointly central t-

distributed with ν degrees of freedom and correlation ρ. Then the distributions of

the random variables max{X1, X2} and min{X1, X2} are skew-t:

max{X1, X2} ∼ ST

(
ν,

√
1− ρ
1 + ρ

)
, min{X1, X2} ∼ ST

(
ν,−

√
1− ρ
1 + ρ

)
.

The generalization to k-variate random variables X = (X1, ..., Xk)
′ is given by the

following results of Arellano-Valle and Genton [2008]. We do not introduce the

authors’ denotation here for simplicity. Also the proofs can be seen in their article.

Theorem 2.4.3. Let X = (X1, ..., Xk)
′ ∼ Nk(µ,Σ). The probability density func-

tion fX(k)
of X(k) = max{X1, ..., Xk} is

fX(k)
=

k∑
i=1

φ1(x;µi,Σii)Φk−1

(
x1k−1;µ−i,i(x),Σ−i−i,i

)
(x ∈ R).

Theorem 2.4.4. Let X = (X1, ..., Xk)
′ ∼ tk,µ(ν,Σ). The probability density func-

tion fX(k)
of X(k) = max{X1, ..., Xk} is

fX(k)
=

k∑
i=1

t1(x;µi,Σii, ν)Tk−1

(
x1k−1;µ−i,i(x),

ν + z2
i

ν + 1
Σ−i−i,i, ν + 1

)
(x ∈ R).

2.5 Quantile Relations

Having seen that maximum and minimum of components of multivariate normal

and t-variables are SN and ST distributed, respectively, we now consider the related

quantiles, since they are needed for test decisions and confidence intervals. The

following considerations refer to the multivariate t- and the ST distribution, but are
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also valid for the multivariate normal distribution and the SN distribution, which

may be viewed as a special case with ν =∞.

LetX ∼ tk(ν,R) be a k-variate random vector. For the joint k-variate t-distribution,

we define

• the lower α-quantile tlk,α(ν,R), where

P
(⋂k

i=1{Xi ≤ tlk,α(ν,R)}
)

= α,

• the lower (1− α)-quantile tlk,1−α(ν,R), where

P
(⋂k

i=1{Xi ≤ tlk,1−α(ν,R)}
)

= 1− α,

• the upper α-quantile tuk,α(ν,R), where

P
(⋂k

i=1{Xi ≥ tuk,α(ν,R)}
)

= α,

• the upper (1− α)-quantile tuk,1−α(ν,R), where

P
(⋂k

i=1{Xi ≥ tuk,1−α(ν,R)}
)

= 1− α, and

• the two-sided (1− α)-quantile ttsk,1−α(ν,R), where

P
(⋂k

i=1{−ttsk,1−α(ν,R) ≤ Xi ≤ ttsk,1−α(ν,R)}
)

= 1− α.

Figure 2.2 illustrates these definitions for the bivariate case. A contour plot for a

bivariate t-variable is shown with ν = 20 and independent components, i.e., ρ = 0.

It is immediately clear that there are only three relevant quantiles in the univariate
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Figure 2.2: Upper, lower and two-sided quantiles for a bivariate t-distributed random

variable with ν = 20 and ρ = 0.

case because

tl1,1−α(ν,R) = tu1,α(ν,R) = tν,1−α,

tu1,1−α(ν,R) = tl1,α(ν,R) = tν,α,

tts1,1−α(ν,R) = tν,1−α/2.

Corresponding equalities do not hold for k > 1. The symmetry of the multivariate

t-distribution about zero also results in tlk,γ(ν,R) = −tuk,γ(ν,R) for any γ ∈ (0, 1).

The following theorem gives a connection between these quantiles and quantiles of

a ST distribution.

Theorem 2.5.1. LetX ∼ tk(ν,R) be a k-variate random vector and let stmaxα (ν,R),

stmax1−α(ν,R), stminα (ν,R), stmin1−α(ν,R) be appropriate quantiles of the distribution of

the maximum and minimum of the components of X, respectively. The following

properties are valid:

tlk,α(ν,R) = stmaxα (ν,R), tlk,1−α(ν,R) = stmax1−α(ν,R),

tuk,α(ν,R) = stmin1−α(ν,R), tuk,1−α(ν,R) = stminα (ν,R), (2.15)
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and

stmaxα (ν,R) = −stmin1−α(ν,R), stmax1−α(ν,R) = −stminα (ν,R). (2.16)

Proof. From the above definition, it follows that

α = P

(
k⋂
i=1

{Xi ≤ tlk,α(ν,R)}

)
= P

(
X1 < tlk,α(ν,R), ..., Xk < tlk,α(ν,R)

)
= P

(
max
i=1,...,k

{Xi} < tlk,α(ν,R)

)
= P

(
max
i=1,...,k

{Xi} < stmaxα (ν,R)

)
.

Hence tlk,α(ν,R) = stmaxα (ν,R). Furthermore,

α = P

(
k⋂
i=1

{Xi ≥ tuk,α(ν,R)}

)
= P

(
X1 > tlk,α(ν,R), ..., Xk > tlk,α(ν,R)

)
= P

(
min
i=1,...,k

{Xi} > tlk,α(ν,R)

)
= P

(
min
i=1,...,k

{Xi} > stmin1−α(ν,R)

)
.

Hence tuk,α(ν,R) = stmin1−α(ν,R). The other relations given in (2.15) can be de-

rived similarly. Equation (2.16) follows from the symmetry of the multivariate t-

distribution about zero.

Theorem 2.5.1 implies that we do not have to know the exact (skewed) distribution of

the maximum and minimum of the test statistics. It is sufficient to know their joint

multivariate distribution, because the quantiles coincide. Figure 2.3 illustrates this

relation for the bivariate case. LetX be a bivariate-t random vector with 20 degrees

of freedom and uncorrelated components. The first row of the figure shows a contour

plot of the distribution of X, the second row the related skewed distributions of

min{X1, X2} and max{X1, X2}. The connection between the quantiles of the skewed

distributions and the related bivariate distributions can easily be seen. Hence, the

quantiles tlk,1−α(ν,R), tuk,1−α(ν,R) and ttsk,1−α(ν,R) are necessary for decisions in a

UIT.
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Figure 2.3: Connection between the quantiles of the skewed distributions of

max{X1, X2} or min{X1, X2} and the joint bivariate distributions of their com-

ponents, respectively.
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The next statements provide information about the dependence of the quantiles on

the dimension of their distribution (number of components) and correlations.

Theorem 2.5.2. Let X ∼ tk(ν,R) be a k-variate random vector. The following

properties are valid if ρij = ρ for all i 6= j:

tlk,1−α(ν,R) < tlk+1,1−α(ν,R),

tuk,1−α(ν,R) > tuk+1,1−α(ν,R),

ttsk,1−α(ν,R) < ttsk+1,1−α(ν,R).

Proof. The probability that the maximum of k random variables is larger than a

fixed quantile c increases with increasing k,

P

(
max
i=1,...,k

{Xi} > c

)
≤ P

(
max

i=1,...,k+1
{Xi} > c

)
.

Fixing both probabilities at level 1 − α, the related quantiles tlk,1−α(ν,R) and

tlk+1,1−α(ν,R) cannot be equal, and it follows that tlk,1−α(ν,R) < tlk+1,1−α(ν,R).

Otherwise, the probability that the minimum of k random variables is smaller than

a fixed quantile c also increases with increasing k,

P

(
min
i=1,...,k

{Xi} < c

)
≤ P

(
min

i=1,...,k+1
{Xi} < c

)
.

We analogously obtain tuk,1−α(ν,R) > tuk+1,1−α(ν,R). And finally, the probability

that both the maximum of k random variables is larger than any fixed quantile c,

and the minimum of k random variables is smaller than any fixed quantile −c, also

increases with increasing k,

P

(
max
i=1,...,k

{|Xi|} > c

)
≤ P

(
max

i=1,...,k+1
{|Xi|} > c

)
.

It follows that ttsk,1−α(ν,R) < ttsk+1,1−α(ν,R).
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Theorem 2.5.3. Let X ∼ tk(ν,R) be a k-variate random vector with ρij = ρ for

all i 6= j.

1. For ρ = ρmin (Equation (2.3)), tlk,1−α(ν,R) has its maximal value, tuk,1−α(ν,R)

its minimal value, and

tlk,1−α(ν,R) ≤ tν,1−α/k, tuk,1−α(ν,R) ≥ tν,α/k.

2. For ρ = 0, ttsk,1−α(ν,R) has its maximal value.

3. For ρ = 1,

tlk,1−α(ν,R) = tν,1−α, tuk,1−α(ν,R) = tν,α.

Corollary. Let X ∼ tk(ν,R) be a k-variate random vector. The following conclu-

sions hold for k > 2:

tν,1−α ≤ tlk,1−α(ν,R) < tν,1−α/k,

tν,α ≥ tuk,1−α(ν,R) > tν,α/k,

tν,1−α/2 ≤ ttsk,1−α(ν,R) < tν,α/2k.

For k = 2, ≤ holds instead of < for tlk,ν,1−α(ν,R), and ≥ for tuk,ν,1−α(ν,R).

Theorem 2.5.3 is without proof but Figure 2.4 illustrates the dependence of k-variate

t-quantiles on the correlation (ρij = ρ for all i 6= j) and their relation to univariate

t-quantiles. The first row shows lower (1 − α)-quantiles, the second one two-sided

(1 − α)-quantiles. The columns split up the dimensions k = 2, 4, 8. The Figures

2.5, 2.6 and 2.7 illustrate the dependence of the quantiles tlk,1−α(ν,R) of a trivari-

ate t-distribution (with ν = 20) on the correlation of its components. The black
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Figure 2.4: Dependence of k-variate t-quantiles on the correlation and their relation

to univariate t-quantiles; ν = 20, α = 0.05.

dots in these plots represent a cutout of α = 0.05 of the entire probability mass by

tlk,1−α(ν,R) for maximal negative (red), no (green) and maximal (blue) equicorre-

lation, respectively. According to Section 2.2, the red points in Figure 2.5 form a

cutout of a disk, a cutout of a ball in Figure 2.6, and a ray in Figure 2.7. When

there is maximal negative correlation, no probability mass is located in the first or-

thant. The related quantile does not cut very deeply into the probability space and

is largest here. For increasing correlation, more and more probability mass moves

into the first orthant, and the quantile becomes smaller. Having maximal positive

correlation, 50% of the probability mass lies exactly on a ray from the origin to

infinity. Here, the quantile is smallest.
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Figure 2.5: Trivariate t-distributed random variables with ν = 20 and maximal

negative correlation ρ = −1
2
, black points represent a cutout of 5%.

Figure 2.6: Trivariate t-distributed random variables with ν = 20 and correlation

ρ = 0, black points represent a cutout of 5%.
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Figure 2.7: Trivariate t-distributed random variables with ν = 20 and maximal

positive correlation ρ = 1, black points represent a cutout of 5%.

A consequence of these considerations is that the use of a Bonferroni adjustment for

decisions in a one-sided UIT is almost correct for maximal negative equicorrelated

local comparisons and most conservative for maximal positive ones. Bonferroni-

adjusted two-sided UIT are least conservative for uncorrelated local comparisons

and most conservative for high absolute values of the correlations.



Chapter 3

Multiple Contrast Tests in the

Presence of Heteroscedasticity

3.1 Introduction

MCTs and related SCIs are well-known methods for testing and estimating linear

functions of means – i.e. contrasts – of normally distributed populations. A broad

class of testing problems can be handled by them in modeling suitable contrast coef-

ficients. The many-to-one comparison of Dunnett [1955] is one of the most frequently

applied and cited testing procedures today. Several treatments are compared with

one control and tested for deviation. This can be translated by related contrast

coefficients and represents a very simple example. The all-pair comparison of Tukey

[1953], comparing all treatments against each other, is also a very famous example.

31
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Bretz [2006] has formulated the trend test of Williams [1971] as an approximate

MCT. Here, the contrast coefficients depend in addition on the sample sizes of the

treatment groups. Moreover, other interesting, problem-specific contrasts can be

created (see Westfall [1997]). Furthermore, MCTs and SCIs are also available for

ratios of means; see Dilba et al. [2004]. They are used if conclusions about ratios

rather than differences of means are of interest. That is, if relative changes, e.g. in

per cent, are to be analyzed.

The resulting MCTs and SCIs assume homogeneous variances for the data. This

condition is necessary for the derivation of a joint multivariate t-distribution of the

test statistics. If not fulfilled, this distribution is not available. Nevertheless, an ad-

justment for heteroscedastic data is necessary. Dose finding studies often have the

problem of heteroscedasticity because the variance of the data depends on the dose

effect. The data of Westfall [1997] (in Section 3.6.1), Adler and Kliesch [1990] (in

Section 3.6.2) or Silva-Costa-Gomes et al. [2005] (in Hasler et al. [2008]) are exam-

ples. The first adjustment regarding heteroscedasticity for tests of any contrasts of

means from normally distributed data has been made by Satterthwaite [1946]. Like

Welch [1938], he approximates the degrees of freedom of the resulting t-distribution

by matching first and second moments. Games and Howell [1976] used this ap-

proach for all-pair comparisons. Many other procedures have been suggested and

investigated. Most of them have been developed for special contrasts only, or tend

to achieve conservative or liberal tests depending on the extent of heteroscedasticity

(see, e.g., Dunnett [1980]). Other approaches – from Welch [1951] or Brown and

Forsythe [1974] – are based on F -distributions. This work presents three versions
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of a general approach that handles the entire family of MCTs for differences and

ratios of means using multivariate t-distributions, and against the background of

controlling the FWE at level α.

In Section 3.2, the testing problem is formulated, and an adequate test statistic and

distribution parameters are derived using several methods. Section 3.3 shows results

of α-simulations for several contrasts and key settings. SCIs are treated in Section

3.4, power considerations in 3.5. Examples are given in Section 3.6.

3.2 Test Procedure

3.2.1 Differences of Means

For h = 1, . . . , p and j = 1, . . . , nh, let Xhj denote the jth observation under the hth

treatment in a one-way layout. Suppose the Xhj to be independently normal with

means µh and variances σ2
h, thus

Xhj ∼ ⊥N(µh, σ
2
h) (h = 1, . . . , p, j = 1, . . . , nh).

Let µ = (µ1, . . . , µk)
′ be the vector of treatment means and X̄ = (X̄1, . . . , X̄k)

′ its

estimator with

X̄h =
1

nh

nh∑
j=1

Xhj (h = 1, . . . , p).

The sample variances are given by

S2
h =

1

nh − 1

nh∑
j=1

(Xhj − X̄h)
2 (h = 1, . . . , p).
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We are interested in the vector of contrasts η = (η1, . . . , ηq)
′, where

ηl =

p∑
h=1

clhµh

= c′lµ (l = 1, . . . , q).

The vectors cl = (cl1, . . . , clp)
′ consist of real constants with

∑p
h=1 clh = 0 (l =

1, . . . , q). Without loss of generality, the objective is to test the hypotheses

H0l : ηl ≤ δl (l = 1, . . . , q) (3.1)

for specified absolute thresholds δl. Usually, δl = 0 for all l = 1, . . . , q. This testing

problem is a UIT because the overall null hypothesis of interest can be expressed as

an intersection of these local null hypotheses, that is,

H0 =

q⋂
l=1

H0l.

Figure 3.1 shows the parameter space of testing problem (3.1) for the case where

q = 2 contrasts are of interest. For the further development, we reshape (3.1) and

set

ψl =

(
p∑

h=1

clhµh

)
− δl

= c′lµ− δl (l = 1, . . . , q)

with estimator

ψ̂l =

(
p∑

h=1

clhX̄h

)
− δl

= c′lX̄ − δl (l = 1, . . . , q).

We have

V ar(ψ̂l) =

p∑
h=1

c2lhσ
2
h/nh

= c′lVMcl (l = 1, . . . , q),
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Figure 3.1: Parameter space of the one-sided MCT for differences with q = 2 con-

trasts.

with M and V defined by

M =


1/n1 0

. . .

0 1/np

 and V =


σ2

1 0

. . .

0 σ2
p

 ,

respectively. Consequently, we obtain the vector of test statistics T = (T1, . . . , Tq)
′,

where

Tl =

(∑p
h=1 clhX̄h

)
− δl√∑p

h=1 c
2
lhS

2
h/nh

=
c′lX̄ − δl√
c′lV̂ Mcl

(l = 1, . . . , q) (3.2)
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and

V̂ =


S2

1 0

. . .

0 S2
p

 .

If the group variances are homogeneous, σ2
1, . . . , σ

2
k = σ2, V and V̂ can be reduced

to the scalars σ2 and S2, respectively, with

S2 =

∑p
h=1(nh − 1)S2

h∑p
h=1(nh − 1)

. (3.3)

In the presence of heterogeneous variances, we cannot derive an exact joint multivari-

ate t-distribution for (T1, . . . , Tq)
′. Numerator and denominator in (3.2) are indeed

stochastically independent, but the denominator is a mixture of σ2
hχ

2-distributions

(h=1,. . . ,p). The marginal distribution of each Tl can be approximated by a t-

distribution using the idea of Welch [1938] and Satterthwaite [1946]. Denote the

squared denominator of (3.2) as ζl. Of course, ζl depends on the estimates S2
h

(h = 1, . . . , p). The aim is to approximate the distribution of ζl by that of a χ2(νl)

variable, multiplied by σ2
l

νl
, where σ2

l and νl are chosen such that the first two mo-

ments of ζl agree with the first two moments of σ2
l

νl
χ2(νl). We have

ζl =

p∑
h=1

c2lhS
2
h

nh
,

Eζl =

p∑
h=1

c2lhσ
2
h

nh
, (3.4)

V arζl =

p∑
h=1

2c4lhσ
4
h

n2
h(nh − 1)

. (3.5)

While (3.4) is obvious, (3.5) results from the following



3.2. TEST PROCEDURE 37

Proof.

V arζl =

p∑
h=1

c4lh
n2
h

V ar
(
S2
h

)
=

p∑
h=1

c4lh
n2
h(nh − 1)2

V ar

(
nh∑
j=1

(Xhj − X̄h)
2

)

=

p∑
h=1

c4lh
n2
h(nh − 1)2

V ar

(
nh∑
j=1

σ2
h

(
Xhj − X̄h

σh

)2
)

=

p∑
h=1

c4lhσ
4
h

n2
h(nh − 1)2

V ar

(
nh∑
j=1

(
Xhj − X̄h

σh

)2
)

=

p∑
h=1

c4lhσ
4
h

n2
h(nh − 1)2

2(nh − 1)

=

p∑
h=1

2c4lhσ
4
h

n2
h(nh − 1)

Furthermore,

E

(
σ2
l

νl
χ2(νl)

)
=
σ2
l

νl
νl = σ2

l ,

V ar

(
σ2
l

νl
χ2(νl)

)
=
σ4
l

ν2
l

2νl = 2
σ4
l

νl
.

The system of equations
p∑

h=1

c2lhσ
2
h

nh
= σ2

l ,

p∑
h=1

2c4lhσ
4
h

n2
h(nh − 1)

= 2
σ4
l

νl

yields
p∑

h=1

2c4lhσ
4
h

n2
h(nh − 1)

= 2

(
p∑

h=1

c2lhσ
2
h

nh

)2
1

νl

and

νl =

(∑p
h=1

c2lhσ
2
h

nh

)2

∑p
h=1

c4lhσ
4
h

n2
h(nh−1)

.
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Replacement of the unknown parameters σ2
h with the estimators S2

h (h = 1, . . . , p)

leads to1

ν̂l =

(∑p
h=1

c2lhS
2
h

nh

)2

∑p
h=1

c4lhS
4
h

n2
h(nh−1)

. (3.6)

Hence, under H0l, Tl approximately follows a t-distribution with ν̂l degrees of free-

dom. For an approximate joint distribution, we have to determine a suitable corre-

lation matrix. We have

Cov

(
p∑

h=1

clhX̄h,

p∑
h=1

cl′hX̄h

)

= E

(
p∑

h=1

clhX̄h − E
p∑

h=1

clhX̄h

)(
p∑

h=1

cl′hX̄h − E
p∑

h=1

cl′hX̄h

)

= E

(
p∑

h=1

clh
(
X̄h − EX̄h

))( p∑
h=1

cl′h
(
X̄h − EX̄h

))

= E

p∑
h=1

p∑
h′=1

clhcl′h′
(
X̄h − EX̄h

) (
X̄h′ − EX̄h′

)
=

p∑
h=1

p∑
h′=1,h′=h

clhcl′h′E
(
X̄h − EX̄h

) (
X̄h′ − EX̄h′

)
+

p∑
h=1

p∑
h′=1,h′ 6=h

clhcl′h′E
(
X̄h − EX̄h

) (
X̄h′ − EX̄h′

)
=

p∑
h=1

clhcl′hE
(
X̄h − EX̄h

)2
+

p∑
h=1

clhE
(
X̄h − EX̄h

) p∑
h′=1,h′ 6=h

cl′h′E
(
X̄h′ − EX̄h′

)
=

p∑
h=1

clhcl′hE
(
X̄h − EX̄h

)2
=

p∑
h=1

clhcl′hV arX̄h

=

p∑
h=1

clhcl′h
σ2
h

nh

1The degrees of freedom in (3.6) and later in (3.12) must be greater than or equal to 2 for a

well defined distribution.
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Thus, it follows that

ρll′ =

∑p
h=1 clhcl′hσ

2
h/nh√

(
∑p

h=1 c
2
lhσ

2
h/nh) (

∑p
h=1 c

2
l′hσ

2
h/nh)

=
c′lVMcl′√

c′lVMcl
√
c′l′VMcl′

(1 ≤ l, l′ ≤ q). (3.7)

Hence, T1, . . . , Tq follow an unknown joint q-variate distribution with correlation

matrix R = (ρll′)l,l′ . It is clearly not related to a q-variate t-distribution in the sense

of existing definitions because it additionally depends on the unknown variances σ2
h

and on several degrees of freedom νl. This problem has not been solved so far, and

hence some approximate approach has to be followed.

Games and Howell [1976] were the first to use a test statistic without a pooled

variance estimator, but with individual variance estimators S2
h for the all-pair com-

parison procedure. Formula (3.2) can be seen as a generalization of their test statis-

tic for all MCTs. The authors have applied studentized range distributions with

comparison-specific degrees of freedom according to (3.6). The problem of calculat-

ing the correlations from (3.7) is clearly that V is unknown. Games and Howell have

effectively replaced V with the unit matrix, which leads to the same correlations

as if homogeneous group variances were assumed. This procedure is referred to as

the GH procedure in the following. Some articles were already concerned with the

procedure of Games and Howell (e.g., Tamhane [1979] and Dunnett [1980]). Expect-

edly, their method can lead to both conservative or liberal test decisions depending

on the amount of heteroscedasticity and the sample allocation. Another approach

is the use of the matrix V̂ instead of V in (3.7). This means to plug-in the vari-

ance estimators S2
h and it yields the estimated correlation matrix R̂ = (ρ̂ll′)l,l′ with
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elements

ρ̂ll′ =

∑p
h=1 clhcl′hS

2
h/nh√

(
∑p

h=1 c
2
lhS

2
h/nh) (

∑p
h=1 c

2
l′hS

2
h/nh)

=
c′lV̂ Mcl′√

c′lV̂ Mcl

√
c′l′V̂ Mcl′

(1 ≤ l, l′ ≤ q).

We refer to this plug-in procedure as PI. Because of an unknown joint distribution

for T1, . . . , Tq, both GH and PI use q several approximate q-variate t-distributions

to come to a test decision about testing problem (3.1). Hence, each single test

statistic Tl is related to “its own” distinct q-variate t-distribution with correlation

matrix R̂ and degree of freedom ν̂l coming from (3.6). That results in different,

non-equidistant quantiles for the test decisions.

Dunnett [1985] has considered the use of both the geometric and arithmetic mean

of the correlations, respectively, for comparisons with a control in the context of

unbalanced one-way layouts in the homoscedastic case. Hochberg and Tamhane

[1987] have suggested the arithmetic mean, as well as Dunnett [1985], because it

provides a less conservative approximation. That is,

ρ̄ll′ =
1

q2 − q

q∑
l 6=l′=1

ρ̂ll′ for all 1 ≤ l 6= l′ ≤ q.

Tamhane and Logan [2004] resort to this approach even in the case of heteroscedastic

data. Furthermore, they recommend to use the average of the degrees of freedom,

ν̄ =
1

q

q∑
l=1

ν̂l.

The resulting procedure for all MCTs is referred to as HTL in the following. Note

that HTL uses a single, approximate joint q-variate t-distribution of T1, . . . , Tq which

is explicitly avoided by the GH and PI procedures.
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Besides, let us denote the procedure for homogeneous variances by HOM. Here, the

same correlation matrix as for GH is used, but only a single degree of freedom

ν =

p∑
h=1

(nh − 1),

and the pooled variance estimator (3.3) for the test statistic (3.2) is used instead of

the individual variance estimators S2
h.

The decision rule for testing problem (3.1) is to reject H0l for each contrast ηl with

Tl > tlq,1−α(.), (3.8)

where tlq,1−α(.) is a lower (1−α)-quantile of (one or q) related q-variate t-distributions.

If two-sided testing is of interest, the absolute values for Tl, and quantiles ttsq,1−α(.)

have to be taken. For the computation of these quantiles, one may resort to the

numerical integration routines of Genz and Bretz [1999, 2002], see also Bretz et al.

[2001]. Their algorithm is not restricted to special correlation structures. Related

adjusted p-values per comparison can also be obtained, of course.

Let us finally point out that HOM and HTL are simultaneous test procedures in the

sense of Gabriel [1969], while GH and PI are not, because the Tl (l = 1, . . . , q) are

compared with different quantiles. Since all of these procedures are UIT, Theorem

2.1.3 holds and they are thus coherent and consonant. That means, if any local

hypothesis H0l (l = 1, . . . , q) is rejected, H0 is, too. On the other hand, if H0 is

rejected, at least one H0l must be rejected.



42 CHAPTER 3. MCTS IN THE PRESENCE OF HETEROSCEDASTICITY

3.2.2 Ratios of Means

The same assumptions are made as in Section 3.2.1. Furthermore, let the means

µ1, . . . , µk have the same algebraic sign. We are interested now in the vector of ratios

of contrasts γ = (γ1, . . . , γq)
′, where

γl =

∑p
h=1 clhµh∑p
h=1 dlhµh

=
c′lµ

d′lµ
(l = 1, . . . , q).

The vectors cl = (cl1, . . . , clp)
′ and dl = (dl1, . . . , dlp)

′ consist of real constants.

Without loss of generality, the hypotheses to be tested are

H0l : γl ≤ θl (l = 1, . . . , q) (3.9)

for specified relative thresholds θl.Usually, θl = 1 for all l = 1, . . . , q. Like testing

problem (3.1), this one is a UIT, and

H0 =

q⋂
l=1

H0l.

Figure 3.2 shows the parameter space of testing problem (3.9) when q = 2 contrasts

are of interest. We reshape (3.9) and set

ψl =

p∑
h=1

clhµh − θl
p∑

h=1

dlhµh =

p∑
h=1

(clh − θldlh)µh

= (cl − θldl)′µ (l = 1, . . . , q)

with estimator

ψ̂l =

p∑
h=1

(clh − θldlh) X̄h

= (cl − θldl)′ X̄ (l = 1, . . . , q).
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Figure 3.2: Parameter space of the one-sided MCT for ratios with q = 2 contrasts.

Since

V ar(ψ̂l) =

p∑
h=1

(clh − θldlh)2 σ2
h/nh

= (cl − θldl)′ VM (cl − θldl) (l = 1, . . . , q),

we obtain the vector of test statistics T = (T1, . . . , Tq)
′, where

Tl =

∑p
h=1 (clh − θldlh) X̄h√∑p
h=1 (clh − θldlh)2 S2

h/nh

=
(cl − θldl)′ X̄√

(cl − θldl)′ V̂ M (cl − θldl)
(l = 1, . . . , q). (3.10)

Now, the same considerations as in the case of differences lead to

ζl =

p∑
h=1

(clh − θldlh)2 S2
h

nh
,

Eζl =

p∑
h=1

(clh − θldlh)2 σ2
h

nh



44 CHAPTER 3. MCTS IN THE PRESENCE OF HETEROSCEDASTICITY

and

V arζl =

p∑
h=1

2 (clh − θldlh)4 σ4
h

n2
h(nh − 1)

.

The system of equations

p∑
h=1

(clh − θldlh)2 σ2
h

nh
= σ2,

p∑
h=1

2 (clh − θldlh)4 σ4
h

n2
h(nh − 1)

= 2
σ4

νl

yields

νl =

(∑p
h=1

(clh−θldlh)2σ2
h

nh

)2

∑p
h=1

(clh−θldlh)4σ4
h

n2
h(nh−1)

. (3.11)

Replacement of the unknown parameters σ2
h with the estimators S2

h (h = 1, . . . , p)

leads to

ν̂l =

(∑p
h=1

(clh−θldlh)2S2
h

nh

)2

∑p
h=1

(clh−θldlh)4S4
h

n2
h(nh−1)

. (3.12)

Hence, under H0l, Tl approximately follows a t-distribution with ν̂l degrees of free-

dom. Correspondingly, the required covariances are

Cov

(
p∑

h=1

(clh − θldlh) X̄h,

p∑
h=1

(cl′h − θl′dl′h) X̄h

)

=

p∑
h=1

(clh − θldlh) (cl′h − θl′dl′h)
σ2
h

nh
,

which leads to

ρll′ =

∑p
h=1 (clh − θldlh) (cl′h − θl′dl′h)σ2

h/nh√(∑p
h=1 (clh − θldlh)2 σ2

h/nh
) (∑p

h=1 (cl′h − θl′dl′h)2 σ2
h/nh

)
=

(cl − θldl)′ VM (cl′ − θl′dl′)√
(cl − θldl)′ VM (cl − θldl)

√
(cl′ − θl′dl′)′ VM (cl′ − θl′dl′)

(3.13)

(1 ≤ l, l′ ≤ q)
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and

ρ̂ll′ =

∑p
h=1 (clh − θldlh) (cl′h − θl′dl′h)S2

h/nh√(∑p
h=1 (clh − θldlh)2 S2

h/nh
) (∑p

h=1 (cl′h − θl′dl′h)2 S2
h/nh

)
=

(cl − θldl)′ V̂ M (cl′ − θl′dl′)√
(cl − θldl)′ V̂ M (cl − θldl)

√
(cl′ − θl′dl′)′ V̂ M (cl′ − θl′dl′)

(3.14)

(1 ≤ l, l′ ≤ q).

Hence, T1, . . . , Tq follow an unknown joint q-variate distribution with correlation

matrix R = (ρll′)l,l′ . The procedures HOM, GH, PI and HTL can now be defined in

the same manner as in the case of differences of means. The decision rule for testing

problem (3.9) is also the same. H0l is rejected for each ratio of contrasts γl for which

(3.8) holds.

3.3 α-simulations

The aim of adjusting the degrees of freedom and the correlations between the con-

trasts is to control the FWE, balancing conservative and liberal behavior. All

methods described in Section (3.2) are approximate ones, so their quality must

be validated by simulations. For both difference-based (Section 3.3.1) and ratio-

based (Section 3.3.2) MCTs, respectively, three treatments have been compared in

a first simulation study, five in a second one. The first treatment is regarded as the

(negative) control. The FWE has been simulated; the nominal level is 0.05. Four

different settings have been considered, each setting with a total sample size of 30

(three treatments) and 50 (five treatments), respectively. They are:
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a) a balanced allocation; the last group has the largest standard deviation:

nh : 10, 10, 10, σh : 10, 10, 50,

nh : 10, 10, 10, 10, 10, σh : 10, 10, 10, 10, 50,

b) the first group (control) has the smallest sample size; the last group has the

largest standard deviation:

nh : 4, 13, 13, σh : 10, 10, 50,

nh : 6, 11, 11, 11, 11, σh : 10, 10, 10, 10, 50,

c) the last group has the smallest sample size; the last group has the largest

standard deviation:

nh : 13, 13, 4, σh : 10, 10, 50,

nh : 11, 11, 11, 11, 6, σh : 10, 10, 10, 10, 50,

d) a balanced allocation; the homoscedastic case:

nh : 10, 10, 10, σh : 30, 30, 30,

nh : 10, 10, 10, 10, 10, σh : 30, 30, 30, 30, 30.

The expected values of the treatment groups for the difference-based MCTs are

equal, that is µh = 100 (h = 1, . . . , p). For the ratio-based MCTs they are µ1 = 100

and µh = 125 (h = 2, . . . , p), and θl = 1.25 (l = 1, . . . , q). The value 100 has been

chosen (usually zero) because the sample means should not have different algebraic

signs when considering ratios. The settings a), b) and c) imply very high standard

deviations for the last group, i.e. a coefficient of variation of 50% for the control

group, to intensify possible differences between the procedures. All the following
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simulation results have been obtained from 100000 simulation runs, with the same

starting seed (seed 10000), using a program code in the statistical software R [2008],

package mvtnorm [Genz et al., 2008, Hothorn et al., 2001].

3.3.1 Differences of Means

We have considered five one-sided difference-based MCT problems which are all re-

lated to the hypotheses (3.1): Dunnett, Tukey2, Williams, Changepoint, and Aver-

age. Table 3.1 (3.2) shows the results of the first (second) study for difference-based

MCTs with three (five) treatments. Depending on the setting, GH and HTL tend to

either conservatism or liberalism, respectively. Setting c) for three treatments (Table

3.1), combining the smallest sample size and the highest standard deviation, leads

to especially liberal behavior for HTL (0.078 for the Dunnett contrast). This is not

so obvious for five treatments (Table 3.2) because the part of treatments with equal

variances is higher there. One can also see from Table 3.2 that the Tukey contrast

generally seems to cause conservatism for HTL (0.036 for setting a)). GH seems to

deviate from the nominal α-level independent of the setting, but it depends more

strongly on the particular contrasts. The lowest level is achieved for the Change-

point contrast (0.034 for setting a), Table 3.2). Therefore, these procedures cannot

be recommend without reservations. With few exceptions, PI maintains the α-level

exactly. It only varies from 0.047 to 0.055, while GH has ranges from 0.034 to 0.062,

and HTL from 0.036 to 0.078. HOM is liberal for setting a), where the sample sizes
2Normally, a Tukey MCT is a two-sided test problem. For reasons of consistency, this fact is

disregarded.
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Setting MCT HOM GH PI HTL

Dunnett 0.063 0.053 0.049 0.051

Tukey 0.059 0.042 0.049 0.041

a) Williams 0.073 0.043 0.049 0.050

Changepoint 0.088 0.038 0.049 0.050

Average 0.076 0.044 0.048 0.046

Dunnett 0.011 0.062 0.052 0.055

Tukey 0.031 0.050 0.055 0.050

b) Williams 0.015 0.049 0.050 0.050

Changepoint 0.047 0.041 0.051 0.050

Average 0.044 0.044 0.050 0.044

Dunnett 0.208 0.054 0.051 0.078

Tukey 0.211 0.043 0.048 0.061

c) Williams 0.213 0.045 0.049 0.059

Changepoint 0.222 0.042 0.048 0.059

Average 0.248 0.053 0.054 0.070

Dunnett 0.049 0.048 0.048 0.048

Tukey 0.049 0.049 0.049 0.045

d) Williams 0.049 0.050 0.050 0.050

Changepoint 0.049 0.050 0.050 0.049

Average 0.049 0.050 0.050 0.049

Table 3.1: FWE of one-sided MCTs (differences) for p = 3 treatments, several

contrasts, procedures and settings; µ = (100, 100, 100)′, α = 0.05.
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Setting MCT HOM GH PI HTL

Dunnett 0.081 0.055 0.051 0.051

Tukey 0.077 0.043 0.051 0.036

a) Williams 0.104 0.043 0.049 0.049

Changepoint 0.129 0.034 0.049 0.049

Average 0.114 0.042 0.047 0.046

Dunnett 0.050 0.058 0.049 0.048

Tukey 0.065 0.045 0.052 0.039

b) Williams 0.070 0.051 0.053 0.050

Changepoint 0.115 0.035 0.051 0.049

Average 0.101 0.043 0.049 0.048

Dunnett 0.162 0.056 0.053 0.060

Tukey 0.159 0.043 0.051 0.041

c) Williams 0.184 0.045 0.050 0.054

Changepoint 0.197 0.036 0.048 0.051

Average 0.188 0.046 0.049 0.058

Dunnett 0.048 0.049 0.048 0.048

Tukey 0.050 0.051 0.052 0.043

d) Williams 0.050 0.050 0.049 0.048

Changepoint 0.049 0.052 0.052 0.052

Average 0.050 0.053 0.053 0.050

Table 3.2: FWE of one-sided MCTs (differences) for p = 5 treatments, several

contrasts, procedures and settings; µ = (100, 100, 100, 100, 100)′, α = 0.05.
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are balanced (0.114 for the Average contrast, Table 3.2), but most liberal for setting

c), where the smallest sample size and the highest standard deviation are combined

(0.248 for the Average contrast, Table 3.1). Setting b) causes conservativism for

three treatments (0.011 for the Dunnett contrast, Table 3.1), and liberalism for five

(0.115 for the Changepoint contrast, Table 3.2). The reason lies in the different rela-

tions between variances and sample sizes in setting b) for three and five treatments,

respectively.

We have again treated the situation of the Dunnett contrast to get an impression of

the strong control of the FWE. Let the first comparison be known to reject its local

null hypothesis because the second treatment significantly differs from the remaining

ones, i.e., µ2 = 1000. Only the FWE of the remaining comparisons, denoted by local

FWE, has been considered. Tables 3.3 and 3.4 show the α-level of these procedures

ignoring the second treatment. HOM clearly fails for setting a) (0.080, Table 3.4) and

c) (0.207, Table 3.3), but HTL also fails for setting c) for three treatments (0.059,

Table 3.3). All procedures applied are similar to those applied in the preceding

Setting HOM GH PI HTL

a) 0.063 0.028 0.026 0.029

b) 0.011 0.031 0.026 0.022

c) 0.207 0.028 0.027 0.059

d) 0.028 0.027 0.027 0.027

Table 3.3: Local FWE of one-sided MCTs (differences) for p = 3 treatments, the

Dunnett contrast, several procedures and settings; µ = (100, 1000, 100)′, α = 0.05.



3.3. α-SIMULATIONS 51

Setting HOM GH PI HTL

a) 0.080 0.043 0.039 0.040

b) 0.050 0.050 0.043 0.041

c) 0.162 0.045 0.042 0.051

d) 0.040 0.040 0.040 0.040

Table 3.4: Local FWE of one-sided MCTs (differences) for p = 5 treatments, the

Dunnett contrast, several procedures and settings; µ = (100, 1000, 100, 100, 100)′,

α = 0.05.

simulation.

3.3.2 Ratios of Means

Here, we focus only on one-sided ratio-based Dunnett MCT problems related to

the hypotheses (3.9). Table 3.5 (3.6) shows the results of the first (second) study

for ratio-based Dunnett MCTs with three (five) treatments. The procedures GH

and HTL tend to liberalism here. As in the case of differences, setting c) for three

treatments leads to liberal behavior for HTL (0.077, Table 3.5), but also for five

treatments (0.059, Table 3.6). GH is most liberal for setting b) (0.065, Table 3.5).

These procedures cannot be recommended without reservations. PI seems to main-

tain the α-level exactly and just as well as in the case of differences. It varies from

0.049 to 0.053 while GH has ranges from 0.049 to 0.065, and HTL from 0.049 to

0.077. HOM is liberal for setting a) with five treatments (0.063, 3.6), and gener-

ally most liberal for setting c) (0.197, Table 3.5). Setting b) causes conservativism,
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Setting HOM GH PI HTL

a) 0.047 0.056 0.050 0.051

b) 0.006 0.065 0.053 0.059

c) 0.197 0.055 0.051 0.077

d) 0.049 0.049 0.049 0.049

Table 3.5: FWE of one-sided MCTs (ratios) for p = 3 treatments, the Dunnett

contrast, several procedures and settings; µ = (100, 125, 125)′, θ = (1.25, 1.25),

α = 0.05.

especially for three treatments (0.006, Table 3.5).

For an appreciation of the strong control of the FWE, we have proceeded similarly

as in the case of differences above. Let the second treatment significantly differ from

the remaining ones, i.e., µ2 = 1000. Only the FWE of the remaining comparisons

(local FWE) has been considered. Tables 3.7 and 3.8 show the α-level of these

procedures ignoring the second treatment. HOM clearly fails for setting c) (0.195)

in Table 3.7 and for setting a) (0.064) and c) (0.147) in Table 3.8, HTL for setting

c) (0.058) in Table 3.7. Again, the procedures applied are similar to those applied

in the preceding simulation.

3.3.3 Conclusions

The reason why the procedures differ in their behavior becomes clearer when having

a look at the parameters of the underlying distributions. As an example, take
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Setting HOM GH PI HTL

a) 0.063 0.056 0.050 0.050

b) 0.034 0.062 0.050 0.049

c) 0.146 0.057 0.052 0.059

d) 0.050 0.050 0.049 0.049

Table 3.6: FWE of one-sided MCTs (ratios) for p = 5 treatments, the Dun-

nett contrast, several procedures and settings; µ = (100, 125, . . . , 125)′, θ =

(1.25, 1.25, 1.25, 1.25), α = 0.05.

Setting HOM GH PI HTL

a) 0.047 0.029 0.026 0.029

b) 0.006 0.032 0.026 0.022

c) 0.195 0.029 0.027 0.058

d) 0.029 0.028 0.028 0.028

Table 3.7: Local FWE of one-sided MCTs (ratios) for p = 3 treatments, the Dunnett

contrast, several procedures and settings; µ = (100, 1000, 125)′, θ = (1.25, 1.25)′,

α = 0.05.
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Setting HOM GH PI HTL

a) 0.064 0.045 0.040 0.041

b) 0.034 0.054 0.043 0.041

c) 0.147 0.048 0.043 0.052

d) 0.040 0.040 0.039 0.039

Table 3.8: Local FWE of one-sided MCTs (ratios) for p = 5 treatments, the

Dunnett contrast, several procedures and settings; µ = (100, 1000, 125, 125, 125)′,

θ = (1.25, 1.25, 1.25, 1.25), α = 0.05.

setting c) for the Tukey contrast (Table 3.1). HOM is absolutely liberal (0.211), GH

conservative (0.043), PI has an (almost) exact α-level (0.048), and HTL is liberal

(0.061). For a single simulation run (the same for all), there are df = 27 for HOM,

df ∗1 = 23.65, df ∗2 = 3.17, df ∗3 = 3.22 for GH and PI, and df ∗∗ = 10.01 for HTL. The

corresponding correlation matrices are

R =


1 0.34 −0.34

0.34 1 0.76

−0.34 0.76 1

 (HOM, GH),

R∗ =


1 0.11 −0.14

0.11 1 0.97

−0.14 0.97 1

 (PI),

R∗∗ =


1 0.31 0.31

0.31 1 0.31

0.31 0.31 1

 (HTL).
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The improvement of GH over HOM is obviously the use of several adjusted degrees

of freedom ν∗l according to Satterthwaite [1946]. However, the final step to handle

heteroscedasticity is to take the estimators of the variances S2
h into account within

the correlations (3.7) and (3.13). They will be significantly corrected in this way; the

correlations in GH and PI clearly differ. Thus, an important conclusion is that an

adjustment of only the degrees of freedom is not sufficient. On the other hand, the

HTL procedure, taking averages of correlations and degrees of freedom, is generally

too rough. This becomes especially clear in the case of Tukey contrasts because also

negative correlations appear there.

Figure 3.3 gives a graphical explanation for the PI procedure. The joint distribution

of T1 and T2 is shown (gray dots) against the background of the simulations for the

Dunnett procedure for the case of differences with p = 3 groups. The two different

bivariate t-distributions are illustrated as contour plots, where the red lines belong

to T1, and the blue lines belong to T2. Realizations for (T1, T2) that lead to rejection

are marked by crosses, the remaining ones by small circles. The two related quantiles

are equal only for setting d), the homoscedastic and balanced case. Generally, they

are not equidistant.

According to these investigations, the PI procedure maintains the α-level exactly.

Negligible variations about the nominal α-level are due to the fact that the correla-

tions are estimated ones, but a serious violation does not occur. After these remarks,

it should be clear that the HOM procedure should be used only with utmost care

and cannot be recommended in the presence of heteroscedasticity. The development



56 CHAPTER 3. MCTS IN THE PRESENCE OF HETEROSCEDASTICITY

Figure 3.3: Distribution of the test statistics for the Dunnett contrast; µ1 = 100, µ2 =

100, µ3 = 100.
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of new procedures was a necessary consequence. Because PI has the best properties,

the following considerations refer only to PI.

3.4 Simultaneous Confidence Intervals

3.4.1 Definition

The acceptance region of a statistical test is defined as the set of sample values

for which H0 is accepted. Inversion of the acceptance region yields the (simulta-

neous)confidence set (CS or SCS, respectively). This is a set of parameter values

for which a fixed sample belongs to the acceptance region. The probability that

the (true) parameter value is covered by the confidence set for each component is

defined as (simultaneous) coverage probability (CP or SCP, respectively). If the test

has level α, then the confidence set has a CP of at least 1 − α. This is verified by

the following

Proof. The probability that a level-α test wrongly rejects H0 for a given sample and

a fixed parameter value is at most α. Hence, the probability that the test correctly

accepts H0 for that sample is at least 1−α. This is nothing but the probability that

the sample belongs to the acceptance region, which is equal to the probability that

the parameter value belongs to the confidence set (according to the definition).

Having a multivariate test problem, one is usually interested in projecting the confi-



58 CHAPTER 3. MCTS IN THE PRESENCE OF HETEROSCEDASTICITY

dence set onto the coordinate axes for an easier interpretation. The axes correspond

to the contrasts here. These projections are defined as simultaneous confidence in-

tervals (SCIs). However, an exact projecting might not always be possible. We

will encounter this problem later. Nevertheless, SCIs are a method to handle both

parameter estimation and parameter testing.

3.4.2 Differences of Means

Let ξ = (ξ1, . . . , ξq)
′ be a point in the parameter space of η = (η1, . . . , ηq)

′ and

let higher values of the data Xhj represent a better effect of the treatments. The

(1− α)100% confidence set for the statistical problem (3.1) is given by

C ((x, y)) =
{
ξ : Tl(ξl) ≤ tlq,1−α(ν̂l, R̂), l = 1, . . . , q

}
=

{
ξ : η̂lowerl ≤ ξl, l = 1, . . . , q

}
,

where the lower limits η̂lowerl of the approximate (1−α)100% SCIs for η are defined

as

η̂lowerl =

(
p∑

h=1

clhX̄h

)
− tlq,1−α(ν̂l, R̂)

√√√√ p∑
h=1

c2lhS
2
h/nh

= c′lX̄ − tlq,1−α(ν̂l, R̂)

√
c′lV̂ Mcl (l = 1, . . . , q).

These limits can be used for the statistical problem (3.1). For a specified level α,

we reject H0l for each contrast ηl with

η̂lowerl > δl.
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For the two-sided case, we obtain

C ((x, y)) =
{
ξ : |Tl(ξl)| ≤ ttsq,1−α(ν̂l, R̂), l = 1, . . . , q

}
=

{
ξ : η̂lowerl ≤ ξl ≤ η̂upperl , l = 1, . . . , q

}
and confidence limits

η̂lowerl =

(
p∑

h=1

clhX̄h

)
− ttsq,1−α(ν̂l, R̂)

√√√√ p∑
h=1

c2lhS
2
h/nh,

= c′lX̄ − ttsq,1−α(ν̂l, R̂)

√
c′lV̂ Mcl (l = 1, . . . , q)

η̂upperl =

(
p∑

h=1

clhX̄h

)
+ ttsq,1−α(ν̂l, R̂)

√√√√ p∑
h=1

c2lhS
2
h/nh

= c′lX̄ + ttsq,1−α(ν̂l, R̂)

√
c′lV̂ Mcl (l = 1, . . . , q).

For a specified level α, we reject H0l for each contrast ηl with

η̂lowerl > δl or η̂upper
l < δl.

Figure 3.4 shows the influence of heteroscedasticity on the two-sided (1 − α)100%

confidence set for differences of means with a Dunnett contrast based on a hypo-

thetical dataset with p = 3 treatments. The confidence set widens for increasing

variances, but it becomes widest for that contrast (η2) with the highest variance.

Hence, the resulting SCIs, despite being symmetric, do not have the same width.

3.4.3 Ratios of Means

Let ξ = (ξ1, . . . , ξq)
′ be a point in the parameter space of γ = (γ1, . . . , γq)

′. For the

case that higher values of the data, Xhj, represent a better effect of the treatments,
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Figure 3.4: Two-sided 95% confidence set for the Dunnett contrast of p = 3 treat-

ments; n1 = n2 = n3 = 10, µ = (100, 100, 100)′.

the (1− α)100% confidence set for the statistical problem (3.9) is given by

C ((x, y)) =
{
ξ : Tl(ξl) ≤ tlq,1−α(ν̂l, R̂), l = 1, . . . , q

}
=

{
ξ : Alξ

2
l +Blξl + Cl ≤ 0, l = 1, . . . , q

}
,

where

Al =

(
p∑

h=1

dlhX̄h

)2

−
(
tlq,1−α(ν̂l, R̂)

)2
p∑

h=1

d2
lhS

2
h/nh

=
(
d′lX̄

)2 − (tlq,1−α(ν̂l, R̂)
)2

d′lV̂ Mdl,

Bl = −2

((
p∑

h=1

clhX̄h

)(
p∑

h=1

dlhX̄h

)
−
(
tlq,1−α(ν̂l, R̂)

)2
p∑

h=1

clhdlhS
2
h/nh

)

= −2

((
c′lX̄

) (
d′lX̄

)
−
(
tlq,1−α(ν̂l, R̂)

)2

c′lV̂ Mdl

)
,

Cl =

(
p∑

h=1

clhX̄h

)2

−
(
tlq,1−α(ν̂l, R̂)

)2
p∑

h=1

c2lhS
2
h/nh

=
(
c′lX̄

)2 − (tlq,1−α(ν̂l, R̂)
)2

c′lV̂ Mcl. (3.15)

This approach is based on Fieller’s Theorem [Fieller, 1954]. In contrast to SCIs for

differences, the correlation matrix R̂ depends here on the unknown ratios γl, say
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ρ̂ll′ = ρ̂ll′(γl, γl′). Dilba et al. [2006] have used a plug-in approach in the homoscedas-

tic case and have shown a very good performance as compared to other methods.

The same problem also arises for the degrees of freedom, i.e., ν̂l = ν̂l(γl). Now the

estimator

γ̂l =

∑p
h=1 clhX̄h∑p
h=1 dlhX̄h

=
c′lX̄

d′lX̄
(l = 1, . . . , q),

has to be used in Equations (3.12) and (3.14) instead of θl. The lower limits of the

approximate (1− α)100% SCIs for (γ1, . . . , γq)
′ are hence given by

γ̂lowerl =
−Bl −

√
B2
l − 4AlCl

2Al
(l = 1, . . . , q).

If Al > 0, then it can be shown that the solution is finite (see, e.g., Buonaccorsi and

Iyer [1984] for the homoscedastic case). The statistical problem (3.9) can be decided

as follows: For a specified level α, we reject H0l for each contrast γl with

γ̂lowerl > θl.

For the two-sided case, we obtain

C ((x, y)) =
{
ξ : |Tl(ξl)| ≤ ttsq,1−α(ν̂l, R̂), l = 1, . . . , q

}
=

{
ξ : Alξ

2
l +Blξl + Cl ≤ 0, l = 1, . . . , q

}
,

where the Al, Bl and Cl are defined as in (3.15) but with quantiles ttsq,1−α(ν̂l, R̂)

instead of tlq,1−α(ν̂l, R̂). The confidence limits are given by

γ̂lowerl =
−Bl −

√
B2
l − 4AlCl

2Al
(l = 1, . . . , q),

γ̂upperl =
−Bl +

√
B2
l − 4AlCl

2Al
(l = 1, . . . , q). (3.16)
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Figure 3.5: Two-sided 95% confidence set for the Dunnett contrast of p = 3 treat-

ments; n1 = n2 = n3 = 10, µ = (100, 125, 125)′.

For a specified level α, we reject H0l for each contrast γl with

γ̂lowerl > θl or γ̂upper
l < θl.

Figure 3.5 shows the influence of heteroscedasticity on the two-sided (1 − α)100%

confidence set for ratios of means with a Dunnett contrast based on a hypothetical

dataset with p = 3 treatments. As in the case of differences, the confidence set

widens for increasing variances, and it becomes widest for that contrast (γ2) with

the highest variance. The resulting SCIs do not have the same width. In contrast to

the case of differences, the confidence set and the SCIs are not symmetric in general,

regardless of heteroscedasticity.

The strict one-to-one relation between the test decisions of MCTs and SCIs that

holds in the case of differences of means does not hold in the case of ratios of means.

This is due to the additional use of the estimator γ̂l instead of θl in the calculation

of the necessary quantiles. The conclusions of the α-simulations in 3.3.2 are not
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γ1 = γ2

Setting
0.5 1.0 1.5 2.0

a) 0.950 0.950 0.949 0.948

b) 0.952 0.948 0.950 0.951

c) 0.948 0.949 0.944 0.943

d) 0.947 0.951 0.951 0.951

Table 3.9: SCP of one-sided (upper) SCIs (ratios) for p = 3 treatments, the Dunnett

contrast and several settings and ratios γ1 = γ2; µ1 = 100, α = 0.05.

applicable for the related SCIs without caution. We have thus performed further

simulation studies to describe the behavior of SCIs related to the PI procedure. The

same background as in 3.3.2 has been used and the simultaneous coverage probability

(SCP) has been simulated. The nominal level is 0.95 for all studies. Table 3.9 (3.10)

shows the results of the first (second) study for ratio-based Dunnett SCIs with three

(five) treatments, with the underlying settings and depending on the ratios γ1 = γ2

(γ1 = . . . = γ4). Only for a few cases (0.942, setting c), Table 3.10), a little liberalism

is observed, but not a unique influence or trend (ranges from 0.942 to 0.952). In

principle, the expected value 0.95 is attained for all the settings. This reflects the

results of the α-simulations.

The reason for the possible discrepancy between test decisions according to MCTs

and related SCIs is shown in the Figures 3.6 and 3.7. The area covered by the SCIs

according to (3.16) (dashed lines) does not cover the confidence set completely. An

exact projection is not possible here because of the non-rectangular shape of the con-
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γ1 = . . . = γ4

Setting
0.5 1.0 1.5 2.0

a) 0.950 0.948 0.947 0.950

b) 0.952 0.952 0.950 0.951

c) 0.947 0.947 0.947 0.942

d) 0.942 0.951 0.951 0.947

Table 3.10: SCP of one-sided (upper) SCIs (ratios) for p = 5 treatments, the Dunnett

contrast and several settings and ratios γ1 = . . . = γ4; µ1 = 100, α = 0.05.

fidence set. This problem is independent of the issue of homo- or heteroscedasticity

(see Dilba et al. [2006] and Dilba [2005]).

3.5 Power Considerations

The testing problem (3.1) for differences of means is simplified here to the case of

equal thresholds, δl = δ for all l = 1, . . . , q. Let higher response values indicate

better treatment effects and let ε∗ denote the greatest irrelevant difference to the

control mean which is to be detected. Define the set of indices I (ε∗) = {l : εl > ε∗} =

{l1, . . . , lm} (m = 1, . . . , q). All contrasts with εl values greater than ε∗ are relevant.

The probability to detect all relevant contrasts is defined as the complete (or all-

pairs) power. An (approximate) expression for the complete power of statistical

problem (3.1) is given by

P

{
Tl > tlq,1−α(νl,R)

∣∣∣∣ψl, σ2
1, . . . , σ

2
k ∀l ∈ I(ε∗)

}
.
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Figure 3.6: Two-sided 95% confidence set for the Dunnett contrast; n1 = n2 = n3 =

10, µ = (20, 100, 100)′, s1 = 10; s2 = 30; s3 = 50.

Figure 3.7: Two-sided 95% confidence set for the Dunnett contrast; n1 = n2 = n3 =

10, µ = (100, 20, 20)′, s1 = 100; s2 = 10; s3 = 10.
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The probability to detect at least one relevant contrast is defined as the minimal (or

any-pair) power. An (approximate) expression for the minimal power of statistical

problem (3.1) is given by

P

{
Tl > tlq,1−α(νl,R)

∣∣∣∣ψl, σ2
1, . . . , σ

2
k for at least one l ∈ I(ε∗)

}
.

As in the case of differences, the testing problem (3.9) for ratios of means is also

simplified here to the case that the thresholds are equal, θl = θ for all l = 1, . . . , q.

Let higher response values indicate better treatment effects and τ ∗ denot the greatest

irrelevant ratio to the control mean which is to be detected. Define the set of indices

I (τ ∗) = {l : τl > τ ∗} = {l1, . . . , lm} (m = 1, . . . , q). All ratios of contrasts with τl

values greater than τ ∗ are relevant. In the same manner as above, an (approximate)

expression for the complete power of statistical problem (3.9) is given by

P

{
Tl > tlq,1−α(νl,R)

∣∣∣∣ψl, σ2
1, . . . , σ

2
k ∀l ∈ I(τ ∗)

}
.

The (approximate) expression for the minimal power of statistical problem (3.1) is

given by

P

{
Tl > tlq,1−α(νl,R)

∣∣∣∣ψl, σ2
1, . . . , σ

2
k for at least one l ∈ I(τ ∗)

}
.

Because of heteroscedasticity, adjustments of the degrees of freedom and of the

correlations between the test statistics are necessary. This means that in fact the

quantiles tlq,1−α(νl,R) are random variables, because they depend on the sample

values. Therefore, the above probabilities are only approximate ones. On the other

hand, each test statistic Tl will be compared with its own quantile, which comes from
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Figure 3.8: Power comparison of one-sided HOM and PI (differences) for p = 3

treatments and the Dunnett contrast; µ1 = 100, α = 0.05.

a q-variate t-distribution with its own degree of freedom νl. We do not use a joint

q-variate t-distribution for the test statistics (3.2) and (3.10). Power calculations are

therefore not possible so far. Power comparison by simulation is possible, however.

The different α-levels of the HOM and the PI procedure do not permit a fair power

comparison, especially for situations where HOM does not maintain the FWE. Nev-

ertheless, power is an important dimension. The results of the α-simulations have

shown that in a homoscedastic situation all the methods achieve practically the

same value, namely the specified α-level. However, the resulting degrees of freedom

of the PI or GH procedure are clearly smaller than corresponding ones according to

HOM. This may lead to a slight loss in power and to expanded SCIs under the al-

ternative hypothesis. A simulation study has been performed with the balanced and

homoscedastic setting described in Section 3.3. In addition, a smaller sample size

of n = 5 was considered where the sample size n is the same in each group. Figure

3.8 (3.9) shows the results of a power comparison between the one-sided HOM and
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Figure 3.9: Power comparison of one-sided HOM and PI (differences) for p = 5

treatments and the Dunnett contrast; µ1 = 100, α = 0.05.

PI in the case of differences of means, the Dunnett procedure with p = 3 (p = 5)

treatments and α = 0.05. Figure 3.10 (3.11) shows the corresponding results for

the ratio problem with θ1 = . . . = θq = 1.25. The left graphics refer to the case

where the first p − 1 treatment means are fixed and the last treatment mean has

been changed so that the last contrast (l = q = p − 1) was variable. Minimal and

complete power coincide in this case. The middle (right) graphics show the minimal

(complete) power when all the non-control treatment means (h = 2, . . . , p) have been

changed simultaneously and in the same amount so that all contrasts l = 1, . . . , q

were variable. HOM and PI have the same α-level here and differ only by negligible

power amounts for n = 10. This difference increases for n = 5 because the relative

difference for the degrees of freedom between HOM and PI increases for decreasing

sample size.

In practice, it is hard to decide whether the data are homoscedastic or not. If not,

three scenarios are possible. If the smallest sample size matches (approximately)
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Figure 3.10: Power comparison of one-sided HOM and PI (ratios) for p = 3 treat-

ments and the Dunnett contrast; µ1 = 100, α = 0.05.

Figure 3.11: Power comparison of one-sided HOM and PI (ratios) for p = 5 treat-

ments and the Dunnett contrast; µ1 = 100, α = 0.05.



70 CHAPTER 3. MCTS IN THE PRESENCE OF HETEROSCEDASTICITY

the highest standard deviation, a wrongly assumed homoscedasticity causes overly

liberal test decisions. Here, the PI procedure is strongly preferable irrespective of

the possible loss in power. If the highest sample size matches (approximately) the

highest standard deviation, the HOM procedure may also become conservative in

spite of higher degrees of freedom. This has been even more obvious in further

simulations which are not shown here. In such cases, one can expect a bad power for

HOM. If the data have heterogeneous variances and balanced sample sizes, HOM

also causes liberal test decisions. Hence, the HOM procedure is the power-optimal

method if the group variances can be assumed equal. If the data are assumed to

have heterogeneous variances, there are no power-based arguments against the use

of the PI procedure.

3.6 Examples

3.6.1 Birth Weights in a Reprotoxicological Study

The following data of an in-vivo toxicological study are taken from Westfall [1997]

and are available from the R package multcomp [Hothorn et al., 2008]. The response

variable is the average post-birth weight of mice in the entire litter. Pregnant mice

were randomized into four groups. The compound, in three different doses (5, 50,

500) and a control (0), was administered during pregnancy. The litters were evalu-

ated for birth weights. The question to be answered is whether or not the specified

substance is able to cause a critical weight reduction. Here, the variance depends
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Dose Sample mean Sample variance Sample size

0 32.31 7.26 20

5 29.31 25.93 19

50 29.87 14.16 18

500 29.65 29.21 17

Table 3.11: Summary statistics for the average post-birth weights of the data set of

Westfall [1997].

on the dose effect (see Table 3.11).

The testing problem is hence to show for which doses a critical decrease in weight

can be seen in comparison with the control. Let the control group be denoted by

h = 0 and the doses by h = 1, 2, 3. Applying the contrast matrices

C =


c′1

c′2

c′3

 =


0 1 0 0

0 0 1 0

0 0 0 1

 ,

D =


d′1

d′2

d′3

 =


1 0 0 0

1 0 0 0

1 0 0 0


leads to the ratios of contrasts

γl =
µl
µ0

(l = 1, 2, 3).

The hypotheses to be tested are given by

H0l : γl ≥ θ (l = 1, 2, 3)
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Dose p-value Upper confidence limit

5 0.043 (0.044) 0.998 (0.998)

50 0.042 (0.105) 0.998 (1.017)

500 0.105 (0.082) 1.018 (1.012)

Table 3.12: p-values and upper confidence limits of the test for the average post-birth

weights of the data set of Westfall [1997].

with θ = 1. Table 3.12 gives (adjusted) p-values and upper limits for the related

approximate (1 − α)100% SCIs for the ratios to the control mean. The values

in parantheses are found from the HOM procedure (which assumes homogeneous

variances). The two lower doses, 5 and 50, significantly differ from the control.

This example clearly shows how misleading the conclusions may be if the variance

heterogeneity is not taken into account. The HOM procedure underestimates dose

50, and overestimates dose 500.

A question arising for the toxicologists here is if the highest dose can really be

non-toxic while the lower doses are toxic. Assuming an increasing trend in toxicity

over the doses would imply a decreasing trend for the measurements. Hence the

conclusions, especially those about dose 500, must be questioned. However, a pos-

sible objection is that the testing problem has been formulated as a proof of hazard

because the objective has been to point out toxicity. However, conclusions about

non-significant doses are not allowed in this context. Indeed, dose 500 is not shown

to be safe. Maybe a proof of safety would have been more appropriate here. The

question to be answered would then be if (and if yes which) doses do not cause a
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Dose p-value Lower confidence limit

5 0.7638 (0.7048) 0.8199 (0.8238)

50 0.4959 (0.5230) 0.8544 (0.8391)

500 0.6691 (0.6009) 0.8203 (0.8311)

Table 3.13: p-values and lower confidence limits of the test (proof of safety) for the

average post-birth weights of the data set of Westfall [1997].

critical decrease in weight in comparison with the control. For this purpose, let us

assume that a weight reduction by no more than 10% of the control can still be

regarded as safe. The new hypotheses to be tested are

H0l : γl ≤ θ (l = 1, 2, 3)

with θ = 0.9. The test direction is thus reversed now. Table 3.13 provides (adjusted)

p-values and lower limits for the related approximate (1−α)100% SCIs. The values

in parantheses are again found by applying the HOM procedure. None of the doses

can be shown to be safe. Their sample means are not larger than 90% of the control

mean. Although the procedures PI and HOM come to the same conclusions, one

can see that HOM produces too small p-values and confidence intervals for doses 5

and 500, and a too large p-value and confidence interval for dose 50.

3.6.2 Micronucleus Assay

Adler and Kliesch [1990] have published data from a micronucleus assay on hydro-

quinone using a negative control, four doses of hydroquinone and the positive control
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cyclophosphamide. The goal is to show whether or not the underlying substance is

able to induce chromosome damage or to interact with the mitioc spindle apparatus.

The number of micronuclei per animal and 2000 scored cells of male mice at 24 h

sampling time are given. The variance of the data tends to increase with increasing

effects (see Table 3.14). The data are available from the R package mratios [Dilba

et al., 2008, 2007].

There is an ongoing debate about the definition of clinically relevant non-inferiority

margins (e.g., CPM [1999] and Lange and Freitag [2005]). A common non-inferiority

trial design involves the experimental drug, a reference drug or active control, and

a placebo control. For such three arm “gold standard” trials, Pigeot et al. [2003]

have proposed to formulate non-inferiority as a fraction of the trial sensitivity. This

results in hypotheses based on the ratio of differences of means. For a specified

threshold θ, the alternative hypothesis indicates that the relative efficacy of the

experimental drug is more than θ ∗ 100% of the efficacy of the reference compound

as compared to placebo. For this ratio hypothesis, a t-distributed test statistic

has been derived, assuming variance homogeneity. However, it is quite common to

observe heteroscedasticity in such three-arm trials.

Non-inferiority tests can also be used as proofs of safety in toxicological experiments,

where the difference between a dose group and a vehicle control is considered in

relation to the difference between the positive control and the vehicle (see Hauschke

et al. [2005]). The mutagenicity data set of Adler and Kliesch [1990] (refer to Table

3.14) has already been evaluated in the sense of a proof of safety by Hauschke et al.
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Treatment group Sample mean Sample standard deviation Sample size

Vehicle control 2.57 1.27 7

30 mg/kg 3.80 1.10 5

50 mg/kg 6.20 1.48 5

75 mg/kg 14.0 3.94 5

100 mg/kg 20.0 4.06 5

Positive control 25.0 8.91 4

Table 3.14: Summary statistics for the number of micronuclei per animal and 2000

scored cells of the mutagenicity data set of Adler and Kliesch [1990].

[2005] and Hasler et al. [2008]. The concept of the maximal safe dose according to

Hothorn and Hauschke [2000] is used, i.e., the identification of the highest dose that

is non-inferior to the vehicle control, and all lower doses are non-inferior, too. Since

increasing numbers of micronuclei are unsafe, the 95% one-sided upper confidence

limits have been used. The authors applied the three-arm trial approach. Confidence

intervals for the difference between the dose groups and the vehicle control relative to

the difference between a positive control and the vehicle control have been calculated

with a safety threshold θ = 0.5. Hauschke et al. [2005] have assumed approximate

normal distribution and variance homogeneity, Hasler et al. [2008] have allowed for

heterogeneity. All their limits are marginal.

When not considering the maximal safe dose and interest is just in simultaneously

comparing the doses in sense of three-arm trials, multiplicity adjustment is necessary.

In terms of both three-arm trials and MCTs, let the vehicle control be considered
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as the placebo (h = 0), the doses as experimental treatments (h = 1, . . . , 4) and the

positive control as reference (h = 5). Application of the contrast matrices

C =



c′1

c′2

c′3

c′4


=



−1 1 0 0 0 0

−1 0 1 0 0 0

−1 0 0 1 0 0

−1 0 0 0 1 0


,

D =



d′1

d′2

d′3

d′4


=



−1 0 0 0 0 1

−1 0 0 0 0 1

−1 0 0 0 0 1

−1 0 0 0 0 1


leads to the ratios of contrasts

γl =
µl − µ0

µ5 − µ0

(l = 1, . . . , 4).

The hypotheses to be tested are given by

H0l : γl ≥ θ (l = 1, . . . , 4)

Treatment group p-value Upper confidence limit

30 mg/kg 0.0225 (0.0002) 0.16 (0.28)

50 mg/kg 0.0472 (0.0032) 0.36 (0.38)

75 mg/kg 0.7275 (0.8786) 1.17 (0.75)

100 mg/kg 0.9906 (1.0000) 2.05 (1.06)

Table 3.15: p-values and upper confidence limits of the tests for the micronucleus

assay data of Adler and Kliesch [1990].
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with θ = 0.5. Table 3.15 shows (adjusted) p-values and upper limits for the related

approximate (1 − α)100% SCIs. The p-values and the limits according to HOM

are given in parentheses. The two lower doses, 30 mg/kg and 50 mg/kg, show

an acceptable increase; the two higher doses, 75 mg/kg and 100 mg/kg, do not.

Although the decisions about the doses are the same for PI and HOM, it is interesting

to see that the p-values and the upper limits are markedly different.



Chapter 4

Multiple Contrast Tests for Multiple

Endpoints

4.1 Introduction

Experimental trials often do not cover only one single endpoint but many (see the

data of Schulte et al. [2002] in Section 4.7). A measurement object may be related

to different variables or be observed in the course of time. Multiplicity adjustment

must then take the number of endpoints into account, too. Thus, the first strategy is

to reduce the number of endpoints to the smallest possible number that is necessary

and that still provides the main information about the data. Second, it is useful to

divide the endpoints into primary and secondary ones, where the primary endpoints

are most important. The guideline on biostatistics according to the ICH E9 Expert

78
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Working Group [1999] recommends the selection of one primary endpoint. However,

this is often not sufficient from an investigator’s point of view. The secondary end-

points are considered only after the primary objective of the trial has been achieved.

A possible objection is that such a classification of endpoints according to their im-

portance can be somewhat arbitrary. Like the first, this strategy also reduces the

dimension of the problem, but the question, how to handle multiple primary end-

points, remains. The statistical analysis for these endpoints must control the FWE

over all of them. On the other hand, their correlations are important. For example,

highly correlated endpoints do not give the same amount of information about the

data as uncorrelated ones. Effects may be erroneously ignored when analyzing the

endpoints separately.

Neuhäuser [2006] gives a comprehensive review of statistical methods with focus on

two-armed trials. A Bonferroni adjustment for the local test on each endpoint is a

simple solution of the abovementioned problem. The information about correlations

is disregarded in this case. As is known, this technique yields conservative test deci-

sions and intervals, especially for large numbers of endpoints (see Section 2.5). The

stepwise procedure of Holm [1979] is more powerful. The procedures of Hochberg

[1988] and Hommel [1988] are yet more powerful than Holm’s, but the assumption

of independence of the p-values must be fulfilled. A drawback is also the fact that

no (meaningful) SCIs are available. Gatekeeping procedures avoid multiplicity ad-

justment by proceeding hierarchically. When multiple hypotheses are to be tested

in a prespecified order according to their relevance, multiplicity adjustment is not

necessary. As long as the local null hypotheses of the prior endpoints have been
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rejected, each local null hypothesis can be tested in a preassigned order at level α

[Bauer, 1991]. The procedure stops if a p-value is larger than α. Dmitrienko et al.

[2003] have developed parallel gatekeeping strategies that require only one primary

effect to be significant for proceeding. Unfortunately, this method also needs an ex-

tra (e.g., Bonferroni) internal adjustment, and (meaningful) SCIs are not available.

Only if resampling-based tests are used, the authors exploit the endpoint’s corre-

lations. The T 2 test of Hotelling [1951] also takes correlations into account, but

because of a square sum test statistic it is non-directional and hence not meaningful

in many application areas. Furthermore, the test conclusions are merely global ones

in the sense that they cannot be attributed to single endpoints. Stabilized alterna-

tives to the T 2 test, using linear scores (see Kropf et al. [1997] for example), suffer

from similar drawbacks.

For the sake of completeness, it should be mentioned that the above methods claim

a treatment effect if there is a significant difference for at least one endpoint, i.e.,

they are UITs. If significant differences are necessary for all endpoints to claim a

treatment effect, an IUT can be applied (see Section 2.1). The local tests for the

endpoints do not need a multiplicity adjustment. They can be performed with level

α. Then test decisions are only global; conclusions about single endpoints are not

allowed if the global test does not reject. For this reason, the following considerations

will not concern IUTs.

MCTs and related SCIs provide test decisions and parameter estimation, respec-

tively, for each comparison. They control the FWE at level α, and take correlations
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into account. However, they are limited to comparisons of treatments on a single

endpoint so far. This work presents an extension of MCTs and SCIs for multiple

endpoints. We focus on ratios of means, because SCIs are then comparable also for

the different endpoints, which can be assumed to have different scales.

In Section 4.2, the testing problem is formulated and an approximate distribution for

the test statistics is derived. Section 4.3 shows results of α-simulations for several

contrasts and correlations of endpoints. SCIs are considered in Section 4.4, the

heteroscedastic case in Section 4.6. We give an example in Section 4.7.

4.2 Test Procedure

For h = 1, . . . , p, i = 1, . . . , k and j = 1, . . . , nh, let Xhij denote the jth ob-

servation on the ith endpoint under the hth treatment in a one-way layout, and∑p
h=1(nh − 1) ≥ k. Each endpoint is hence measured for all N =

∑p
h=1 nh objects.

Suppose the random variables Xhij to be mutually independent and follow k-variate

normal distributions with mean vectors µh = (µh1, . . . µhk)
′ and unknown covariance

matrices Σh = (σh,ii′)i,i′ . Let the means per endpoint, µ1i, . . . , µpi, have the same

algebraic sign, i.e., sign(µ1i) = . . . = sign(µpi) (i = 1, . . . , k). Presume possibly dif-

ferent variances and covariances for the endpoints but the same covariance matrices

for all treatments, i.e., Σ1 = . . . = Σp = Σ = (σii′)i,i′ . That means

{Xhij : i = 1, . . . , k} ∼ ⊥Nk(µh,Σ) (h = 1, . . . , p, j = 1, . . . , nh).
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Let X̄h = (X̄h1, . . . , X̄hk)
′ and Σ̂h be the sample mean vectors and the sample

covariance matrices for the treatments, respectively, with

X̄hi =
1

nh

nh∑
j=1

Xhij (h = 1, . . . , p).

The pooled sample covariance matrix Σ̂ = (σ̂ii′)i,i′ is given by

Σ̂ =

∑p
h=1(nh − 1)Σ̂h∑p
h=1(nh − 1)

with the estimates σ̂ii′ (1 ≤ i, i′ ≤ k) for the covariances of the different endpoints.

The diagonal elements, which are required for the following test procedure, are hence

σ̂ii = S2
i =

(n1 − 1)S2
1i + · · ·+ (np − 1)S2

pi

n1 + · · ·+ np − p
(i = 1, . . . , k)

with

S2
hi =

1

nh − 1

nh∑
j=1

(Xhij − X̄hi)
2 (h = 1, . . . , p).

From the pooled sample covariance matrix Σ̂, we then derive the estimation R̂ =

(ρ̂ii′)i,i′ of the common correlation matrix of the dataR = (ρii′)i,i′ . We are interested

in the matrix of ratios of contrasts, G = (γli)l,i, where

γli =

∑p
h=1 clhµhi∑p
h=1 dlhµhi

=
c′lµ,i
d′lµ,i

(l = 1, . . . , q, i = 1, . . . , k)

with µ,i = (µ1i, . . . , µpi)
′. The vectors cl = (cl1, . . . , clp)

′ and dl = (dl1, . . . , dlp)
′

consist of real constants and are the same for all endpoints; they do not depend on

the particular value of the index i. Endpoint-specific contrasts are also possible in

principle, but we disregard this fact for simplicity. Without loss of generality, the

objective is to test the hypotheses

H0,li : γli ≤ θli (l = 1, . . . , q, i = 1, . . . , k) (4.1)
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with contrast- and endpoint-specific relative thresholds θli ∈ (0,∞). Usually, θli = 1

for all l = 1, . . . , q and for all i = 1, . . . , k. If the test direction is reversed for

some endpoints, the corresponding test statistics have to be multiplied with minus

one. We focus here on ratios of means to enable comparison of the results for the

different endpoints, which can be assumed to have different scales. Related SCIs for

ratios are on the same relative (e.g., per cent) scale for all contrasts and endpoints,

while SCIs for differences are not. On the other hand, for the case of θli = 1 for all

l = 1, . . . , q and for all i = 1, . . . , k, this test coincides with the difference-based one.

Testing problem (4.1) is a UIT because the overall null hypothesis of interest can be

expressed as an intersection of the local null hypotheses, i.e.,

H0 =

q⋂
l=1

H0l and H0l =
k⋂
i=1

H0,li.

Thus, Theorem 2.1.3 holds and the procedure is coherent and consonant. We reshape

(4.1) and set

ψli =

p∑
h=1

clhµhi − θli
p∑

h=1

dlhµhi =

p∑
h=1

(clh − θlidlh)µhi

= (cl − θlidl)′µ,i (l = 1, . . . , q, i = 1, . . . , k)

with estimator

ψ̂li =

p∑
h=1

(clh − θlidlh) X̄hi

= (cl − θlidl)′ X̄ ,i (l = 1, . . . , q, i = 1, . . . , k)

and X̄ ,i = (X̄1i, . . . , X̄pi)
′. Since

V ar(ψ̂li) =

p∑
h=1

(clh − θlidlh)2 σii/nh

= σii (cl − θlidl)′M (cl − θlidl) (l = 1, . . . , q, i = 1, . . . , k),
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we obtain the test statistics

Tli =

∑p
h=1 (clh − θlidlh) X̄hi

Si

√∑p
h=1 (clh − θlidlh)2 /nh

=
(cl − θlidl)′ X̄ ,i

Si
√

(cl − θlidl)′M (cl − θlidl)
(l = 1, . . . , q, i = 1, . . . , k)

where

M =


1/n1 0

. . .

0 1/np

 .

The vectors T l = (Tl1, . . . , Tlk)
′, containing the test statistics for the lth comparison

on all endpoints, can be reshaped to

T l =

(
Yl1√
U1/ν

, . . . ,
Ylk√
Uk/ν

)′
(l = 1, . . . , q),

where under H0l, the vector (Yl1, . . . , Ylk)
′ follows a k-variate normal distribution

with a correlation matrix denoted byRll. The U1, . . . , Uk are dependent χ2 variables

with

ν =

p∑
h=1

(nh − 1)

degrees of freedom. Note that U1, . . . , Uk are different random variables but they

follow the same distribution. Therefore, under H0l, T l is approximately k-variate

t-distributed with ν degrees of freedom and correlation matrix Rll, i.e.,

T l
appr.∼ tk(ν,Rll).

This is in fact a possible definition of a multivariate t-variable (see, e.g., Tong [1990],

page 202f), though not the classical one. Moreover, under H0, the vector of all test

statistics,

T = (T ′1, . . . ,T
′
q)
′ = (T11, . . . , Tli, . . . , Tqk)

′,
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follows (approximately) a qk-variate t-distribution with ν degrees of freedom and a

correlation matrix, denoted by R̃, i.e.,

T
appr.∼ tqk(ν, R̃).

The correlation matrix R̃ is given by

R̃ = (Rll′)l,l′ =



R11 R12 . . . R1q

R12 R22 . . . R2q

...
... . . . ...

R1q R2q . . . Rqq


.

The submatrices Rll′ = (ρll′,ii′)i,i′ describe the correlations between the contrasts l

and l′ for all endpoints. In order to calculate their elements, let us evaluate the

correlation between
∑p

h=1 (clh − θlidlh) X̄hi and
∑p

h=1 (cl′h − θl′i′dl′h) X̄hi′ :

Cov

(
p∑

h=1

(clh − θlidlh) X̄hi,

p∑
h=1

(cl′h − θl′i′dl′h) X̄hi′

)

= E

[(
p∑

h=1

(clh − θlidlh) X̄hi − E

(
p∑

h=1

(clh − θlidlh) X̄hi

))
(

p∑
h=1

(cl′h − θl′i′dl′h) X̄hi′ − E

(
p∑

h=1

(cl′h − θl′i′dl′h) X̄hi′

))]

= E

[(
p∑

h=1

(clh − θlidlh)
(
X̄hi − EX̄hi

))( p∑
h=1

(cl′h − θl′i′dl′h)
(
X̄hi′ − EX̄hi′

))]

= E

[
p∑

h=1

p∑
h′=1

(clh − θlidlh) (cl′h′ − θl′i′dl′h′)
(
X̄hi − EX̄hi

) (
X̄h′i′ − EX̄h′i′

)]

=

p∑
h=1

(clh − θlidlh) (cl′h − θl′i′dl′h)E
((
X̄hi − EX̄hi

) (
X̄hi′ − EX̄hi′

))
+

p∑
h=1

p∑
h′=1,h′ 6=h

(clh − θlidlh) (cl′h′ − θl′i′dl′h′)E
((
X̄hi − EX̄hi

) (
X̄h′i′ − EX̄h′i′

))
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=

p∑
h=1

(clh − θlidlh) (cl′h − θl′i′dl′h)Cov
(
X̄hi, X̄hi′

)
+

p∑
h=1

(clh − θlidlh)E
(
X̄hi − EX̄hi

) p∑
h′=1,h′ 6=h

(cl′h′ − θl′i′dl′h′)E
(
X̄h′i′ − EX̄h′i′

)
=

p∑
h=1

(clh − θlidlh) (clh − θli′dlh)Cov
(
X̄hi, X̄hi′

)
+

p∑
h=1

(clh − θlidlh)
(
EX̄hi − EX̄hi

) p∑
h′=1,h′ 6=h

(cl′h′ − θl′i′dl′h′)
(
EX̄h′i′ − EX̄h′i′

)
=

p∑
h=1

(clh − θlidlh) (cl′h − θl′i′dl′h)Cov
(
X̄hi, X̄hi′

)
.

Obviously,

Cov(X̄hi, X̄hi′)

= E
(
(X̄hi − µhi)(X̄hi′ − µhi′)

)
= E

((
1

nh

nh∑
j=1

Xhij

)
−

(
1

nh

nh∑
j=1

µhi

))((
1

nh

nh∑
j′=1

Xhi′j′

)
−

(
1

nh

nh∑
j′=1

µhi′

))

= E

(
1

nh

nh∑
j=1

(Xhij − µhi)
1

nh

nh∑
j′=1

(Xhi′j′ − µhi′)

)

=
1

n2
h

E

(
nh∑
j=1

nh∑
j′=1

(Xhij − µhi)(Xhi′j′ − µhi′)

)

=
1

n2
h

(
nh∑
j=1

nh∑
j′=1

Cov(Xhij, Xhi′j′)

)
.

Because all measurements j 6= j′ are independent, their covariances vanish, so that

we may write

Cov(X̄hi, X̄hi′) =
1

nh
Cov(Xhi, Xhi′).

Hence, it follows that

ρll′,ii′ = Corr

(
p∑

h=1

(clh − θlidlh) X̄hi,

p∑
h=1

(cl′h − θl′i′dl′h) X̄hi′

)

=

∑p
h=1 (clh − θlidlh) (cl′h − θl′i′dl′h) 1

nh
Cov(Xhi, Xhi′)√

V ar
(∑p

h=1 (clh − θlidlh) X̄hi

)√
V ar

(∑p
h=1 (cl′h − θl′i′dl′h) X̄hi′

)
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=

∑p
h=1 (clh − θlidlh) (cl′h − θl′i′dl′h) 1

nh
σii′√∑p

h=1 (clh − θlidlh)2 V arX̄hi

√∑p
h=1 (cl′h − θl′i′dl′h)2 V arX̄hi′

=
σii′
∑p

h=1 (clh − θlidlh) (cl′h − θl′i′dl′h) 1
nh√∑p

h=1 (clh − θlidlh)2 1
nh
σii

√∑p
h=1 (cl′h − θl′i′dl′h)2 1

nh
σi′i′

and finally

ρll′,ii′ = ρii′

∑p
h=1 (clh − θlidlh) (cl′h − θl′i′dl′h) 1

nh√∑p
h=1 (clh − θlidlh)2 1

nh

√∑p
h=1 (cl′h − θl′i′dl′h)2 1

nh

(4.2)

= ρii′
(cl − θlidl)′M (cl′ − θl′i′dl′)√

(cl − θlidl)′M (cl − θlidl)
√

(cl′ − θl′i′dl′)′M (cl′ − θl′i′dl′)

(1 ≤ l, l′ ≤ q, 1 ≤ i, i′ ≤ k),

where the ρii′ are the elements of the correlation matrix R = (ρii′)i,i′ of the data.

It is obvious that for i = i′, we recover the correlations of an MCT for ratios of

means, see, e.g., Dilba et al. [2006]. Hence, the case of only one endpoint (k = 1)

and several treatments may be incorporated into the present theory rather easily.

Furthermore, focusing on one fixed contrast (l = l′) and equal thresholds for all

endpoints (θli = θl ∀ i = 1, . . . , k), the structure of the correlation matrix simplifies

according to ρll′,ii′ = ρii′ and Rll = R. Note that neither the matrix R̃ nor the

matrix Rll′ has a product correlation structure, i.e., the elements do not factorize.

Because the common correlation matrix of the data R is not known and must be

estimated, we conclude that, under H0,

T
appr.∼ tqk(ν,

ˆ̃R),

where ˆ̃R is the estimation of R̃.

Example 4.2.1. Let there be observations for p = 3 groups and k = 3 endpoints

with equal sample sizes, being mutually independent and following k-variate normal
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distributions with homogeneous covariance matrices. Let the common correlation

matrix of the data be given by

R =


1 −0.2 0.5

−0.2 1 0.1

0.5 0.1 1

 .

The Dunnett MCT is applied (where the first group is regarded as the negative

control). The thresholds are all equal, i.e., θli = 1 for all l = 1, . . . , q and for all

i = 1, . . . , k. The resulting correlation matrix R̃ is given by

R̃ =

 R11 R12

R12 R22

 =



1 −0.2 0.5 0.5 −0.1 0.25

−0.2 1 0.1 −0.1 0.5 0.05

0.5 0.1 1 0.25 0.05 0.5

0.5 −0.1 0.25 1 −0.2 0.5

−0.1 0.5 0.05 −0.2 1 0.1

0.25 0.05 0.5 0.5 0.1 1



.

The (3× 3)-submatrices on the main diagonal are equal to the correlation matrix of

the data, i.e., R11 = R22 = R.

Example 4.2.2. Consider the situation of the Example 4.2.1, where we now apply

the Williams MCT. The resulting correlation matrix R̃ is then given by
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R̃ =

 R11 R12

R12 R22

 =



1 −0.2 0.5 0.87 −0.17 0.43

−0.2 1 0.1 −0.17 0.87 0.09

0.5 0.1 1 0.43 0.09 0.87

0.87 −0.17 0.43 1 −0.2 0.5

−0.17 0.87 0.09 −0.2 1 0.1

0.43 0.09 0.87 0.5 0.1 1



.

As in Example 4.2.1, the (3× 3)-submatrices on the main diagonal are equal to the

correlation matrix of the data. The off-diagonal submatrices R12 differ from those

of Example 4.2.1, of course.

The decision rule for testing problem (4.1) is to reject H0,li for each ratio of contrasts

γli with

Tli > tlqk,1−α(ν, ˆ̃R),

where tlqk,1−α(ν, ˆ̃R) is a lower (1−α)-quantile of a related qk-variate t-distribution. If

two-sided testing is of interest, the absolute values for Tli and quantiles ttsqk,1−α(ν, ˆ̃R)

have to be taken. For the computation of these quantiles, one may resort to the

numerical integration routines of Genz and Bretz [1999, 2002] (see also Bretz et al.

[2001]) mentioned earlier, which are not restricted to special correlation structures.

The related adjusted p-values per comparison and endpoint can also be obtained, of

course.
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4.3 α-simulations

As in Chapter 3, the method described in Section 4.2 is approximate. Hence, its

quality must be validated by simulations. Three treatments have been compared in

a first simulation study, five in a second one. The first treatment is regarded as the

(negative) control. Dunnett and Williams contrasts, related to the hypotheses (4.1),

have been considered. Each study had different numbers of endpoints with related

expected values for the control group, i.e.,

• 2 endpoints, µ1 = (10, 100),

• 4 endpoints, µ1 = (0.1, 1, 10, 100),

• 8 endpoints, µ1 = (0.05, 0.1, 0.5, 1, 5, 10, 50, 100).

For the Dunnett contrast, the expected values of the non-control groups are µh =

(0.8µ1,1, . . . , 0.8µ1,k/2, 1.25µ1,k/2+1, . . . , 1.25µ1,k)
′ (h = 2, . . . , p), and µh = µ1 (h =

2, . . . , p) for the Williams contrast. The endpoints have equicorrelations ρmin (see

(2.3)), 0, 0.5, 1. The standard deviations are 0.25µ1 for all treatments. The sample

size is 20 for each endpoint of each treatment. The FWE has been simulated at

a nominal level of 0.05. The simulation results have been obtained from 10000

simulation runs each and with the same starting seed (seed 10000) using a program

code in the statistical software R [2008], package mvtnorm [Genz et al., 2008, Hothorn

et al., 2001].
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Table 4.1 (4.2) shows results of the first (second) study with three (five) treatments.

The values in parentheses are according to a Bonferroni adjustment, which is known

to produce conservative test decisions, especially for high correlations (see Section

2.5). The new procedure maintains the α-level exactly (ranges from 0.045 to 0.054)

while the Bonferroni-adjusted version becomes more and more conservative for in-

creasing correlations and increasing number of endpoints.

In order to appreciate the strong control of the FWE, we have again treated the

situation of the Dunnett contrast. Let all non-control treatments significantly differ

from the control for the first endpoint, i.e., µh,1 = 10 ∗ µ1,1 (h = 2, . . . , p). Only the

FWE of the remaining comparisons has been considered. Tables 4.3 and 4.4 show the

α-level of the new procedure ignoring the first endpoint. Depending on the number

of these comparisons, the FWE is smaller then the α-level. The Bonferroni-adjusted

version is conservative in the same manner as above.

4.4 Simultaneous Confidence Intervals

Let ξ = (ξ11, . . . , ξqk)
′ be a point in the parameter space of γ = (γ11, . . . , γqk)

′.

Assuming that increasing values of the data, Xhij, represent a better effect of the

treatments, the (1− α)100% confidence set for the statistical problem (4.1) is given

by

C ((x, y)) =
{
ξ : Tli(ξli) ≤ tlqk,1−α(ν, ˆ̃R), l = 1, . . . , q, i = 1, . . . , k

}
=

{
ξ : Aliξ

2
li +Bliξli + Cli ≤ 0, l = 1, . . . , q, i = 1, . . . , k

}
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Correlations
MCT Endpoints

ρmin 0 0.5 1

0.049 0.051 0.053 0.046
2

(0.046) (0.046) (0.045) (0.026)

0.047 0.050 0.048 0.051
Dunnett 4

(0.044) (0.046) (0.036) (0.015)

0.047 0.046 0.052 0.051
8

(0.043) (0.042) (0.036) (0.009)

0.049 0.052 0.049 0.052
2

(0.036) (0.038) (0.033) (0.021)

0.050 0.048 0.051 0.045
Williams 4

(0.037) (0.035) (0.030) (0.009)

0.048 0.048 0.054 0.049
8

(0.037) (0.035) (0.029) (0.006)

Table 4.1: FWE of one-sided MCTs for p = 3 treatments, several contrasts, numbers

of endpoints, and equicorrelations; α = 0.05; values in parentheses according to

Bonferroni adjustment.
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Correlations
MCT Endpoints

ρmin 0 0.5 1

0.051 0.052 0.052 0.052
2

(0.043) (0.045) (0.040) (0.028)

0.052 0.053 0.052 0.049
Dunnett 4

(0.045) (0.046) (0.038) (0.013)

0.049 0.051 0.050 0.050
8

(0.043) (0.044) (0.036) (0.008)

0.050 0.050 0.053 0.052
2

(0.025) (0.024) (0.023) (0.014)

0.050 0.054 0.048 0.051
Williams 4

(0.028) (0.029) (0.024) (0.007)

0.049 0.052 0.048 0.049
8

(0.027) (0.027) (0.021) (0.004)

Table 4.2: FWE of one-sided MCTs for p = 5 treatments, several contrasts, numbers

of endpoints, and equicorrelations; α = 0.05; values in parentheses according to

Bonferroni adjustment.



94 CHAPTER 4. MCTS FOR MULTIPLE ENDPOINTS

Correlations
Endpoints

ρmin 0 0.5 1

0.023 0.027 0.027 0.037
2

(0.022) (0.025) (0.023) (0.019)

0.035 0.037 0.044 0.045
4

(0.033) (0.033) (0.034) (0.013)

0.041 0.041 0.048 0.051
8

(0.038) (0.037) (0.033) (0.009)

Table 4.3: Local FWE of one-sided MCTs for p = 3 treatments, the Dunnett contrast,

several numbers of endpoints, and equicorrelations; α = 0.05; values in parantheses

according to Bonferroni adjustment.

Correlations
Endpoints

ρmin 0 0.5 1

0.024 0.022 0.025 0.039
2

(0.021) (0.018) (0.020) (0.018)

0.037 0.038 0.040 0.049
4

(0.032) (0.033) (0.030) (0.013)

0.043 0.045 0.044 0.050
8

(0.037) (0.039) (0.032) (0.008)

Table 4.4: Local FWE of one-sided MCTs for p = 5 treatments, the Dunnett contrast,

several numbers of endpoints, and equicorrelations; α = 0.05; values in parantheses

according to Bonferroni adjustment.
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where

Ali =

(
p∑

h=1

dlhX̄hi

)2

−
(
tlqk,1−α(ν, ˆ̃R)

)2

S2
i

p∑
h=1

d2
lh/nh

=
(
d′lX̄ ,i

)2 − (tlqk,1−α(ν, ˆ̃R)
)2

S2
i d
′
lMdl,

Bli = −2

((
p∑

h=1

clhX̄hi

)(
p∑

h=1

dlhX̄hi

)
−
(
tlqk,1−α(ν, ˆ̃R)

)2

S2
i

p∑
h=1

clhdlh/nh

)

= −2

((
c′lX̄ ,i

) (
d′lX̄ ,i

)
−
(
tlqk,1−α(ν, ˆ̃R)

)2

S2
i c
′
lMdl

)
,

Cli =

(
p∑

h=1

clhX̄hi

)2

−
(
tlqk,1−α(ν, ˆ̃R)

)2

S2
i

p∑
h=1

c2lh/nh

=
(
c′lX̄ ,i

)2 − (tlqk,1−α(ν, ˆ̃R)
)2

S2
i c
′
lMcl. (4.3)

As in Section 3.4.3, this approach is based on Fieller’s Theorem [Fieller, 1954].

As is known, the correlation matrix R̃ depends here on the unknown ratios γli,

ρ̂ll′,ii′ = ρ̂ll′,ii′(γli, γl′i′). Application of the plug-in approach of Dilba et al. [2006]

corresponds to the use of

γ̂li =

∑p
h=1 clhX̄hi∑p
h=1 dlhX̄hi

=
c′lX̄ ,i

d′lX̄ ,i

(l = 1, . . . , q, i = 1, . . . , k)

in Equation (4.2) instead of θli (similarly for index l′i′). For simplicity, we do not

introduce a new symbol for the resulting estimated correlation matrix. The lower

limits of the approximate (1− α)100% SCIs for (γ11, . . . , γqk)
′ are hence given by

γ̂lowerli =
−Bli −

√
B2
li − 4AliCli

2Ali
(l = 1, . . . , q, i = 1, . . . , k).

If Ali > 0, then the solution is finite (see, e.g., Buonaccorsi and Iyer [1984] for the

case of only one endpoint). The statistical problem (4.1) can be decided as follows:

For a specified level α, we reject H0,li for each contrast γli with

γ̂lowerli > θli.
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For the two-sided case, we obtain

C ((x, y)) =
{
ξ : |Tli(ξli)| ≤ ttsqk,1−α(ν, ˆ̃R), l = 1, . . . , q, i = 1, . . . , k

}
=

{
ξ : Aliξ

2
li +Bliξli + Cli ≤ 0, l = 1, . . . , q, i = 1, . . . , k

}
,

where the Ali, Bli and Cli are defined as in (4.3) but with quantiles ttsqk,1−α(ν, ˆ̃R)

instead of tlqk,1−α(ν, ˆ̃R). The confidence limits are given by

γ̂lowerli =
−Bli −

√
B2
li − 4AliCli

2Ali
(l = 1, . . . , q, i = 1, . . . , k),

γ̂upperli =
−Bli +

√
B2
li − 4AliCli

2Ali
(l = 1, . . . , q, i = 1, . . . , k).

For a specified level α, we reject H0,li for each contrast γli with

γ̂lowerli > θli or γ̂upper
li < θli.

We have performed further simulation studies with the same background as in 4.3

to describe the behavior of SCIs related to the new procedure. The SCP has been

simulated for the Dunnett contrast with a nominal level of 0.95. Table 4.5 (4.6)

shows the results of the first (second) study for ratio-based Dunnett SCIs with three

(five) treatments for different numbers of endpoints and depending on the ratios

γ = γ11 = . . . = γ2k (γ = γ11 = . . . = γ4k). In principle, the expected value

0.95 is again attained for all the settings irrespective of the number of endpoints,

treatments, and the correlations (ranges from 0.943 to 0.954). This reflects the

results of the α-simulations.
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Correlations
Endpoints γ

ρmin 0 0.5 1

0.5 0.946 0.946 0.949 0.950

1.0 0.948 0.949 0.949 0.950
2

1.5 0.950 0.947 0.948 0.948

2.0 0.949 0.954 0.950 0.946

0.5 0.949 0.952 0.949 0.949

1.0 0.950 0.947 0.950 0.949
4

1.5 0.948 0.950 0.948 0.952

2.0 0.948 0.950 0.947 0.949

0.5 0.950 0.950 0.950 0.949

1.0 0.950 0.949 0.947 0.950
8

1.5 0.954 0.949 0.948 0.946

2.0 0.949 0.947 0.946 0.951

Table 4.5: SCP of one-sided (upper) SCIs for p = 3 treatments, the Dunnett contrast,

several numbers of endpoints, ratios γli = γ (for all l = 1, 2 and i = 1, . . . , k), and

equicorrelations; α = 0.05.
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Correlations
Endpoints γ

ρmin 0 0.5 1

0.5 0.949 0.948 0.947 0.951

1.0 0.952 0.948 0.945 0.948
2

1.5 0.954 0.947 0.947 0.950

2.0 0.953 0.948 0.946 0.949

0.5 0.951 0.947 0.947 0.951

1.0 0.952 0.949 0.951 0.945
4

1.5 0.948 0.948 0.946 0.949

2.0 0.949 0.950 0.943 0.948

0.5 0.948 0.949 0.948 0.950

1.0 0.952 0.951 0.953 0.951
8

1.5 0.946 0.951 0.945 0.950

2.0 0.948 0.950 0.948 0.950

Table 4.6: SCP of one-sided (upper) SCIs for p = 5 treatments, the Dunnett contrast,

several numbers of endpoints, ratios γli = γ (for all l = 1, . . . , 4 and i = 1, . . . , k),

and equicorrelations; α = 0.05.
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4.5 Power Considerations

As in Section 3.5, the testing problem (4.1) is here again simplified to the case of

equal thresholds, θli = θ for all l = 1, . . . , q and i = 1, . . . , k. Let higher response

values indicate better treatment effects and τ ∗ denote the greatest irrelevant ratio to

the control mean which is to be detected. Define the set of indices I (τ ∗) = {(l, i) :

τli > τ ∗}. All ratios of contrasts with τli values greater than τ ∗ are relevant. In the

same manner as in Section 3.5, an (approximate) expression for the complete (or

all-pairs) power of the statistical problem (4.1) is given by

P

{
Tli > tlqk,1−α(ν, R̃)

∣∣∣∣ψli,Σ ∀(l, i) ∈ I(θ∗)

}
. (4.4)

An (approximate) expression for the minimal (or any-pair) power of the statistical

problem (4.1) is given by

P

{
Tli > tlqk,1−α(ν, R̃)

∣∣∣∣ψli,Σ for at least one (l, i) ∈ I(θ∗)

}
. (4.5)

The probability to reject for any contrast is defined as the global power. If one is

interested only in the global test decision for statistical problem (4.1), then this

definition is appropriate. An (approximate) expression for the global power of the

statistical problem (4.1) is given by

P

{
Tli > tlqk,1−α(ν, R̃)

∣∣∣∣ψli,Σ for at least one l = 1, . . . , q and i = 1, . . . , k

}
.

(4.6)

Because the data’s correlations are estimated, the quantiles tlqk,1−α(ν, R̃) in fact

are random variables because they depend on the sample values. Therefore, the

probabilities (4.4), (4.5) and (4.6) are only approximate ones. The power function
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(4.6) can be calculated from a non-central qk-variate t-distribution with ν degrees

of freedom and non-centrality parameter κ = (κ11, . . . , κli, . . . , κqk)
′, where

κli =

∑p
h=1 (clh − θdlh)µhi√

σii
∑p

h=1 (clh − θdlh)2 /nh

=
(cl − θdl)′µ,i√

σii (cl − θdl)′M (cl − θdl)
.

Figure 4.1 (4.2) illustrates Equation (4.6) for three (five) treatments and the Dunnett

contrast depending on the ratio γq1 = µp1/µ11 (where q = p − 1). The remaining

ratios γli are fixed and equal. The relative thresholds against which the test is

performed are θli = 1 for all l = 1, . . . , q and all i = 1, . . . , k. Several equicorrelations

(rows) for two, four and eight endpoints (columns) are considered. The total sample

size is 60 (100). Three allocations are shown each. The solid line represents the

well-known optimal allocation for the Dunnett contrast, i.e., n1 =
√
p− 1nh (h =

2, . . . , p). Hence, the sample size for the control group is n1 = 24, 12, 6 (32, 16, 8), and

the sample sizes for the non-control groups are balanced. Although the correlations

of the endpoints are taken into account, their exact influence it is not clear from

Figures 4.1 and 4.2. Therefore, this problem is presented by Figure 4.3 (4.4). Again,

Equation (4.6) is illustrates for three (five) treatments with a similar background,

but now depending on the correlations of the endpoints. The ratio γq1 is set here

to 1.25. One-sided and two-sided tests (rows) for two, four and eight endpoints

(columns) are considered. The power indeed depends on the correlations. The

minimum is achieved for vanishing correlation and increases for increasing absolute

correlation values.
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Figure 4.1: Global power function of one-sided MCTs for p = 3 treatments, the

Dunnett contrast, several numbers of endpoints, ratios γq1, and equicorrelations;

α = 0.05.
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Figure 4.2: Global power function of one-sided MCTs for p = 5 treatments, the

Dunnett contrast, several numbers of endpoints, ratios γq1, and equicorrelations;

α = 0.05.
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Figure 4.3: Global power function of MCTs for p = 3 treatments, the Dunnett

contrast, several numbers of endpoints, and equicorrelations; γq1 = 1.25, α = 0.05.

Figure 4.4: Global power function of MCTs for p = 5 treatments, the Dunnett

contrast, several numbers of endpoints, and equicorrelations; γq1 = 1.25, α = 0.05.
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The package multtest [Pollard et al., 2007] of the statistical software R [2008] pro-

vides resampling-based multiple hypothesis testing. Non-parametric bootstrap and

permutation tests are implemented. Tests based on t- and F -statistics are included.

The main application of this package is gene selection in microarray experiments.

The function MTP performs test procedures for multiple endpoints by single-step and

step-down minP and maxT methods to control the FWE (or other error rates).

Tests based on t-tests are restricted to comparisons of two groups, e.g. a treatment

and a control. A simulation study has been performed to compare this t-test-based

bootstrap approach (Boot.) with the new MCT method (Multiv.). The single-step

option method=‘‘ss.maxT’’ has been used for comparability. The parameter back-

ground is the same as in Section 4.3, but p = 2 (hence q = 1) with θ1i = 1 for all

i = 1, . . . , k. Figure 4.5 shows the results of the mentioned power comparison. The

rows are related to the different equicorrelations, the columns to the number of end-

points. Minimal and complete power coincide in this case, because the treatment

group differs only for the first endpoint. A higher power of the new multivariate

method is visible only for high correlations and high numbers of endpoints. Figure

4.6 shows the minimal power for the case that the mean of the treatment group was

changed simultaneously for all endpoints and by the same relative amount. Except

for the minimal equicorrelation ρmin, the bootstrap method is better with respect

to power than the new method. This difference becomes more pronounced with

increasing correlation and with increasing number of endpoints. Figure 4.7 shows

the complete power for the same background (simultaneously changing the mean

of the treatment group for all endpoints). The bootstrap method has slightly less
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power than the multivariate method, but this difference becomes negligible for high

correlations. In summary: The power behavior of the competitors is almost equal.

The gain in the minimal power for the bootstrap approach is insignificant in view

of the properties and flexibility of the new MCT method.

4.6 Heteroscedasticity

The same assumptions are made as in Section 4.2 except that there are possibly

different covariance matrices Σh = (σh,ii′)i,i′ for the treatments h = 1, . . . , p. In

practice, that means the treatments to cause different variances or correlations over

the endpoints, i.e.,

{Xhij : i = 1, . . . , k} ∼ ⊥Nk(µh,Σh) (h = 1, . . . , p, j = 1, . . . , nh).

Furthermore, let (nh − 1) ≥ k for all h = 1, . . . , p. The appropriate test statistics

are

Tli =

∑p
h=1 (clh − θlidlh) X̄hi√∑p
h=1 (clh − θlidlh)2 S2

hi/nh

=
(cl − θlidl)′ X̄ ,i√

(cl − θlidl)′ V̂ iM (cl − θlidl)
(l = 1, . . . , q, i = 1, . . . , k),

where V̂ i is the estimator of V i with

V i =


σ1,ii 0

. . .

0 σp,ii

 and V̂ i =


S2

1i 0

. . .

0 S2
pi

 (i = 1, . . . , k),

respectively.
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Figure 4.5: Minimal and complete power function of one-sided MCTs for p = 2

treatments, the Dunnett contrast, several numbers of endpoints, and equicorrelations;

γq1 = 1, α = 0.05.
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Figure 4.6: Minimal power function of one-sided MCTs for p = 2 treatments, the

Dunnett contrast, several numbers of endpoints, and equicorrelations; γq1 = 1, α =

0.05.
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Figure 4.7: Complete power function of one-sided MCTs for p = 2 treatments,

the Dunnett contrast, several numbers of endpoints, and equicorrelations; γq1 = 1,

α = 0.05.
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We apply now the results of Chapter 3, thereby extending the PI procedure (which

is based on the method of Games and Howell [1976]) to the case of multiple end-

points. The degrees of freedom for the different contrasts and endpoints are related

to Equation (3.11), i.e.,

νli =

(∑p
h=1

(clh−θlidlh)2σh,ii

nh

)2

∑p
h=1

(clh−θlidlh)4σ2
h,ii

n2
h(nh−1)

(l = 1, . . . , q, i = 1, . . . , k).

Replacement of the unknown parameters σh,ii (h = 1, . . . , p, i = 1, . . . , k) with the

estimators S2
hi yields1

ν̂li =

(∑p
h=1

(clh−θlidlh)2S2
hi

nh

)2

∑p
h=1

(clh−θlidlh)4S4
hi

n2
h(nh−1)

(l = 1, . . . , q, i = 1, . . . , k). (4.7)

These different degrees of freedom again lead to different, non-equidistant quantiles

for the test decisions. Therefore, this procedure is not a simultaneous test procedure

in the sense of Gabriel [1969]. However, because it is a UIT, Theorem 2.1.3 holds,

and it is coherent and consonant. The derivation of the correlation matrix can be

performed in analogy to the one given in Section 4.2. We have

Cov

(
p∑

h=1

(clh − θlidlh) X̄hi,

p∑
h=1

(cl′h − θl′i′dl′h) X̄hi′

)

=

p∑
h=1

(clh − θlidlh) (cl′h − θl′i′dl′h)Cov
(
X̄hi, X̄hi′

)

and

Cov(X̄hi, X̄hi′) =
1

nh
Cov(Xhi, Xhi′).

1The degrees of freedom in (4.7) must be greater than or equal to 2 for a well defined distribution.
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Now, we obtain

ρll′,ii′ = Corr

(
p∑

h=1

(clh − θlidlh) X̄hi,

p∑
h=1

(cl′h − θl′i′dl′h) X̄hi′

)

=

∑p
h=1 (clh − θlidlh) (cl′h − θl′i′dl′h) 1

nh
Cov(Xhi, Xhi′)√

V ar
(∑p

h=1 (clh − θlidlh) X̄hi

)√
V ar

(∑p
h=1 (cl′h − θl′i′dl′h) X̄hi′

)
=

∑p
h=1 (clh − θlidlh) (cl′h − θl′i′dl′h) 1

nh
σh,ii′√∑p

h=1 (clh − θlidlh)2 V arX̄hi

√∑p
h=1 (cl′h − θl′i′dl′h)2 V arX̄hi′

and

ρll′,ii′ =

∑p
h=1 (clh − θlidlh) (cl′h − θl′i′dl′h) 1

nh
σh,ii′√∑p

h=1 (clh − θlidlh)2 1
nh
σh,ii

√∑p
h=1 (cl′h − θl′i′dl′h)2 1

nh
σh,i′i′

=
(cl − θlidl)′W ii′M (cl′ − θl′i′dl′)√

(cl − θlidl)′ V iM (cl − θlidl)
√

(cl′ − θl′i′dl′)′ V i′M (cl′ − θl′i′dl′)

(1 ≤ l, l′ ≤ q, 1 ≤ i, i′ ≤ k),

where

W ii′ =


σ1,ii′ 0

. . .

0 σp,ii′

 (1 ≤ i, i′ ≤ k).

The behavior of this procedure is now predictable, in principle. Both the MCT

for multiple endpoints described in this chapter and the MCT for heteroscedastic

data described in Chapter 3 are the basis. Both have been checked by simulations

and have been shown to have good properties. Nevertheless, they are approximate

procedures, and their combination is approximate a fortiori. Estimators of variances

and correlations are used, and the use of the multivariate t-distribution itself is an

approximate approach. For that reason, a short simulation study is advisable here

too, with the same background as in Section 4.3 but with some differences: The
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correlations of the data have no influence on the FWE according to Section 4.3, thus

random correlations are sufficient for that purpose. It is known from Chapter 3 that a

setting, combining the smallest sample size and the highest standard deviation is the

most critical one because it leads to a liberal behavior for a procedure that wrongly

assumes homogeneity. Hence, a similar setting has been chosen with sample size 20

for each endpoint of each treatment, except for the last treatment with sample size

10. The standard deviations are 0.25µ1 for the last treatment, 0.1µ1 for the others.

Additionally, not only the procedure described (referred to as PI) is considered here

but also again a Bonferroni-adjusted version (referred to as BON) and a procedure

which assumes homoscedasticity (referred to as HOM). A conservative variant of

PI is also appended here which takes the minimum of the degrees of freedom (4.7)

over the endpoints (referred to as MIN). Hence, not qk different degrees of freedom

are used for MIN, but q. Table 4.7 (4.8) shows results of the first (second) study

with three (five) treatments. As expected, HOM is liberal (0.131 – 0.320), BON is

conservative (0.028 – 0.052), where increasing numbers of treatments and endpoints

intensify these effects. PI varies around the nominal level of 0.05 with a slight

tendency to liberalism. This is obviously caused by the mentioned high degree

of approximation for that procedure. A dependence on the number of treatments

and endpoints is not observed. The MIN procedure is an alternative choice with a

realized level between BON and PI. It is less liberal than PI but can also be slightly

conservative. The ranges here are 0.042 and 0.055, while PI has 0.047 and 0.063.

Despite the small variations around the nominal α-level, the adjusted version of

the test behaves predictable. Hence, the behavior concerning the strong control of
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MCT Endpoints HOM BON PI MIN

2 0.131 0.049 0.055 0.053

Dunnett 4 0.179 0.052 0.059 0.053

8 0.227 0.048 0.055 0.049

2 0.137 0.035 0.047 0.046

Williams 4 0.184 0.039 0.053 0.048

8 0.244 0.036 0.055 0.042

Table 4.7: FWE of one-sided MCTs for p = 3 treatments, several contrasts, proce-

dures and numbers of endpoints; α = 0.05.

MCT Endpoints HOM BON PI MIN

2 0.138 0.039 0.049 0.048

Dunnett 4 0.190 0.041 0.053 0.048

8 0.275 0.048 0.063 0.051

2 0.169 0.031 0.056 0.055

Williams 4 0.227 0.028 0.053 0.049

8 0.320 0.034 0.061 0.051

Table 4.8: FWE of one-sided MCTs for p = 5 treatments, several contrasts, proce-

dures and numbers of endpoints; α = 0.05.
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the FWE, the SCIs and the power are also obvious from the previous sections and

chapter. For that reason, we do not consider them here explicitly.

4.7 Example

Schulte et al. [2002] have taken measurements of 16 liver enzymes for an inter-

laboratory immunotoxicity study in nine centers. Ten animals per sex have been

randomized to a control (0) and three dose groups each. For simplicity, three en-

zymes are considered here from only the females and from the first center (see Table

4.9).

The aim is to show for which doses and for which enzymes the specified substance

leads to significantly smaller values than the control. The control group is denoted

Dose ASAT ALAT ALP

0 86.944 (11.880) 57.0752 (10.719) 461.496 (46.349)

1 80.080 ( 8.784) 49.2674 ( 4.922) 391.304 (47.909)

2 81.536 (18.957) 51.9610 (10.764) 308.976 (43.728)

3 81.536 ( 8.133) 46.3008 ( 8.349) 281.260 (29.945)

Table 4.9: Sample means (and standard deviations) per dose and enzyme of the data

set of Schulte et al. [2002].
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by h = 0 and the doses by h = 1, 2, 3. Application of the contrast matrices

C =


c′1

c′2

c′3

 =


0 1 0 0

0 0 1 0

0 0 0 1

 ,

D =


d′1

d′2

d′3

 =


1 0 0 0

1 0 0 0

1 0 0 0


leads to the ratios of contrasts

γli =
µli
µ0i

(l = 1, 2, 3, i = 1, 2, 3).

The hypotheses to be tested are given by

H0,li : γli ≥ θ (l = 1, 2, 3, i = 1, 2, 3)

with θ = 1. We assume heterogeneous covariance matrices over the doses. Table

4.10 shows the upper limits for the related approximate (1 − α)100% SCIs for the

ratios to the control means. The values in parentheses are the estimated ratios. For

ALP, all doses show significantly smaller values than those of the control.

Dose ASAT ALAT ALP

1 1.075 (0.921) 1.056 (0.863) 0.971 (0.848)

2 1.177 (0.938) 1.159 (0.910) 0.776 (0.670)

3 1.091 (0.938) 1.019 (0.811) 0.691 (0.609)

Table 4.10: Upper confidence limits (and estimates) per dose and enzyme for the

liver data of Schulte et al. [2002].
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As in Section 3.6.1, the testing problem has been formulated as a proof of hazard be-

cause toxicity should be pointed out. The conclusion of safety of the non-significant

doses is not warranted. A proof of safety would be the proper choice to answer

the question as to which doses do not cause a critical decrease as compared to the

control. We do not consider that in detail here, however.



Chapter 5

Discussion

The problem of heteroscedasticity in MCTs is that it is impossible (up to now) to

derive a joint distribution for the test statistics (T ∗1 , . . . , T
∗
q )′. The basic idea of

Games and Howell [1976] was to compare each test statistic with “its own” specific

quantile coming from a comparison-specific multivariate t-distribution with degrees

of freedom according to Satterthwaite [1946]. This method has been extended to

the general case of MCTs for both differences and ratios of means (GH). A further

step has been to plug the estimates S2
h (h = 1, . . . , p) into the correlation matrix

instead of the unknown σ2
h (PI). Both comparison-specific degrees of freedom and

a correlation matrix depending on sample variances are necessary to maintain the

FWE over all situations. Approaches with a single degree of freedom (like HTL)

may notedly fail the more the variances differ. Only in the homoscedastic situation,

the methods considered, including the test for homoscedastic data (HOM), realize

the same (and correct) α-level. In this case, PI has a power that is only slightly
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smaller than that of HOM. Keeping in mind that it is hard to decide in practice

whether the data are homoscedastic or not, the PI procedure can therefore be rec-

ommended as a default. Also many functions of the statistical software R [2008]

assume heterogeneous variances for the data if no further information is specified by

the user. For example, see the command t.test(...). Moreover, calculations con-

cerning MCTs for heteroscedastic data are already available from R [2008], using the

commands simtest.ratioVH(...) and sci.ratioVH(...) of the package mratios

[Dilba et al., 2008, 2007]. This package provides tests and confidence intervals for

ratios of treatment means in the usual one-way layout.

Furthermore, the problem of many – possibly correlated – endpoints has been in-

vestigated. MCTs and related SCIs have been restricted to comparisons on a single

endpoint so far. This methodology was extended to the case of an arbitrary num-

ber of endpoints by deriving an approximate multivariate t-distribution. Ratios of

means have been considered for comparability of the different endpoints which may

have different scales. An approach for differences of means has not been focused ex-

plicitly, but it can easily be obtained based on this work. If variances or correlations

are assumed to differ for the different groups, the PI procedure for heterogeneous

variances of Section 3 can be applied. The procedures presented can be shown to

maintain the FWE. The version for heterogeneous covariances shows a slight liber-

alism, but it is in acceptable ranges. Test decisions (e.g., p-values) for all contrasts

and all endpoints are available as well as SCIs. For this reason, a fair power compar-

ison with existing methods is not feasible. A resampling-based competitor with the

same features exists only for the case of comparisons of only two groups (package
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multtest [Pollard et al., 2007] in R [2008]). Depending on which power is consid-

ered, the new method has about the same power properties or it is slightly worse.

This is compensated by a gain in flexibility.

A software realization in R [2008] regarding the methods described in this work

is available at http://www.r-project.org. The package SimComp [Hasler, 2008]

provides calculations concerning simultaneous tests and confidence intervals for both

difference- and ratio-based contrasts of normal means for data with possibly more

than one primary endpoint. The covariance matrices may be assumed to be equal

or possibly unequal for the different groups.
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