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ABSTRACT
It is common that two populations are to be comghaamd one objective is to test the null

hypothesis that the two populations have the saesponse distributions against the
alternative that the response distributions areeidint. Three classes of tests are provided for
this situation, depending on the type of alterraatiypothesis. One class of tests has good
power against shift alternatives (i.e., changesha location), a second against dispersion
alternatives (i.e., changes in the scale), andré éigainst general alternatives. In this research,
the main focus will be the two-sample test for tama problem, especially when the data are
under nonnormality and heteroscedasticity, sineecthssical test are based on either of this
two assumptions. For example, Welthest (Welch, 1947) improves the simpletest
(“Student”, 1908) when data are heterogeneousjtbmbrks less efficiently than Wilcoxon
Rank Sum test (Wilcoxon, 1945) when the data aesvekl. Wilcoxon test is powerful under
nonnormality but it behaves poorly under heteroastdity.

In fact, without the parametric assumption of thederlying distribution of the data, the
uniformly most powerful test does not exist. Butden certain circumstance, there exists
locally most powerful test. Some of the approprigégametric and nonparametric tests will
be introduced in section 4 for different conditiokgéhen there is no prior information about
the conditions of the data, there are other siedisprocedures available, such as Adaptive
test (Bickel, 1982), Maximin efficiency robust t¢&astwirth, 1966), Maximum test (Tarone,
1981; Fleming & Harrington, 1991) etc. At the endew Maximum test is proposed, when
the underlying distribution of the data is a priariknown. For a good presentation of the
Microarray data, the test results can be plottedguihe so-called Volcano Plot. There is also
an improved Volcano Plot proposed using the conadptonfidence interval, which is
discussed at the end of Chapter A.

When the data is dichotomized with some priori poitit, for example maximally selected
cut point (Hothorn and Lausen, 2002), the inferefarebinary data can be also used for
continuous data. At the end of Chapter B, a newhatefor the construction of confidence
intervals for the ratio of proportions is also dissed.

All the tests and methods for confidence intenaaiks compared via Monte-Carlo simulation,
the simulation results are shown in chapter A ance$pectively. Among all the candidate
tests, there are no clear winner in all the coodgj but when the data are under nonnormality
and heteroscedasticity, Weldhtest behaves relatively better than others, aghothe
assumption of the test is violated. The new mettowdthe confidence interval of ratio of

proportions is proved to maintain the nominal leMetonfidence (95 percent).
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GENERAL INTRODUCTION

For the two-sample location problem, Studemtiest was developed by “Student” (Gossett,
1908) to deal with the problems associated witlerigrice based on small samples. The
classical t-test based on the assumption of normally distedbudata and variance
homogeneity. In the heterogeneous variance casea(lsml Behrens-Fisher problem), Welch
t-test (Welch, 1947) was proposed to fill this volt.is very often that doubts on the
normality exist, consequently distribution free ttesuch as Wilcoxon rank sum test
(Wilcoxon, 1945) is favorable. But the Wilcoxon ttemlso based on the homogeneous
variance. When such condition is violated, the Wl test will have poor power than
expected. Such violation of assumption is very ceammand serious in the microarray data, in
this paper all the examples and simulation condltizvill be chosen to mimic the microarray
data. But the results and conclusion in this papernot limited to the microarray data, they
can be used to all kinds of experimental data wherdata are under certain conditions.

The problems occurred in the analysis of array tatae of the motivations of this research.
Firstly some characteristics of microarray datd @l characterized in chapter A. The similar
problems can be found also in horticulture sciemecmther two data sets from horticulture
experiments will also be introduced. Different dimition systems are also introduced to
mimic the data generating mechanism, such as sdaread probability distributions
(Normal, Lognormal, Exponential, etc.) and someeptHdistribution systems which can
generate distributions with short tails, long taslkewness and kurtosis. In this thesis, mixture
of normal distributions, Fleishman distribution addhnson distribution are used for the
purpose of generate such nonstandard distributihen the data with certain characteristics
are possible to regenerate, different test candoepared with such regenerated data. This
kind of techniques is called Monte-Carlo simulatiom Chapter A, the general idea of the
simulation study is reviewed, and the usual metftwdrandom number generating is also
introduced.

The test results can be presented efficiently ugiegso-called Volcano plot; Volcano plot is
nothing but a scatter plot of the base 2 logaritifinthe ratio of means versus the base 10
logarithm of the p value from the statistical t&€3he disadvantage of the Volcano plot is that
the distance of two points is hard to interpretsithe x- and y-axis are in two different scales.
To make the interpretation easier, a modified wersif Volcano plot is proposed, which use

the confidence intervals instead of the p valueste y-axis. The confidence interval for the



ratio of means of two samples will be calculateshdAhe base 2 logarithm of the lower
limited of the confidence interval for the ratiolmlbe plotted when the estimated ratio is
larger than 1 and the base 2 logarithm of the ufipet of the confidence interval for the
ratio will be plotted when the estimated rationsafler than 1. In this plot, both x- and y-axis
are of the same meaning, namely fold change. Tévdscis the estimated fold change, and the
y-axis is how extreme the fold change can be. énmtodified Volcano plot, the points with
both estimated ratio and lower limit larger thaant the points with both estimated ratio and
upper limit larger smaller than 1 are interestis@ce they are more likely to give the
significant result in the corresponding test. Thetads of both the Volcano plot and the
modified Volcano plot will be discussed in Chapter

Also when the data is dichotomized with some pricut-point, for example maximally
selected cut point (Hothorn and Lausen, 2002)jrtfezence for binary data can be also used
for continuous data. In this research, a reviewitifierence for the ratio is made, especially
the method for construction of confidence intervalsthe ratio of two proportions. A new
method (add-4 asymptotic method) for the constomctif confidence intervals for the ratio of
proportions is proposed. The proposed new methpbiged to maintain the nominal level of
confidence (0.95) for the confidence interval viarNe-Carlo simulation.



1. CHAPTERA
Introduction to Microarray Data

It is necessary to know whether the data are rdalfifled the assumption of the statistical
tests before conducting the statistical analysis. éxample, when the experimental data is
nonnormal but variance homogeneous, Wilcoxon test lme used. Thus the distributional
characteristics of Microarray data are importantcfooosing the appropriate statistical test.
Microarray experiments are conducted in such a eraas to profile the behavior patterns of
thousands of nucleic acid sequences or proteinlsineously. Plus, they are capable of being
automated and run in a high throughput mode. Theg generate mountains of data and data
analysis is necessary for converting data to kndgée But the microarray data have some
characteristics, such as small number of replicatéssing values, variance heterogeneity,
nonnormality, bimodal distribution, different shapm two samples, etc., which make the
statistical analysis hard to implement. Severahslss are investigated, which is shown in
Table 1:

Table 1 Data sets investigated in this study

Dataset Name Replications Gene Number  Typé
Armstronget al. (2002) 24 ALL, 20 MLL 12582 Oligo.
Golubet al (1999) 25 ALL, 47AML 7129 Oligo.
Singhet al (2002) 50 Normal, 50 Tumor 12600 Oligo
Yeohet al (2002) 27 E2APBX,79 TEL AML| 12625 Oligo.
Shippet al. (2002) 19 DLBCL, 19 FL 7129 Oligo.
Garberet al. (2001) 29 Ade, 31 others 22115 CcDNA
Gruvbergeeet al. (2001) 28 ER+, 30 ER- 3389 cDNA
Khanet al. (2001) 23 EWS, 20 RMS 2303 cDNA
Huang et al. (2001) 8 Tumor, 8 Normal 12558 cDNA

Summary of the 9 data sets used to study the deaistics of the dataset. The number of genes (orem
precisely, the number of array elements) is inéidafhe middle column description of the experimeatnple

size and the comparison we studied. For details,tee web supplement. Abbreviations: E2APBX, GIST,



gastrointestinal stromal tumor; ER, estrogen rece@®IL, acute myeloid leukemia; BPH, benign prostate
hyperplasia; DLBC, diffuse large B cell lymphoma; Fallicular lymphoma; EWS, Ewing’'s sarcoma; RMS,
rhabdomyosarcoma; MLL, mixed lineage leukemia; ALL,tadymphoblastic leukemia; AML, acute myeloid

leukemia.

Characteristics of Microarray data:

In this thesis, the characteristics of Sirgjhal (2002) data set will be shown as a example,
because Singh data are of the largest sample wiaacpall the available datasets. It is more
reliable to describe the distribution shapes ofrveray data. The design of this experiment
Is to determine whether global biological differeaaunderlie common pathological features
of prostate cancer and to identify genes that magtticipate the clinical behavior of this
disease. The sample sizes of both samples are 50.

To describe the distributions for all the genesir fdescriptive statistics are to be used. They
are mean, standard deviation, skew and kurtosith Wese four statistics, the distributional
information of the Microarray data can be roughdgcribed.

The histograms of two samples are shown in Figuyrewflich globally indicates the

differences of gene expression.

Histogram of Means of Sample I{red) and li{blue)
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Figure 1 Histograms of tumor (blue) and normal (red samples.



The Histograms above only show the global profdéshe gene expression differences, i.e.
only the means of all the genes in the first graod the second group are plotted separately.
We can see the differences between two the two Isamiput we cannot find out how many
genes are really differently expressed. Thus, 8megise absolute and relative differences for
each gene between two groups are calculated, tmewgge differences and relative

differences (ratios) study is also performed arahshin Figure 2:
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Figure 2 Genewise mean differences (left) and raso(right) of tumor sample minus

normal samples and tumor sample divided by normalample.



The majority of the genes do not expressed diftereso the genewise differences centered
at 0 as the genewise ratios centered at 1 corrdspgy. Because of the different magnitude
of the gene expression levels between differeneex@nts, comparison of the absolute
differences is nonsense. The fold change is meaningthis case, and the majority of the
fold changes among all the datasets are betwead 8,avhereas 0 means very big difference.

There are also relative differences in variatiohthe data, which can be seen from Figure 3:

Genewise Ratios in 8D, Sample Il minus |
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Figure 3 Genewise ratios of Standard Deviation (SDpf tumor sample divided by

normal sample.

It is shown in Figure 3 that majority genes expi@ss from two samples are variance
homogeneous (ratios around 1). But there are atsb @f genes have serious variance
heterogeneity between two samples, which can be isethe histogram (ratios near to 0 or
near to 8). To describe the distributions more igedg, the third and forth moments

(Skewness and Kurtosis) for the data are also leamiand shown in Figure 4:
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Figure 4 The histograms of Skewness (left) and Kuosis (right), green lines show the

corresponding value for the normality.

The histograms show that the Skewness and Kurdd$es more or less between two samples.
The genes expressions data in all the samplestdewan normality (see the green lines for
skewness and kurtosis for normality). Since thevsless and kurtosis are correlated, the joint

distributions of skewness and kurtosis are showkigare 5:
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Figure 5 Joint distributions of skew and kurtosis & Normal sample (left) and tumor

sample (right). The green points indicate the valu€0,3) for normality.

From the joint distributions, it is easier to shattmost of the gene expression data deviate
from normality, and some of them are even highkveéd and with sharp distribution curves.
The skewness locate between —1 to 2 most frequethidye are also highly skewed data,
which is very likely the consequences of extremieiesa After excluding the extreme values

(usually the highest and lowest 0.5% of the arrdlybe deleted empirically, thus the central



part of the distribution curve is better descrilbgdskewness and kurtosis), the skewness and

kurtosis can be shown in Figure 6:
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Figure 6 Joint distributions of skew and kurtosis & Normal sample (left) and tumor

sample (right) after excluding outliers.

Actually the very extreme skew and kurtosis aréesticaused by extreme values in the
dataset; this phenomenon can be modeled as migistigbution, which will be discussed

later in this section.
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For detecting and visualizing the differentiallypegssed genes, Volcano Plot was proposed
(Wolfinger et al.,2001). The properties of Volcano Plot and compariwith other graphical
presentations will be discussed in detail in seciioThe Volcano Plot for the example data is

shown in Figure 7:

Volcano Plot log2(Ratio) vs. log10(p.value)
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Figure 7 The Volcano Plot of Singh data with base-2ogarithm of fold change as

abscissa versus minus base-10 logarithm of p valuigem t test.

The Volcano Plot also shows that there are majofityenes did not express differentially (i.e.
small fold changes and largevalues from thed test). But the usage aftest is doubted
because the nonnormality nature of the data. Pesaftom other nonparametric tests seem
more appropriate for this purpose, which will bewsh also in next section.

In horticulture science, the experimental data hal® such problems. For example, the
experiment conducted by Schneider and Tatiliogkch(®ider; Tatilioglu, 1996) is designed
to study the protein band samples of two diffel@ehotypes of chives. The protein band is
generated through gel. Here the influence on thmal lsmamples under rising dosages (Oppm,
10ppm, 15ppm, 20ppm) of Tetracycline was showrtdtracycline sensitive and tetracycline
insensitive plants. The endpoint is the integrdishe 18-kilo Dalton Mitochondria Protein
band. The process of the integral values undergidbosage of Tetracycline is examined as a
function of the Genotype. Per Genotype and dosage trepetitions are accomplished. The

descriptive statistics of the dataset are showraile 2.



Table 2 Data from Schneider and Tatilioglu’s expemnents

Dose of Tetra.| Oppm 10ppm 15ppm 20ppm
Mean 665.00 587.17 408.08 225.38
SD 255.57 262.12 217.87 112.11

Tetra is the abbreviation of Tetracycline, SD meawamdard Deviation.

With the increase of dose of Tetracycline, the mead the standard deviation of the
endpoints becomes much smaller. For the analysisuof data, the test should have the

robustness against the variance heterogeneity.

Candidate Tests and Simulation Study

Let X,,, X,,....X,, be i.i.d. with distribution functiorF, (x) andX,,, X,,,...X,, be i.i.d. with

distribution functionF,(x).

Parametric two-sample test

t test
When the data are normally distributed, furtherassume that the variances are

homogeneous, that 5% = g% = o”

Test statistics:

o X=X,
Spool i + i
nl n2

Where Sams = (n, —~1)S% +(n, -1)S%

n-n,—-2
S% and S% are unbiased estimators @f® calculated from sample 1 and sample 2,
respectively. Degree of freedomf =n, —n, —2. The statistic T has t distribution witlf

degrees of freedom, and we use this statisticrfi@réntial purpose about the two population

means under the above assumptions.

Welcht test

We assume heret ~ N(/Jualz) and X2 ~ N(/—’z,Uzz), 0 %0,

Test statistics:
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Toeich = X12 X22 ~t(df,..), Where the approximate number of Degrees of freedo
i + 872
n n

1 2

= ( ?/n, +S,%/n, )
o ( 2/” )2/ ( Z/nz) /(nz _1)

df

Modifications of the t test

Studentt test, Welch test (or use bothtests after logarithm of the raw data) are commonl
used. The t test is a simple, statistically basethoaefor detecting differentially expressed
genes. In replicated experiments, the error vaeiarzan be estimated for each gene from the
log ratios, and a standard t test can be conddictezhch gene (Callow, 2000); the resulting t
statistic or p values can be used to determine lwhenes are significantly differentially
expressed. This gene-specific t test is not affebjetieterogeneity in variance across genes
because it only uses information from one genetahe. It may, however, have low power
because the sample size, i.e. the number of RNAplesnmeasured for each condition is
small. In addition, the variances estimated frorohegene are not stable: for example, if the
estimated variance for one gene is small, by chaheet value can be large even when the
corresponding fold change is small. It is possibleompute a global t test, using an estimate
of error variance that is pooled across all geriest is assumed that the variance is
homogeneous between different genes (Arfin, 2000)s is effectively a fold-change test
because the global t test ranks genes in an drdeistthe same as fold change; that is, it does
not adjust for individual gene variability. It malgerefore suffer from the same biases as a
fold-change test if the error variance is not tredyistant for all genes.

As noted above, the error variance (the squareabuathich gives the denominator of the t
tests) is hard to estimate and subject to errhtatifations when sample sizes are small. More
stable estimates can be obtained by combining alatass all genes, but these are subject to
bias when the assumption of homogeneous variangeléded. Modified versions of the t test
find a middle ground that is both powerful and Isgbject to bias.

In the ‘significance analysis of microarrays’ (SAMgrsion of the t test (known as the S test)
(Tusher, 2001), a small positive constant is addethé denominator of the gene-specific t
test. With this modification, genes with small faldanges will not be selected as significant;
this removes the problem of stability mentionedwabolhe regularized t test (Baldi, 2001)

combines information from gene-specific and glodatrage variance estimates by using a



13

weighted average of the two as the denominatoafgene specific t test. The B statistic
proposed by Lonnstedt and Speed (2002) is a logepostodds ratio of differential
expression versus non-differential expressiontlaigs for gene-specific variances but it also
combines information across many genes and thusicie@ more stable than the t statistic.
The t and B tests based on log ratios can be fourtbe Statistics for Microarray Analysis
(SMA) package; the S test is available in the SAdftvgare package; and the regularized t
test is in the Cyber T package. In addition, thecBimuctor has a collection of various
analysis tools for microarray experiments. Addiibmodifications of the t test are discussed
by Pan (2002).

Nonparametric two-sample test

Asymptotic Wilcoxon test
Let r, be the rank ofX  in the combined sample, that )5, is ther, th smallest in the

combined sample, thew :Zin:lrli , the sum of ranks of th&,’s, is defined to be the

Wilcoxon statistics (Wilcoxon, 1945). The null dibtition of the statistic approximates

normal when sample size is large.

Exact Wilcoxon test
Using the same Wilcoxon test statistic defined a&hdkie null distribution of the statistic is

replaced by exact distribution rather than nornpgdraximation. It is used when sample size

is small.

Maximally Selected Rank test
The maximally selected rank test is proposed forcthssification problem, the idea is to use

an optimal cut point to distinguish two samples. Lgte the rank ofX  in the combined
sample, andy, 1)..a,(n denote some scoreg,is a pre specified cut point. A simple linear

rank statistics (Hajek and Sidak, 1967, p.61) is fined as
Sy ZZCﬂ(Xi)an(rln):zxisﬂan(rln), wherec, (X;) =1, ., are regressors depending on
i=1

4 . Furthermore, when the scores are set equal toattles, i.e.a, (i) =i, S, equals to the

Wilcoxon statistic in section 3.3. The exact disitibn of maximally selected rank statistics
is derived by Hothorn and Lausen (2002).
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Conover-Salsburg test
Conover and Salsburg (1988) investigate two kifdssbmann alternatives (Lehmann, 1953),

which only a subset of treated sample will showimprovement. They proposed to use

scoresa, (i) = [i /(N +1)]4for the statistic defined by Hajek and Sidak (1964 Zi”:lan OF

Mood’'s Median Test
Mood’s median test (Mood, 1950) is a nonparameé&st, which is alternative to Wilcoxon

test when variances of two samples are heterogengbe test statistic i1 = the number of

X, values that exceed the median of the combined smn{pliddle observation i, +n, is

odd, and average of the middles onesnjf+n, is even). The distribution oM is

n n,
n+n, o
P(M e = m) = 2 , m=01..n,. A similar formula holds ifn, + n,is odd.
' n, +n,
[nl +n,
2

Cramer-von Mises test

. 2
The Cramer-von Mises statistd/® = I[Fz(x)— Fl(x)] dF,(x), whereF,(x) is the empirical

CDF based on sampige The statistic was suggested independently by €rgh®28) and von
Mises (1931).

Kolmogorov Smirnov test
The Kolmogorov Smirnov test (Kolmogorov, 1973) lzhse the statistic

W = max(F, (x) - F,(x)) whereF(x) is the empirical CDF based on samiple

Proposed Maximum Test

In many applications, the precise form of the modetlerlying the data is not known;
however, several scientifically plausible ones available. Often optimal tests for each of
them exist. Unfortunately, use of any one optinegt tmay lead to a loss of power under

another model.
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There are different solutions for such problem,hsas adaptive inference when the models
are very far apart (Bickel, 1982), Maximin effic@nrobust test (Gastwirth, 1966, 1985) and
Maximum test (Tarone, 1981; Fleming & HarringtoA91)

A nonparametric test can be performed using adirszk statistic
N
T= z g(i )‘/i )
i=1
where g(i) are real valued scores, amMi= when theith smallest of theN =n+m

observations is from the first sample and= otberwise. Two-sample tests basedToare
distriubtion-free. UndeH ,, we have

£(r)= 3 2a)

o )[Nig 0)- (igo)ﬂ

Var(T)

and the standardized statistic

1/VariT )

follows asymptotically a standard normal distribat{Bining & Trenkler, 1994, pp. 127-130;
Hajek et al., 1999, pp. 57-63).

3 optimal tests to use:

1. Gastwirth test G (short tails)
i N+1 ¢ i < N:1
- or
N 4 N . 3(N+1)
(i) = 0 for <i<
= 3N +1) for Y
1 > 3(N4+ 1

2. LT test (long tails)

.

of)={ i-1 for {E}+1sis[M}

4
[E}rl for i{S(N +1)}
4 4

Here, [x] denotes the highest integer less than or equal to
3. Brunner (Brunner and Munzel, 2000) test (Nonpetaic Behrens-Fisher Problem)
To formulate a nonparametric Behrens-Fisher proplera consider the relative

treatment effectp = P(X, < X21)+%P(X11 = X,)

IN
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The random variable<,, is called totend to smaller (largeryalues than the random

variable X,, if p>% (p<%j and the two random variables are called

tendentiously equal ip = %

To estimate the relative treatment effgand to derive its asymptotic distribution it
IS more convinient to expregsin terms of the disbribution functions. To this eng

use the so-callechormalized versionF, (x ——[F +Fi+(x)] of the distribution

function (Ruymgaart, 1980) wheie™ (x) = (X < x) is the left-continuous version
and F*(x) = P(X, < x) is the right-continuous version of the distribatiunction.
Then, the relative treatment effeptcan be written ap = J' F,dF, and the hypothesis

of no treatment effect is written aﬁo":p:jFldFZZ%. We note that

He :F,=F,=F implies HY: p :% becauseJ' FdF :% , Which follows from

integration by parts.
To estimate the relative treatment effgct the distribution function$; and F, are

replaced by their empirical counterpafgx) = %[Ifi‘(x)+ Iff(x)].

F (x) :n—ligc‘(x— X,k)
Ifﬂ(x):niigﬁ(x—x,k)
JORESACEES

where

0, x<0 :
¢ (x)= called left-continuous
>0

0, x<0 . .
c*(x)= called right-continuous
1, x=0
——[c ] called normalized
version of indicator functlon.

2
Let H(X)=Z%Fi(x) denote the combined distribution function and let

i=1

2
H(X)= Z% = (x) denote the normalized version of the combined Eoapi
i=1

distribution function. Note thaR, = N D:I(Xik)+% is the rank ofX, among all
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N observations. LeR,=n" .ZRk,l =12, denote the mean of the rankg in the

ith sample.
Then, it follows that

IFdF __[ﬁz n, +1]

Is an unbiased and consistent estimator for tlaiveltreatment effecp .
The statisticy/N| (ﬁ—;) /O'N = (ﬁz -R, )/ JNo’ has, asymptotically, a standard

normal distribution undeH; : p —% where

= N[Uf/n +0Z/n, ]
The variancew?and g’ are unknown and must be estimated from the data.

:S|2/(N _ni)21
where
1 & )= m 1Y
= Z(Rk RY-R.+ j
n, =i 2
is the empirical variance oR, -R!), R!) = NH (Xik)+% denotes the (within) rank

of X, amongn, observations within thgh sample.
Thus, undeH ), the statistic

r[p_lj_ 1 ER R,

UN N
has, asymptotically , a standard normal dlstrlbutmder hypothesis

BF _
W, =

The asymptotical distribution of the Maximum of thbove three standardized statistics is
possible to derive. Assume that the standardizednap statistics are asymptotically jointly

multivariate normal with correlation matr{ ij}. And the joint density function of the three
standardized statistics i5(x;, X,,X; . Define the maximum oK, X,, X, are X,,, and when
X, <X, it means each oK, < x,i= 123Then the Asymptotic distribution of  is just

the integral J' f (X, X,, X5 )dx dx,dx,. But the asymptotic distribution of a maximum istat

X <X
may be not available, or, if available, the asyrtiptapproximation can be poor (Freidlin &
Korn, 2002). Therefore, this test can, for largmgke-sizes be performed simulation-based

only, i.e. Bootstrap or permutation-based. The Biap or permutation distribution of the
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maximum statistic can be obtained with resamplintgy wr without replacement respectively.
For example, in the permutation case, the data tseonsamples are pooled together, and in

each resampling, generate a permutation of theedaéta, and take the firsf numbers as
the first group and the next,as second group. Perform the test and save thstiseatRepeat

this process for N, say 4,000, times. We can uee4tf00 stored statistics to generate the
empirical distribution of the statistic, and théw tdecision of the test can be made from the
observed statistic depending on the empirical ibigtion. The only difference between a
permutation resampling and Bootstrap resamplintpas Bootstrap resampling sample from

the raw data with replacement.

Distribution systems

To model the nonnormality of the real data, disttitin systems are needed. The suggestion
to use “typical” nonnormality, such as lognormalet® Gamma, Weibull, student t
distributions etc., has been made by Pearson aab®(1975). In the literature, there appear
other methods for generating nonnormality, such aalsling outliers, using extreme
nonnormality (chi square, rectangular, lognormatpamential, t, Cauchy distributions),
transformation to unknown nonnormality and Tabular.

But the above method is either hard for the red$mardo manipulate the distribution
parameters (mean, variance, skewness, kurtosi3,athard to implement in Monte Carlo
simulation. Thus, some other distribution systenesaalapted for generating nonnormality in
the simulation study, which fulfill the followingequirements: they should have a priori
known parameter, enable the researcher to charggebdtions with the least amount of
difficulty, be realistic simulations of empiricaistributions, capable of generating widely
different distributions, and should operate asceffitly as possible.

The first used system is Fleishman system (Fleishni®78). The idea behind is a
polynomial transformation, and will be called theygr method. The transformation is of the
form Y =a+bX +cX? +dX®, where X is a random variate distributed normally with zero
mean and unit variancéy (01) , Y will have a distribution dependent upon the cortstan
With the restriction of mean, variance, skew anddais, the four coefficienta( b, candd)

can be found (for details see Fleishman, 1978). éSah the coefficients for certain

combination of skew and kurtosis are tabulatedcilare used in this report. One thing to
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notice is the limitation of Fleishman system, tlusgble space of the skew and kurtosis can
be described by a parabokskew < 0.0629576x kurtosis+ 0.0717247.
Histograms of some nonnormal distributions generdtg Fleishman system are shown in

Figure 8:

Histogram of rnorm(1000)
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Figure 8 Some distributions generated by Fleishman system

Due to the limitation of Fleishman system, othestribbution systems are used; the second
used system is Johnson distribution. Starting feorontinuous random variab® whose
distribution is unknown and is to be approximatad aubsequently sampled, Johnson (1949)

proposed a set of four normalizing translationsesehtranslations have the general form

X = y+ 5[{](—2;5j

Where X is a standard normal random variate (thatXis- N(01)), y and J are shape
parametersd is a scale parametef,is a location parameter, ar@;([) is a function whose

form defines the four distribution families in thehnson translation system,
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forS, Iog normal) Family

( )_ In[y+w/y +1 ] for §, unbounde() Family
] In(y/@t-y)) for Sy(bounded  Family
y for S, (normal) Family

In the support of all these four functions, it d@nproven to be monotonic increasing.

The random variabl&@ has the following characteristics:

o)
amsal 5yl )

According to Hill et al. (1976), the Johnson curves can be fitted using &tdnMatching

Cumulative distribution:

Density function:

Estimate, which is implemented by in Software RikageSuppDists

As shown before, the extreme skew and kurtosicaused by the extreme values exists in
the dataset. In fact that not only unimodal disttiin exists in real data set, such extreme
values can also be understood as another compooktite distribution, consequently the
distribution system should be able to generate Bahor multimodal distributions. Mixture

distribution is used for this purpose, though Johnnsystem has the same functionality. In this
study, only two normal components are used. Suppése N(;,,0,°) has the (Probability
Density Function) PDF,(x, ,)and X, ~ N(,uz,azz)has the PDFf,(x, .)Since the support
of X, and X, are(—w,), if Xis a random variable which may come from the alioxe
populations, the support oK is also (—w,») . Random variableX has the PDF
f(x) =af,(x)+(1-a)f,(x). (ais called mixing probability or proportiom of the times
from the first component,-a of the times from the second component.)

Since:
T f (x)dx= T(afl(x)+(1—a)f2(x))dx: Tafl(x)dx+ T(l—a)fz(x)dx: at(l-a)=1
The mean of X iE(X) =au, + 1-a)u, )

The variance oK is V(X) = a(g,” + 1,°) + (1- a)(022 + ,uzz)— (aw, + @-a)u,)

Two mixture distributions are shown in Figure 9:



21

08

08
|

04

00

T T T T
_4 e ] 2 L

Indes

Figure 9 Two mixture distributions. Blue one with Q9N(0,1) +0.1N(2,0.25), and red one
with 0.9N(0,1)+0.1N(4,0.25).

The above introduced distribution system are fliexto model and simulate the real data, but
the mechanism of generating the real data mighmde complex, the simple transformation

and mixture might not be sufficient for investiguatti

Monte-Carlo simulation

Outline of Monte-Carlo Simulation

The different statistical tests can be comparediaate-Carlo simulation. In the simulation,
the random variate will be generated under diffesgecific conditions. For example, when
the type | error of test is under investigation. The random data shbalgenerated under the
null hypothesis condition. The underlying distribat of the data is set to be normal
distribution with equal variances. Use software &R instance, the normally distributed
random number can be generated using command mmother necessary arguments. The
t test is also a function in software R with commarainme t.test. Condudttest for the
generated random varialé say 10,000, times and count the number of sicaniti results.
The number of significant results divided by thengiation number 10,000 is the estimation

of the type | error rate of t test under the nyibdthesis. If one of the two samples is shifted
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from the other, the power of the sample can be estimnated using the same process. The
confidence intervals of the estimated type | erade and the power can be also calculated

using the inference for proportions. The estimayge | error and the power are denotedoby

the confidence interval ip+ z P 1|\_| P , Where z depends on the level of confidence disire

Generating of Random Number

There are different ways for the random number geim®. Here only a general idea of
generating random variables of different typesiv@mg This is done by simply determining
values of the uniform variable. Consider the foilogvfact:

Let random variablé&’ be distributed normally over the unit interviak y <1. Suppose that
F(x) is a distribution function of the continuous typehich is strictly increasing when
0<F(x)<1. If the relationshipY =F(X) is defined, the inequalitiesX <x and
F(X)< F(x) are equivalent. Thus, with< F(x) <1, the distribution ofX is

Pr(X < x)= P{F(X) < F(x)] = PY < F(x)]

becauser = F(X ). However,Pr(Y < y) =G(y), so we have

Pr(X < x)=G[F(x)] = F(x), 0< F(x)<1.

That is, the distribution function of X iE(x). This result permits us to simulate random

variables of different types. This is done by siyngétermining values of the uniform variable

Y, usually with a computer.

But in the simulation of random variables usingfommn random variables, it is frequently

difficult to solve y = F(x) for x. Thus other methods are necessary. For instannsider the
important normal case in which we desire to deteeriiso that it isN(071). Of course, once

X is determined, other normal variables can thealtained througlX by the transformation

Z =0X + u. To simulate normal variables, Box and Muller (lgp&raig, 1995) suggested
the following transformations, let,Y,be a random sample from the uniform distribution
over 0<y<1. Define X, and X, by

X, =(-2InY,)"? cod27,)

X, =(-2InY,)"? cod27Y,)
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The random variableX, and X, are proved to be independent standard normal mando

variables. For the proof see for example Hogg araigC

Simulation Results and Discussion

Condition I: Normality with variance heterogeneity

From the investigation of Microarray datasets, ¢hare roughly 25% genes fulfil the
assumption of normality (via Kolmogorov-Smirnov tteg). But the variances are
heterogenous for some of the genes. Thus thedmstlition considered here is Normality
data with variance heterogeneity.

The simulation is designed with sample size 10 ;obbth samples are normally distributed
with mean difference 0,0.5,1,1.5,2,2.5,3, standdance ratio 1, 1.5, 2, 3, 5, 7,10. Three
candidate tests, Welchtest, Exact Wilcoxon test and maximally selectest tare used.
10,000 replications and 0.05 significant level ased.

The power matrices for three tests are shown iie 2d5:

Table 3 Power matrix for Welcht test. SDR means standard deviance ratio, MD means

mean difference.

SDR 1 15 2 3 5 7 10

0 0.050 0.056 0.044 0.063 0.050 0.045 0.049

0.5 0.172 0.120 0.119 0.075 0.05) 0.058 0.0p4

1 0.555 0.359 0.254 0.138 0.087 0.066 0.071

15 0.868 0.707 0.478 0.27¢ 0.12) 0.079 0.088

2 0.985 0.898 0.739 0.440 0.203 0.130 0.076

2.5 1.000 0.983 0.920 0.628 0.284 0.189 0.111

3 1.000 0.998 0.981 0.780 0.378 0.238 0.143




Table 4 Power matrix for maximally selected rank tet.

SDR 1 1.5 2 3 5 7 10
MD
0 0.059 0.072 0.111 0.213 0.336 0.451 0.490
0.5 0.161 0.125 0.170 0.232 0.37p 0.435 0.530
1 0.471 0.338 0.289 0.312 0.37y 0.468 0.587
1.5 0.773 0.633 0.517 0.404 0.470 0.451 0.5p5
2 0.937 0.773 0.718 0.612 0.538 0.532 0.546
2.5 0.934 0.940 0.834 0.762 0.57P 0.578 0.5/5
3 0.958 0.883 0.940 0.851 0.683 0.601 0.624
Table 5 power matrix for Exact Wilcoxon test.
SDR 1 1.5 2 3 5 7 10
MD
0 0.045 0.053 | 0.049 0.075 0.088 0.07 0.094
0.5 0.155 0.115 0.106 | 0.083 0.071 0.079 0.093
1 0.511 0.327 0.240 0.139 0.101 0.123 0.105
1.5 0.833 0.660 0.446 0.273 0.165 0.113 .12
2 0.979 0.869 0.698 0.438 0.226 0.159 0.120
2.5 1.000 0.980 0.884 0.616 0.294 0.240 0.167
3 1.000 0.995 0.965| 0.751 0.392 0.278 0.190

24
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The simulation results show that when the variaceshomogeneous, all the tests control the
alpha. But even with no mean difference but vagaheterogeneity, the Weldhtest is the
best candidate because the alpha is always cadrodgardless of the ratio of standard
deviation. The Exact Wilcoxon and Maximally Selectest behaves too liberal in this case.

Condition 1l: Nonnormality with Fleishman System

The distribution is skewed from the investigatidnreal microarray data, after deleting the
extreme values; the skew and kurtosis are limibed tlomain that Fleishman can be used to
describe the shapes of the underlying density suivethis scenario, five tests (Welch t test,
Asymptotic Wilcoxon test, Exact Wilcoxon test, Mardlly selected test and Mood’s median
test) are compared under normal (N(0,1) vs. N(@)/Sample size 25 with expected power
75%), Fleishman with Skew 1.5 Kurtosis 3.75 andshiman with Skew 2 and Kurtosis 7
distributions. Sample sizes (25,25) (20,20) (15(18)10) are used.

The simulation results under three distributions lsa seen in Table 6-8:

Table 6 Power matrix for five tests under normality.

Under the null

Sample sizeg T MS EW AW Mood
25: 0.0510 0.0530 0.0534 0.0560 0.0568
20: 0.0488 0.0542 0.0482 0.0482 0.0146
15: 0.0516 0.0602 0.0486 0.0486 0.0164
10: 0.0464 0.0536 0.0416 0.0416 0.0104

Under the alternative

25: 0.7442 0.6046 0.7098 0.7162 0.651(
20: 0.6374 0.5250 0.6186 0.6186 0.3578
15: 0.5022 0.4274 0.4708 0.4708 0.2764

10: 0.3398 0.2982 0.3070 0.3070 0.1684




Table 7 Power matrix for five tests under Fleishmarwith skew 1.5, kurtosis 3.75

Under the null
Sample size T MS EW AW Mood
25: 0.0500 0.0522 0.0484 0.0502 0.0570
20: 0.0524 0.0534 0.0524 0.0524 0.0150
15: 0.0470 0.0624 0.0494 0.0494 0.0188
10: 0.0404 0.0540 0.0430 0.0430 0.0104
Under the alternative
25: 0.7492 0.8832 0.8570 0.8602 0.7602
20: 0.6472 0.7854 0.7658 0.7658 0.4692
15: 0.5410 0.6788 0.6216 0.6216 0.3732
10: 0.3962 0.4396 0.4364 0.4364 0.2320

Table 8 Power matrix for five tests under Fleishmarwith skew 2, kurtosis 7

Under the null

Sample sizg T MS EW AW Mood
25: 0.041 0.050 0.040 0.043 0.049
20: 0.045 0.052 0.052 0.053 0.015
15: 0.046 0.049 0.038 0.038 0.019
10: 0.038 0.055 0.047 0.047 0.014

Under the alternative

25: 0.735 0.951 0.914 0.918 0.839
20: 0.6472 0.7854 0.7658 0.7658 0.4692
15: 0.560 0.800 0.709 0.709 0.465
10: 0.391 0.526 0.494 0.494 0.289
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The simulation results above show that under tHe ragardless of the distributions all the
candidate tests controls alpha. When the datarisaity distributed, the t test is proven to be
the best test for all sample sizes. But when tha d&a skewed, Maximally selected test
behaves the best, for example as shown in Tabiee7power of MS test under all sample
sizes are much higher than t test and also slidtigfiger than Wilcoxon test. Mood’s median
test works well in moderate sample sizes (25-18) the power decreases dramatically when
the sample size falls to be 10, which is not ssimpg since more than 12 observations is

recommended in the literature.

Condition Ill; Mixture of two Normals

Conover-Salsburg test is a good candidate test whisma subset of treated sample will show
an improvement. The simulation for this test isigiesd as Sample Size 25 balanced, with
5000 simulation replicates.

The simulation results of this test show that ibtcols alpha, 0.0476, under the null. And
when two samples amg(0,1) and.N(0.75,1), the power of Conover-Salsburg test i2066
whereas the expected power for t test is 0.75. Wheriwo samples are designed\(®,1)
and 0.N(0,1)+0.3N(5,1), The power of CS test is 0.7566 whereasst has the power of
0.2423.

Condition IV : Simulation for Maximum Test

Since the characteristics of microarray data inelodt only one problem at a time, the most
powerful test in each case cannot work well for thk genes in microarray data. The
Maximum of some standardized statistics is propo$éeé simulation study is conducted to
check the alpha robustness and the power of thisctampared with t test and Wilcoxon test
for sample size 25. The simulation number aresétet 1,000 since the Bootstrap procedure
are very computation intensive. The Bootstrap oapilon is 400 for the Maximum test.

The 3 components of Maximum Test are simulated raggg under normality to check the
alpha and power.

The results are shown in table 9:
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Table 9 Simulation study for the 3 components of Mamum Test

Test Expected alpha
Gastwirth Test | Long Tail Test | Brunner Test | and Power oft
Distribution test
N(0,1) vs. N(0,1) | 0.0476 0.049 0.0457 0.05
N(0,1) vs.(0.75,1) | 0.659 0.651 0.749 0.75

The simulation results shows that each test canaipha in normal case, but thiest is the
most powerful test. But Brunner Test is a verydytest, which controls the type | error and
gives almost the same power likeest.

Since the Gastwirth test is powerful when the daa@e short tail (small kurtosis), the
LongTail test is powerful when the data have loait) larger kurtosis) and Brunner Test is
powerful for the non-parametric Behrens-Fisher f@ab The combination of these three tests
is hoped to have better performance than otheridatedtests.

Under the normality with homogeneous variance theximium Test is proved to control
alpha and has the power smaller théast, which can be seen in table 10.

Table 10 Type | error and power of Maximum test unekr normality and variance

homogeneity

Test Maximum Test Expected alpha and power|of
Distribution Welcht test
N(0,1) vs. N(0,1) 0.0525 0.050
N(0,1) vs. N(0.75,1) 0.6848 0.750

Again the results show that theest is more powerful than Maximum Test when data
normally distributed, and the reason why the MaximiLest is less powerful thanest is that
some price must be paid for the Gastwirth Test #ned TongTail Test, which are not as
powerful as the test or the Brunner Test.

Under the variance heterogeneity, the type | eanal power of Maximum Test can be shown
in table 11:

Table 11 Type | error and power of Maximum test unekr normality and variance

heterogeneity.

Test Maximum Test Wele t test Exact Wilcoxon
Distribution Test
N(0,1) vs. N(0,2) 0.057 0.046 0.074
N(0,1) vs. N(0.75,2) 0.324 0.371 0.349
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The simulation result shows that under normalitg ®ariance heterogeneity, exact Wilcoxon
test does not control alpha, whereas Maximum Treg0selcht test has the type | error near

to the nominal 0.05. The power of Welctest is higher than Maximum Test in this case.

When the data is nonnormal, for example Fleishmstniloution with skew 2 and kurtosis 7,

the simulation results of Maximum test can be showmable 12:

Table 12 Type | error and power of Maximum under nomnormality and variance

heterogeneity.

Test Maximum Test| Welch test exact Wilcoxor
Distribution
Fleishman(0,1,2,7) vs. Fleishman(0,1,2,7) 0.033 0.037 0.042
Fleishman(0,1,2,7) vs. Fleishman(0,2,2,7) 0.158 0.056 0.172
Fleishman(0,1,2,7) vs. Fleishman(0.75,1,2,7) 0.936 0.745 0.912
Fleishman(0,1,2,7) vs. Fleishman(0.75, 2,2,7)0.270 0.356 0.267

The simulation results show that under nonnormalitight skewed) and variance
homogeneity, the Maximum Test, Welch t test andcceXélcoxon test controls alpha, but the
Maximum Test and Welch t test is conservative. WUndgiance heterogeneity, only Welch t
test controls alpha, both the Maximum Test and EeXdilcoxon test are anticonservative.
Under variance homogeneity, the Maximum Test hashilghest power among three tests.
But under variance homogeneity, Welctest performs best which guarantee the type frerro
and have higher power than other two tests.

This result implies that in the situation of normaitity and variance heterogeneity, Wetch
test is the best candidate test though the assompfinormality is violated. The Maximum
Test is conducted with more realistic assumptian,itodoes not control the type | error under

this condition.

Graphical Presentation of the Test Results
The test results, such @svalues or the confidence interval of some pararsetan be

presented graphically. On is the so-called Volcalua.
Volcano plot

The test results can be presented efficiently utiegso-called Volcano Plot, Volcano Plot is

nothing but a scatter plot of the base 2 logaritsfmthe ratio of means versus the base 10
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logarithm of the p value from the statistical t€3he disadvantage of the Volcano Plot is that
the distance of two points is hard to interpretsithe x- and y-axis are in two different scales.
The microarray data will be used to illustrate #iigd of plot.

The identification of the important differentialgxpressed genes from massive amounts of
microarray data is an interesting and current bicsics problem. Different approaches have
been proposed, such as testing procedures, engficagce analysis of microarrays (Tusher et
al. 2001) and graphical tools, e.g. the MAplot (8adog fold-change as a function of mean
log expression level) (Cope et al., 2004). The awotr plot (Wolfinger et al., 2001), a
combination of testing and graphical approachea,gsnple scatter plot, where p is the two-
sided p-value of the common two-sample t-test. igufe 1 such a plot is given for the
Affymetrix-type oligonucleotide arrays by Shipp &t (2002) and the interpretation is as
follows: the abscissa <0 indicates under expresskih over expression, the ordinate
indicates non-significant finding and significafihdings, where the nominal or
multiplicity-adjusted false positive error raten be used. Therefore, genes can be identified
which are both significant (low p-values) and ralet/(high log-ratios). This plot implicitly
assumes the approximate validity of the Gaussiatrilolition. Although probe (expression)
level data were pre-processed several-fold (nomed]i log-transformed), doubts on the
Gaussian distribution and variance homogeneityraptiaon exist. One example of this plot

can be seen in figure 10.

Modified volcano plot
The reason for graphing statistical significancevgfue) versus biological relevance (ratio)

needs an explanation, particularly because thdye\aone is currently the gold standard for
reporting statistical comparisons between treatmant controls in bio-medical publications.
The p-value is a single probability [0, 1] estinthttom the effect difference, variance,
sample size, and based on the fulfillment of thdenlying test assumptions. Why is the
simultaneous consideration of significance and vealee particularly important for
microarray data? The objective is the identificatad highly over- or under-expressed genes.
Although the same design is used for all geneteréifit sample sizes and different variances
occur at evaluation, e.g. the plotted lymphoma ¢&tapp et al., 2002) use 19 chips each, but

the sample sizes and variances for gene S62696(wmigene-ID) are n=5, n = 11 and

07 =142237¢g; = 2290.. Also, the distribution between different genes tire same

experiment may be different. Therefore, using thest based on its p-value alone (even after
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log-transformation) can lead to serious misclasations. A further question that arises is if
the presentation of significance versus relevamscappropriate when the significance is

obtained from a t-test of the differen€®, . ......— Xcomod @Nd the relevance is represented by

Contr

the ratiox_”L"”e“‘. The consideration of the ratio seems to be bioldly appropriate even if
XControI

for log-transformed data the original multiplicaivmodel is transferred into an additive
model. However, if the ratio is an appropriate nueador relevance, then the use of the p-
value from a parametric test for ratios is consagu&his test is according to Sasabuchi
(1988):

X &X

t — Treatment_
! 2
MSE \/ 1 + 4
nTreatment n

Control

N 1:df A-al2

Control

where MSE denotes the common mean square erronagsti df is the degrees of freedom
df =N eaimentt Neonro— 2 andtas 102 the quantile of the t distribution. In compariswith

the common t-test, this test inherently needs priat definition of a threshold, e.g.0 =2,

the so-called 2-fold rule. Furthermore, the questibwhether a xy-graph of p-value vs. ratio
estimate is appropriate arises. The ratio represemercentage of k-fold change, and the p-
value a probability. We propose the presentatiostatistical significance by the upper/lower
limit of the confidence interval instead of the ghwe, because confidence intervals offer
information about the distance from the null-hymsis (distance to 1), the direction of the
effect (larger/smaller than 1), and the variabi(itydth) simultaneously. Although confidence
intervals for the difference are frequently usedbiomedical research, the ratio-to-control
confidence intervals can be directly medically ipteted for some problems (Feuerstein et al.
1997). Sometimes the ratio problem is transformiedlag-transformation into a difference
problem which assumes log-normal distributed endgoiA two-sided parametric confidence

interval for a ratio according to Fieller (1954) is

9 - XControIereatment+ \/aszreatment+ bXZContrJ ab

upper <2 _
XControI a

9 — XControl)_(Treatment_ \/aT(ZTreatment-i- b_X2 ContrJ ab

lower ~ —2
XControI a

MSE
tjf A1-al2

a=MSE ¢ andp=
df =Neontrol + nTrealmem_zvl_a 12
ontrol nTreatment
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The side conditiorx?, ., >a is simply a one-sided test for control mean valiaeger than

zero, i.e., this approach is limited to non-zerotoa effects.

Sometimes skewed data, multimodal distributed datdata with outliers requiring a non-
parametric confidence interval can be observedianaarray data. According to Hothorn and

Munzel (2002), the two-sided non-parametric confoee interval for the ratio

med x [5 o) 3 }
= A Xrrcamend is L (" (reamencones ) | \yhare Woneamenncmata/2 denotes the lower

med )l(,ControI )

quantile of the Wilcoxon test. The asymptotic oaexconfidence interval can be estimated

using Hodges-Lehman (1963) confidence interval$ whe R-packagexactRankTesafter
log-transformation of the raw data. One examplelmasee in the following figure:

Volcano Plot = CI-FOLD PLOT
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Figure 10 Original (a) and modified volcano plot (B for lymphoma data

Other modifications of the volcano plot are avdiale.g. the p-value based on a small sample
test using local pooled errors (Jain et al. (2008)ltiple volcano plots were proposed, e.g.

for interspecies comparisons and different orgssugs.
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2. CHAPTERB

Introduction to Inference for Proportions

In clinical trails, frequently we need to compamm& new drugs or treatments with the
classical ones. Therefore we divided all the pédiemandomly to two groups, one group
treated with new drugs, the other treated withasld or placebo. After a period of time, we
want to see how many patients in each group reedvEom the disease, and whether this
new drugs or treatment are really more efficienhpared with the classical ones, In these
cases the goal of the user would be to find outtindrethe new developed treatment shows
any (statistically) significant response at all.eTiatural way is to use the<2 contingency
tables. Then the problems are inverted to the casgaof two proportions.

For instance, the data from table 13:

Table 13 Cross-Classification of Smoking By Lung Qacer (Doll and Hill, 1950)

Smoker YES NO Total
Cases 688 21 709
Controls 650 59 709

the 2x2 contingency table above gives us the data frenreey, the table can be transformed
to be the following table 14:
Table 14 Estimated Conditional Distributions

Smoker YES NO Total
Cases 0.96 0.04 1.0
Controls 0.92 0.08 1.0

Then the two-sample test is to compare the “yespgrtions between two groups. The two

2x2contingency tables can be formalized to be:

Table 15 The Observed Z2 contingency table, x.

Response Success Failure Row_Total
Population1 X1 X12 N
Population2 X21 X22 N2

Col_Total M M2 N
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The estimated conditional distribution table isegi\by:

Table 16 Estimated Conditional Distributions

Response Success Failure Row_Total
Populationl m, i, 1.0
Population?2 7, 7, 1.0

Here . = X,,/n,,7,=1-n,. Thedifference of proportions of successesy,,- 71,,, is a basic
comparison of proportions. The hypothesis carobmdlized as:

Ho: 1, < 1,

Ha: 71, 2 71,

The difference of proportions falls between —1.d at.0. But a valuer, - 71,, of fixed size

may have greater importance when bottane close to 0 or 1 than when they are not. For
instance, the difference between 0.010 and 0.0G1b®anore noteworthy than the difference
between 0.510 and 0.501, even though both are 0l@B&ch cases, we need some other kind
of statistics to show the difference.

An alternative i€0dds Ratio, the odds is defined:

Qis nonnegative, witlQ >1.0 when a success is more likely than a failline Odds Ratio is
given by:
Q, 771/(1_771) — 770,

g=-2= .
Qz ”2/(1_”2) 7,71,

The odds ratio can equal any nonnegative number.cohditionQ, = Q,, 6=1, corresponds
to independence of X and Y. Whér 8 <, subjects in row 1 are more likely to have a
success than are subjects in row 2; that,is 72,. For the proportions just given, the odds

0.010(1-0.010) _ _ 0510(1-0510)

= = =1. The odds of i
0.00(1-0.00) 0.50%(1-0.502) e odds of success in

ratios ared, = 10 and g,

row 1 are 10 times the odds in row 2. This doesmexdn that the probability, =107, .

If we need more direct interpretation of our conngxam, we need thask ratio (or relative

risk), which is defined below:
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T

7T2
It can be any nonnegative number. A relative risk.0 corresponds to independence. For the
proportions just given, the relative risk @®10 0.001=10.0 and 0.410/'0.401= 102. By

this means we can see the difference of the twpqutions in relative point of view.

There are some relationships between Odds Rati®katadive Risk. From definition
. . [1-m,
odds ratio = relative rigk—= |.
1-m

Their magnitudes are similar whenever the probgbiij of the outcome of interest is close
to zero for both groups. In our example, the restkorand the odds ratio are almost the same
with value 10 because both 0.010 and 0.001 arelade to zero. Because of this similarity,
when eachvz, is small, the odds ratio provides a rough estirotee relative risk.

The sample relative risk is= 7, /71, . Like the odds ratio, it converges to normalitgtéa on

the log scale. The asymptotic standard error of isg

V2
1-m 1-1
a(logr):(ﬂnl+ﬂ—nzj .
1'1 2'72

The Wald interval exponentiates endpointdagfr + z,,d(logr). It works well but can be

somewhat conservative. There is an alternative odetbcore method (Koopman 1984,). The
fact that the score intervals are computationallgrancomplex than Wald intervals the
principle behind them is simple. However, currenthey are not available in standard

software.

The following are three score test statistics foroEnial Ratio.

Supposer, is the response rate of an experimental treatmahtzais the response rate of an
active control treatment. Define the ratio of binahproportions as (1.3)

In a non-inferiority clinical trial the objectivesinot to demonstrate that the experimental
treatment is superior to the control but rathedémonstrate that the experimental treatment is
not significantly inferior. Accordingly a non-inferity margin, 0, is specified a priori and
we test the null hypothesis of inferiority
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Ho:p2 py versus the one sided alternative hypothesis ofimk@niority Hip<p

The test is carried out under the assumption thatdi its threshold null valu€ = Ao Let
YUQgenote any generic 2x2 table of the form of Tabk that might be observed if we
generated nl independent Bernoulli trials each pitbbability 72 and n2 independent

Bernoulli trials each with probabilitfz. The probability of observing an¥DQ. under HO
is
n y n
f, (y)= (Xl j(xz jﬂlX“ (1-7)(0,75)* (1~ p,71,)* The test statistic (see Miettinen
11 21
and Nurminen, 1985) is defined as

D(y) = 7~ P’y

\/ (7)a-7,), oo (7)1~ 1)

n, n

.~ X . ~ ~ . I .
where 77, =21 for j = 1, 2, and7i, and 77, are the maximum likelihood estimates ’5f and
n

J

7, | respectively, restricted under the null hypotheth satisfy the requirement that

7,/ 7, = p,. Miettinen and Nurminen (1985) have shown that i@ obtain these restricted
maximum likelihood estimates by solving a quadrhiielihood equation.
Thus

-B-+B?-4AC

2A and 772 = poﬁl ,

=~

Whel’eA: ,OON ’B = —(,Oon2 + le + nl + poxll)’ C= Xll + x21

Under H this test statistic has mean 0 and variance 1.

For the construction of the unconditional exact werice interval for the risk ratio, we have
three choices of test statistics for test basedrvat estimation. Suppose we take n
independent Bernoulli samples from treatment 1 mniehdependent Bernoulli samples from

treatment 2. Le¥ U< denote any generic 2 x 2 table that might be oleskrand let x be the
2x2 table that was actually observed. Define

~ X;
==
n,

forj =1, 2. The unstandardized test statistic
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Dly)= (X,, + 05)(n, + 05)

= is to compute an exact confidence interval far This statistic
(v, + 05)(n, + 05)

was proposed initially bgart and Nam (1988). The 0.5 terms were neceseagngure that
the statistic and its reciprocal are defined whengil 1l or y12 are zero. We have observed
that the unstandardized statistic is extremely eoraive, leading to wider confidence
intervals and larger p-values than could be obthine other exact methods such as Agresti
and Min (2001). Therefore we also use a test basedt confidence interval using the
standardized statistic

D(y) = 7, ~ P’y

\/ Z)1-7,), (m)a-7)

n, n

for j = 1, 2, and7, and 77, are the maximum likelihood estimates’df and 72 respectively,
restricted under the null hypothesis to satisfyrdmuirement that, /7, = p,. The use of this
test statistic has been proposed by Miettinen amanien (1985) for asymptotic confidence
intervals and by Chan and Zhang (1999) for exanfidence intervals. Confidence intervals

derived by the above standardized statistic argeshthhan corresponding intervals derived by

the unstandardized statistic.

Miettinen and Nurminen confidence Interval

The test statistic is adopted and assumed to hagtaradard normal distribution. The
asymptotic 100><(1—a)% confidence interval (,5*,,5*) is obtained by inverting the

corresponding one-sided hypothesis tests. Thusatisfies the equality

- (X21/n2)_ p*(xll/nl) -a
e \/(ﬁz)(l—ﬁzh(ﬁl)(l—fa) 2

n, n

where7i, and 71, are the maximum likelihood estimates’&f and 72 respectively, under the

restriction thatiz, /7, = p. . Similarly o satisfies the equality

(le/nz) B p*(xll/nl) —a
® J(ﬁz)(l—zzu(zz)(l—zz) 2

n, n
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where’s and2are the maximum likelihood estimates 8f and 72 respectively, under the

restriction that'2/7. = P

Katz, Baptista et. al. method
This method was first proposed by Katz, Baptistagi®and Pike (1978), and subsequently
modified by Gart and Nam (1988). It assumes thaiarge samples, under the alternative

hypothesisP = 0, the statistic

X, +05 X, +05
logD(y) = log—*—— - log—*——
9D(y) =log n, + 05 J n, +05

is approximately normal with medaog p,and variance

PR SRR S SR
X, +05 n,+05 X,+05 n, +05

therefore the asymptotib00x (1— a)% confidence interval fotog p is
logD(x) + z,,,8
An asymptotic two-sided p-value based on the albmystatistic is

p, = 2(1- »(D(x)))
Koopman method

Koopman's (1984) method is based on inverting asgoiare test under the alternative
hypothesisO= 4. Under this hypothesis the test statistic

(xll ~ nlﬁl)z + (X21 _ nzﬁz )2
nlﬁl(l_ ﬁl) nzﬁz (1_ ﬁz)

U, (D(y)=
is distributed asymptotically as chi-square wittif17, and 72, are the maximum likelihood

estimates of2 and ”2, under the restrictiof® = 4,. Koopman (1984) has provided the

following expressions for

7’?5. - pO(nZ + Xll)+ X21 + nl B [{pO(nZ + Xll)+ X21 + nl}_4pON(xll + )<21)]1/2
2N

and 71, = A, p,. At the observed value, x, an approxima@®x (1- a)% two-sided

confidence region fop is thus given by{0: U (D (x)) < x *11-« } Where y’1- is the
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1-a fractile of the chi-square distribution withdf. One can establish thék is a convex

function of p. Therefore the above confidence region is anvatesf the form(,o*,,o*)

where
U, (B(x))=U ; (D(x)) = X*1-a
An asymptotic two-sided p-value based on the Koapstatistic is

_ 2
p, = Prix,’ 2Up(x)) evaluated af =1 whereX1 is a random variable distributed as chi-

square with Hf.
Suppose X is from a binomial distribution bin(n, @ur goal is to construct a (@-)%

confidence interval for the parameter p. The mostely used or known is based on an

=%/
asymptotic normal approximation to the distributain n

fre z%w/az(ﬁ, n),

Wald:

Where Z% is the 14 /2 quantile of the standard normal distributiond an

o?(fr,n) = A(1- 7)/n

is the variance of?. The above so-called standard interval is knowpetdorm poorly. Wald-
tests do not contrat(typel error). I.E. Wald interval has a bad performararesbme n’s and
p’s. (e.g. Agresti and Caffo,2000).A much bettéermative is to use the score interval: These
references showed that a much better confideneevadtfor a single proportion is based on
inverting the test with standard error evaluatethatnull hypothesis, which is the score test

approach. This confidence interval, due to Wilsd®2y), is the set of pO values for

71— | /- m,)/n < z

which %2 which is

2

2
0 z, 0 0 Z,
e e e L e R e B ) P
n+z, 2l n+z 2)ln+z
% %

2
% 2

The mid point of this interval is

2
Z
] n +1 %
n+ z> 2l n+27°
% %

it can be written as
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2

A
m+—4
2
2
n+z'ay
X+2
chy =4 A, _ X .
recall = 72 . n =X 'i.e. number of success can be writtefas? .

Add-4 Method for the Difference of Two Proportions
Agresti and his Co-workers proposed a simple amgbrdar constructing a confidence interval
for a binomial proportion. They noticed that, arsl & simplification proposed adding 4

pseudo-observations with one-half as successeghendther half as failures to obtain a

modified estimator ofﬂ’ﬁ:(x +2)/(n+4). Then their Adding-4 confidence interval is

obtained by using5 in the Wald interval:
Adding-4:

Tz, o*(7F,n+4)

It performs surprisingly well. Under the same id#a difference of two proportions is
showed below: We observe two independent binonaiahbles:

X, ~bin(n, 71,) g X, ~bin(n,, 72,)

The goal is to construct a ()% confidence interval fof2 =74, The Wald interval is

7= 75 % 2,0 (7.n,) + 02(75,m,),

where =X,/ and 71, = X, /M, . Its performance is not satisfactory, as for omemmial
proportion. The score interval can be extended,itblacks a close form. Agresti and Caffo
(2000) generalize the Adding-4 method as

Adding-4:

7, =7+ 2,0 (7,0, + 2)+ (7,0, + 2),
2

Where ~| = (XI +1)/(ni + 2)

the difference of proportions.

for ' =12 The add-4 approach works quite good for thedést

Proposed Confidence Interval for the Ratio of Two Roportions
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Let random variaterfy.) X ~Bin(n, 72). Observations from Bernoulli trails x, LM estimate
of success probabilityis 77= 5. From CLT, 71 is normally distributed with mean and
n

1-7m7
- )

standard erro

Let 72,71, denote the success probabilities of two samplesydlative risk is defined as
o =n,/n, . Sample relative riskis r = 7, /71, , log transform idog(r)
Since 7, is asymptotically normally distributethg(7, ) is differentiable for0 < 77, < 1then

under mild condition using delta method, it is edsyshow thatlog(ﬁi) is distributed

A

N
. . 1-77

normally with expectatiotog(n), and standard err«{r—n'j .

N7

Consequentlylog(r) is a linear combination of two normally distited variables, and then

it is again a normally distributed random varialéh expectationlog(,o) and standard

1-7, 1-7,)"
errora(log(r)) :( 4 +—A7T2j :
I‘]l]zl. n2n2

Add-4 method for the Ratio of two Proportions

, . ==X +2
We define new statistics (add 4 statistagyi, as 77, = '—+4 =12
n.

Because7r, is only a linear transformation oK, , which is asymptotically normally
distributed random variablej, is easily proven to be normally distributed witte following

expectation and standard error.

. +
Expectation offi E(77) = nz+2
n+4

(7)= VL= 7T) - 7)

n+4

Standard error ofi o

2-4n
n+4

bias of 7 is bias,(77) = E,,(77) - 77 =

Sample add-4 relative risk 5= 7, /71,
Log-transformation ofz risk is under the mild condition, and then accogdio the delta

method, the expectation and the standard errar oin be derived as:
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ExpectationE(log(77)) = Iog( nn++42j ¥ - log()

n
Standard Errow(log(77)) :(—m (143\/”:) ! Iln__:
n+aN7

Log-transformation of the sample add-4 relativk r$sa linear combination of two normally

distributedr.v. , then the expectation and the standard erréogif ) are:

ExpectationE(log(r)) = Iog(ﬂ an_+4} A |og(ﬂj
n+4 n,m, 1,

nl(l_ ﬁl) + n, (1_ ﬁz)

= 1-m 1-1
Standard Errowr{log(r)) = It - 1= 2
(oo )= e " o

Consequently, from the large sample inference the®ald confidence interval is

R ]

constructed as:

7 n(l-7 n,(1-77,)
log = |-, |t 2~ lo
{g[nj J(nl a7 (o, 47, g[

Simulation Results and Discussion
Sample size 50, balanced case, success probdbilisample 1: 0.01, 0.05, 0.10, 0.25, 0.50,
0.75, 0.90, 1,00, Risk ratio: 1 (to check the acainfor alpha!) and success probability for

+
SURET

sample 2:p,/r . Significant level: 0.05. Coverage probability vahe@ominal probability 0.05

is shown in Table 8:

Table 8 Coverage probability of p1 from 0.01 to 1.00 where ratio = 1

pl 0.01 0.05 0.10 0.25 0.50 0.60 0.75 0.9% 1.00

Cov. Prob. | 1 0.9963| 0.9837 0.9614 0.951 0.94P8 0.9609 0.99400 1

When p is zero, the coverage probability is 1.00.It carshown in Figure 11:
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Figure 11 Coverage probability of add-4 confidencenterval.

More closely to the range of p1 from 0.35 to 016%, results can be shown in Table 13:

Table 17 Coverage probability of p1 from 0.25 to 5 when true ratio = 1

pl

0.35

0.40 0.45 0.50 0.55

0.60 0.65

Cov. Prob.

0.9523

0.9511 | 0.9555| 0.9542  0.9488

0.9534 0.9587

It can be shown in Figure 11:

o

08

08

07

05

T
O35

T T T T
0.0 0.5 O =0 OS5

=

T T
.50 055

Figure 12 Coverage probability of add-4 confidencenterval. p; from 0.35 to 0.65.
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3. GENERAL DISCUSSION

When there is no assumption on the underlyingiligion of the data, there is no uniformly
most powerful test. As shown in the simulation gtudChapter A, in each specific condition,
there is locally most powerful test. For instansbgen the data is normally distributed with
variance homogeneity, the samiléest is the most powerful test, whereas with vexéa
heterogeneity, the Welch test is the most powerful test. Under nonnormal#ych as
lognormal or certain Fleishman distribution, thelddkon test is the most powerful test when
there is only a location shift between the two guAnd in the mixture case, the Conover
Salsburg Test is the most powerful test to deteetsubset of response. There is no universe
winner for all the conditions.

A simple test, which is appropriate for all the dition, seems impossible, but there are
methods to combine different tests. Since the mexdistribution case is rare, in this thesis
the test is proposed to solve the problem withiaripunknown unimodal distribution, which
can be distributions with short tail, long tail,esk and heteroscedasticity. The Maximum test
is proposed for this purpose.

But the simulation result shows that although thexivhum test begins with the more realistic
assumption (only the unimodal distribution of datd)does not behave as efficient as the
Welch t test when the underlying distribution of the dasanonnormal and variance
heterogeneity. This also implies that when the data skewed and the variances of two
samples are not equal, the WeldRst is still a good candidate while the Welc¢ést is robust
against nonnormality. Thus, in the application atidarray data, the commonly used Welch
t test is reasonable.

The new add-4 confidence interval for the ratidwad proportions is proved to maintain the
nominal level of confidence (0.95) when the truéioras 1. Especially when the first
proportion is from 0.35 to 0.65, the actual levélcoverage is very close to 0.95. Further
study can be done when the true ratio is other musnthan 1 and sample size is smaller than
50.
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APPENDIX

R codes for the candidate tests which is not avigilen R or any R package.

R codes for the descriptive statistics of Microarrg data:
A A function to change all the zetoegin matrix to NaN
HHHH R R R R R
TR 29.01.2004 by DorMaui
HHHHHH R R AR AR A
zerotoNaN <- function(M){

dim <- dim(M)

M1 <- matrix(as.numeric(M>0),diM[1],diM[2])

M2 <- M2 <-( M + abs(M))/2

Mf <- M2/M1

Mmf

}

HH AR R A R R
HHHHHAHH R
Outlier.test <- function(x,lower.b,upper.b) {

X <- x[complete.cases(x)]

lower.outlier <- sum(as.numeric(x< lower.b))

upper.outlier <- sum(as.numeric(x> upper.b))

outlier <- c(lower.outlier,upper.outlier)

outlier

HHHHHHHE T T T
HH T
R A To calculadevBéss and Kurtosis
HHHH R R R R
pianfengdu <- function(x) {

n <-length(x)

mx <- mean(x)

sx <- sd(x)

Skew <- (sum((x-mx)”3))/((n-1)*sx"3)

Kurtosis <- (sum((x-mx)*4))/((n-1)*sx"4)

SK <- c(Skew,Kurtosis)

SK
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AR R R R R R R R R R R R
HHHHHHHHH A

pool <- read.table("C:/Temp/singh.txt",header=T) # read the txt file to a data
frame #
no <- length(pool[1,])-1 # get the totaimber of the
observation #
pool.matrix <- as.matrix(pool[,2:no]) # reackttlata frame to a
matrix #
pool.matrix <- zerotoNaN(pool.matrix) # get dgtinegative
and give NaN #
ng <- length(pool.matrix[,1]) # get the numloégenes

#
gl.matrix <- as.matrix(pool[,grep("N", names(popl)) # read the frist group to a matrix

#
nl <- length(g1.matrix[1,]) # sample size 1
#
g2.matrix <- as.matrix(pool[,grep("T", names(poql))] # read the second group to a matrix #
n2 <- length(g2.matrix[1,]) # sample size 2
#

gl.matrix <- zerotoNaN(g1l.matrix) # get ridtbé
negative to NaN #
g2.matrix <- zerotoNaN(g2.matrix) # get ridtbé
negative to Nan #

HHHHHHHE T T T
HH B
HH TR R A definentaf@on
MatricSHHHHHHHHHHAHHHHHHHHHHHHHHH
# Mean SE Cv Skewness Kurtosis Normality Lognortpali
lower.outlier upper.outlier #
Genelnfo.pg <- Genelnfo.rmoutlier.pg <- matrix(NA,8) # pooled two group after pre-testing

#
Genelnfo.gl <- Genelnfo.rmoutlier.gl <- matrix(N4§,8) # for the first group

#
Genelnfo.g2 <- Genelnfo.rmoutlier.g2 <- matrix(N4§,8) # for the second group

#
HHBHEHHE R calculationuimengry statistics
HHTHEHHHE
# pool all the genes for each sample, to get th& &nd 0.975 quantile, they are lower.bound & ujfuemd#
# for detecting outliers respectively
#
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pool.gl <- pool.g2 <- c()

for(g in 1:ng)

{

# for sample | #

complete.gl <- as.numeric(gl.matrix[g,])
complete.gl <- complete.gl[complete.casesfteiengl)]
nober.g1 <- length(complete.g1)

# pool all the genes for sample | #
if (nober.gl >2) {
SD.com.gl <- (complete.g1l-mean(complete.gfy=T))/sd(complete.gl)

pool.gl

<- ¢(pool.g1,SD.com.gl)
} # end of pooling #

# for sample 11 #

complete.g2 <- as.numeric(g2.matrix|[g,])
complete.g2 <- complete.g2[complete.casesiteing?)]
nober.g2 <- length(complete.g2)

# pool all the genes for sample Il #
if (nober.g2 > 2) {
SD.com.g2 <- (complete.g2-mean(complete.g@n=T))/sd(complete.g2)

pool.g2

lower.b.gl
upper.b.gl
lower.b.g2
upper.b.g2

<- ¢(pool.g2,SD.com.g2)
} # end of pooling #
}#end of forgin 1:ng #
<- quantile(pool.g1,prob=0.025,na.rm=T)
<- quantile(pool.g1,prob=0.975,na.rm=T)
<- quantile(pool.g1,prob=0.025,na.rm=T)
<- quantile(pool.g1,prob=0.975,na.rm=T)

# calculation for the information matrices #

for(g in 1:ng)

{

# for sample I#

complete.gl <- as.numeric(gl.matrix[g,])
complete.gl <- complete.gl[complete.casesitetmgl)]
nober.gl <- length(complete.g1)

if (nober.gl >= 20) {

Genelnfo.gl[g,1] <- mean(complete.gl)

Genelnfo.gl[g,2] <- sd(complete.gl)

Genelnfo.gl[g,3] <- Genelnfo.gl[g,2]/Genelnfo.g1]g

complete.gl  <- (complete.gl-mean(completaayim=T))/sd(complete.gl)

SkewKurtosis.gl <- pianfengdu(complete.gl)

Genelnfo.gl[g,4] <- SkewKurtosis.g1[1]

Genelnfo.gl[g,5] <- SkewKurtosis.g1[2]

Genelnfo.gl[g,6] <- as.numeric(shapiro.test(glrixiag])$p.value > 0.05)
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Genelnfo.gl[g,7] <- as.numeric(shapiro.test(logfugtrix[g,]))$p.value > 0.05)
Outliers.gl <- Outlier.test(complete.gl,loweyl,upper.b.gl)
Genelnfo.gl[g,8] <- Outliers.g1[1]
Genelnfo.gl[g,9] <- Outliers.g1[2]

} # end for if #

# for sample 1l #

complete.g2 <- as.numeric(g2.matrix|[g,])
complete.g2 <- complete.g2[complete.casesiteimng?)]
nober.g2 <- length(complete.g2)

if (nober.g2 >= 20) {

Genelnfo.g2[g,1] <- mean(complete.g2)

Genelnfo.g2[g,2] <- sd(complete.g2)

Genelnfo.g2[g,3] <- Genelnfo.g2[g,2]/Genelnfo.g2[g

complete.g2  <- (complete.g2-mean(completaa@®n=T))/sd(complete.g2)
SkewKurtosis.g2 <- pianfengdu(complete.g2)

Genelnfo.g2[g,4] <- SkewKurtosis.g2[1]

Genelnfo.g2[g,5] <- SkewKurtosis.g2[2]

Genelnfo.g2[g,6] <- as.numeric(shapiro.test(g2rixiat])$p.value > 0.05)
Genelnfo.g2[g,7] <- as.numeric(shapiro.test(logfurix[g,]))$p.value > 0.05)
Outliers.g2 <- Outlier.test(complete.g2,loweey2,upper.b.g2)
Genelnfo.g2[g,8] <- Outliers.g2[1]

Genelnfo.g2[g,9] <- Outliers.g2[2]

} # end for if #
}# end of for g #

# Graphical presentation #

# for the mean #

Gl1.g1 <- hist(Genelnfo.g1][,1],freq=F,breaks=1000)

Gl1.g2 <- hist(Genelnfo.g2[,1],freq=F,breaks=1000)

plot(Gl4.gl,col="red",main="Histogram of Means ar8ple I(red) and li(blue)",xlab="Genewise Mean of
Gene Expression Level")

lines(Gl4.g2,col="blue")

# for the deviation #

Gl2.91 <- hist(Genelnfo.g1[,2],freq=F,breaks=100éxc(0,500))

Gl2.92 <- hist(Genelnfo.g2[,2],freq=F,breaks=100éxc(0,500))
plot(Gl2.g1,col="red",main="Histogram of SDs of Sals|(red) and lI(blue)",xlab="Genewise SD of Gene
Expression Level",,xlim=c(0,500))

lines(Gl2.g2,col="blue",xlim=c(0,500))
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# for the CV #

GI3.g1 <- hist(Genelnfo.g1][,3],freq=F,breaks=1000)

GI3.92 <- hist(Genelnfo.g2[,3],freq=F,breaks=1000)

plot(G13.g2,col="blue",main="Histogram of CVs of i@ple I(red) and li(blue)",xlab="Genewise CV of Gene
Expression Level",xlim=c(0,3))

lines(GI3.g1,col="red")

# for the Skewness #

Gl4.g1 <- hist(Genelnfo.g1][,4],freq=F,breaks=1000)

Gl4.92 <- hist(Genelnfo.g2[,4],freq=F,breaks=1000)

plot(Gl4.gl,col="red",main="Histogram of Skewne$ssample I(red) and ll(blue)",xlab="Genewise Skeasme
of Gene Expression Level",sub="Green Vertical LireQ)}s The Skewness for Normal Distribution™)
lines(Gl4.g2,col="blue")

abline(v=0,col="green")

# for the Kurtosis #

GI5.91 <- hist(Genelnfo.g1][,5],freq=F,breaks=1000)

GI5.92 <- hist(Genelnfo.g2[,5],freq=F,breaks=1000)

plot(Gl15.g1,col="red",main="Histogram of Kurtosi§ ®ample I(red) and ll(blue)",xlab="Genewise Kuitosf
Gene Expression Level",sub="Green Vertical Line(xis3)he Kurtosis for Normal Distribution")
lines(Gl15.92,col="blue")

abline(v=3,col="green")

# Joint distribution of Skewness and Kurtosis#

Gl45.g1 <- hist2d(Genelnfo.gl1[,4],Genelnfo.gl[,8}l/m=T,nbins=200,xlab="Skewness",ylab="Kurtosis")
Gl45.92 <- hist2d(Genelnfo.g2[,4],Genelnfo.g2[,8}/m=T,nbins=200,xlab="Skewness",ylab="Kurtosis")
persp(Gl45.91$x,Gl145.91$y,Gl45.g1%counts,col="nexdiin="2D Histogram of Skewness and Kurtosis of
Sample I(red) and ll(blue)",xlab="Skewness",ylabatt0sis",zlab="Frequency" ,xlim=c(-1.4,7),ylim=c(6)}
#points(Gl45.91$x,G145.g1%y,Gl45.g1$counts,col=&j)u

par(new=TRUE)
persp(Gl45.92%$x,G145.92%y,G145.g2%counts,col="bloelin="2D Histogram of Skewness and Kurtosis of
Sample I(red) and ll(blue)",xlab="Skewness",ylabatt0sis",zlab="Frequency",xlim=c(-1.4,7),ylim=c(6)}

# Genewise comparision #
hist((Genelnfo.g2[,1]-Genelnfo.g1[,1]),freq=F,breat 000,col="grey" ,xlim=c(-300,300),main="Genewise
differences in Mean, Sample Il minus I",xlab="GemmDifferences of Gene Expression Level")

# Mean Ratio #
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hist((Genelnfo.g2[,1]/Genelnfo.gl1[,1]),freq=F,break 000,col="grey",main="Genewise Ratios in Mean,

Sample Il / I",xlab="Genewise Ratios of Gene Expi@s Level")

hist((Genelnfo.g2[,2]-Genelnfo.g1[,2]),freq=F,breat 000,col="grey",main="Genewise differences in SD,
Sample Il minus I",xlab="Genewise Differences of 80Gene Expression Level",xlim=c(-100,100))

# SD Ratios#

hist((Genelnfo.g2[,2])/Genelnfo.g1[,2]),freq=F,break 000,col="grey",main="Genewise Ratios in SD, Samp

Il minus I",xlab="Genewise Ratios of SD of Gene Eeqmion Level",xlim=c(0,8))

hist((Genelnfo.g2[,3]-Genelnfo.g1][,3]),freq=F,breat 000,col="grey",main="Genewise differences in CV,
Sample Il minus I",xlab="Genewise Differences of 6MGene Expression Level")
hist((Genelnfo.g2[,4]-Genelnfo.g1[,4]),freq=F,brealk 000,col="grey",main="Genewise differences in
Skewness, Sample Il minus I",xlab="Genewise Diffieees of Skewness of Gene Expression Level")
hist((Genelnfo.g2[,5]-Genelnfo.g1[,5]),freq=F,breat 000,col="grey",main="Genewise differences in
Kurtosis, Sample Il minus I",xlab="Genewise Diffeoes of Kurtosis of Gene Expression Level")
Gl45.g2m1 <- hist2d((Genelnfo.g2[,4]-Genelnfo.g)l&enelnfo.g2[,5]-
Genelnfo.gl[,5]),na.rm=T,,xlab="Skewness",ylab="Ksit")
persp(Gl45.9g2m1$x,Gl45.g2m1%y,Gl45.g2m1$counts)

R codes for VolcanoCl Plot:
HHHHHHHHHHHHRHAAHH## The input file should be @i StormatittHHHHHHHHHHHHHHHHT

# GenelD Controll ... Controln Treatmentl ... Tmeattn
# GeneNamel 12.3 23.3 89.0 90.0 #
#...

# geneNameN
HHH R R R

HHHEHHE R ead the Data file to ®yubkie follwing code #

pool <- read.table("C:/Temp/shipp.txt",header=T)

no <- length(pool[1,])-1 # get the total numbéthe observation#

pool.matrix <- as.matrix(pool[,2:no]) # read theta frame to a matrix #

ng <- length(pool.matrix[,1]) # get the numbemgehes #

gl.matrix <- as.matrix(pool[,grep("DLBC", names(Hb #the 1st group #

g2.matrix <- as.matrix(pool[,grep("FSCC", names(pdp #the 2nd group  #

nl <- length(g1.matrix|[1,]) # sample size 1

n2 <- length(g2.matrix[1,]) # sample size 2 #

# If data file contains negative obseravtions wtabhuld be casewise deleted #
# run the following code to substitute the negativenber with NA #
pool.matrix[pool.matrix <= 0] = NA

gl.matrix[gl.matrix <= 0] = NA

g2.matrix[g2.matrix <= 0] = NA



HH B R T R
HH TR -cOdes Tor CISHHH I HEHHEHHEHHEHHEHH
library(exactRankTests)
RM.CI <- function(x1,x2,alpha=0.05,min.n1n2 = 2) {

x1 <- x1[complete.cases(x1)]

X2 <- x2[complete.cases(x2)]

nl <- length(x1)

n2 <- length(x2)

LB <-NA

EST <-NA

UB <-NA

if (N1 >=min.n1n2 & n2 >= min.n1n2) {
n<-nl+n2
X <- ¢(x1,x2)

# a factor coding the two groups #
cell <- factor(rep(c("Normal","Tumor"),c(n1,n2)))
mydata <- data.frame(expression = x,cell,row.rehJLL)
pos <- wilcox.exact(l(log(expression)) ~ celltala mydata, alternative =
"two.sided",conf.int=TRUE,conf.level=(1-alpha))
LB <- exp(pos$conf.int)[1]
UB <- exp(pos$cont.int)[2]
EST<- exp(pos$estimate[[1]])
}#endofifnln2>=2 #
Cl <- ¢(LB,EST,UB)
Cl

# two-sided Fieller CI #
fieller.Cl <- function(x1,x2,alpha=0.05,min.n1n2=2) {

x1 <- x1[complete.cases(x1)]
X2 <- x2[complete.cases(x2)]
nl <- length(x1)
n2 <- length(x2)
LB <-UB <-est <- NA
if (N1 >=min.n1n2 & n2 >=min.n1ln2) {
mx1 <- mean(x1)
mx2 <- mean(x2)
\Y <-nl+n2-2
sp <- (var(x1)*(n1-1)+var(x2)*(n2-1))/v

CT <- gt(alpha/2,v)
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g <- ((sp)*(CT"2))/(n1*(mx1"2))
if (g<1) {#g<1justdirectcalculation #
est <- mx2/mx1
LB <- (est - sqrt(g*(est"2+(1-g)*(n1/n2))))/(1-9)
uB <- (est + sqrt(g*(est"2+(1-g)*(n1/n2))))/(3-g
}
if(g>=1) {
est.inv <- mx1/mx2
est <- 1/est.inv
g.inv <- ((sp)*(CT"2))/(n2*(Mmx2"2))
LB <- 1/((est.inv + sqrt(g.inv*(est.inv*2+(1-gvij¥(n2/n1))))/(1-
g.inv))
test <- (est.inv - sgrt(g.inv*(est.inv"2+(1-g)(n2/n1))))/(1-g.inv)
UB <- ifelse(test>0,1/test,Inf)
}

}#endofifnl &n2#
Cl <- ¢(LB,est,UB)
Cl

HHBHEHHHE P LOMING PartiHH i
par(mfrow=c(1,2)) ####H#HHHHH#HH Plot Volcano and=OILD together #HHHHHHHHHHHHH

HH B Volcano PIGHHHHHIHHIHHIHHIHHEHHEHHEHHEHHE
A only plot and give the coordinatesermplotting  ##HHHHHHHHHEHH
Volcano.LR<- function(min.n1n2) {

log2.gene.EST <- gene.EST <- gene VTP <- rep(NA,ng)

for (i in 1:ng) {
x1 <- gl.matrix]i,]
X2 <- g2.matrix(i,]
x1 <- x1[complete.cases(x1)]
X2 <- x2[complete.cases(x2)]

nl <- length(x1)

n2 <- length(x2)

if (Nn1>=min.n1n2 & n2 >=min.n1n2) {

gene.temp <- t.test(x1,x2)

mx1 <- gene.temp$estimate[[1]]

mx2 <- gene.temp$estimate[[2]]

if (mx1 =0 & mx2 != 0) {log2.gene.EST][i]<- log2(n&{mx1)}
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gene.VTPJi] <- -log10(gene.temp$p.value)
}#endofifnln2#
} #end of for ng #
x.min <- quantile(log2.gene.EST,probs=0.01,na.rm=T)
Xx.max <- quantile(log2.gene.EST,probs=0.99,na.rm=T)

x.lim <- max(abs(x.min),abs(x.max))

y.max <- quantile(gene.VTP, probs=0.99,na.rm=T)

y.lim <-abs(y.max)

# plotting part #
par(bg="white")
plot(log2.gene.EST,gene.VTP,col="blue",xlim=c(-x.lintix),ylim=c(0,y.lim),main="Volcano
Plot",xlab="log(Ratio)",ylab="log(p.value from t<8")
abline(v=0,h=0) # for the X,y aixes #
text(-x.lim/2,y.lim-0.5,labels="Under-expressed gsf)
text(x.lim/2,y.lim-0.5,labels="Over-expressed gefhes
return(list(log2.gene.EST,gene.VTP))

¥ end of Vocalno.LR#
Vol.LR <- Volcano.LR(15) # at least 15 observatiomgach group #
T R R R R T A R R R

HiHHHE A a function for CI-FOLD Plot,log2 @&ST & gene VTP #itHiHHHHHHHHHH
CI.FOLD.plot<- function(method="nonpar", # nonparati® of two media; fieller = fieller's method
alpha = 0.05, # alpha for ClI
col="blue",
pch =16,
xlab = "log2(Hodges-Lehmann Estimator)",
ylab = "(-)log(Lower(Upper) Limit | Over(Under)-aressed genes)",
main = "CI-FOLD PLOT ",
aid.lines = TRUE, # abline(c(0,1)) and abline(dp#

fold.arc = 2,

VIG.names = TRUE,global = TRUE) {
gene.EST <- log2.gene.EST <- gene.VTP <- rep(NA,ng)
if (method == "nonpar") { # for the nonpar Cl meth#
for (i in 1:ng) {

gene.temp <- RM.CI(g2.matrix[i,],g1.matrix[i,Jpdla=alpha,min.n1n2=15)
gene.ESTJi] <- gene.temp|[2]
if (is.na(gene.EST[i])==FALSE) {
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log2.gene.ESTJi]<- log2(gene.ESTIi])
if (gene.ESTI[i] >=1) {
gene.VTPJi] <- log2(gene.temp[1]) # over expi@sshen Lower bound#
} # end of if gene.EST #
if (gene.EST[i]<1) {
gene.VTPJi] <- -log2(gene.temp[3]) # under expi@sshen upper bound#
}

} #end of for ng #
} # end of the nonpar Cl method#

if (method == "fieller") { # for the fieller Cl métod #
for (i in 1:ng) {# only 2 samples all > 2 obs aadlated Fieller ClI #
gene.temp <- fieller.CI(g2.matrix[i,],g1.matri§[min.n1n2=15)
gene.ESTIi] <- gene.templ2]
if (is.na(gene.EST[i])==FALSE) {

log2.gene.ESTJi]<- log2(gene.ESTIi])
if (gene.ESTI[i] >=1) {
gene.VTPJ[i] <- log2(gene.temp[1]) # over expi@sshen Lower bound#
} # end of if gene.EST #
if (gene.EST[i]<1) {
gene.VTPJi] <- -log2(gene.temp[3]) # under expi@sshen upper bound#
}
}# forifis.na #
}# end of for i #
} # end of fieller CI method #

x.min <- quantile(log2.gene.EST,probs=0.01,na.rm=T)
Xx.max <- quantile(log2.gene.EST,probs=0.9999,na.rm=T)
x.lim <- max(abs(x.min),abs(x.max))

y.max <- quantile(gene.VTP, probs=0.9999,na.rm=T)
y.lim <-abs(y.max)

ss <- max(x.lim,y.lim)

# plotting part #

if (global==TRUE) { plot(log2.gene.EST,gene.VTP,colsothin=main,xlab=xlab,ylab=ylab,xlim=c(-
ss,ss),ylim=c(-ss,ss)) }

else {plot(log2.gene.EST,gene.VTP,col=col,main=mdat=xlab,ylab=ylab,xlim=c(-ss,ss),ylim=c(0,ss))}
abline(v=0,h=0) # for the X,y aixes #

text(-ss/2,ss-0.5,labels="Under-expressed genes")

text(ss/2,ss-0.5,labels="Over-expressed genes")
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if (aid.lines == TRUE) { abline(c(0,1),type="p",catel) ; abline(c(0,-1),col=col,type="p") }
# for the fold.arc #
Ifc <- log2(fold.arc)
abp <- Ifc/sqrt(2)
dots.over<- seq(abp,lfc,by=0.001)
dots.under<- seq(-Ifc,-abp,by=0.001)
vrtd.over <- sgrt(Ifc"2-dots.over*2)
vrtd.under<- sqrt(Ifc"2-dots.under"2)
lines(dots.over,vrtd.over,col=col)
lines(dots.under,vrtd.under,col=col)
if (VIG.names==TRUE) {

CanMarker.over <- which(log2.gene.EST > 0 & gend\#10 &
log2.gene.EST2+gene VTP 2>Ifc"2)

CanMarker.under <- which(log2.gene.EST < 0 & geii®V¢ 0 &
log2.gene.EST"2+gene VTP 2>Ifc"2)

text(log2.gene.EST[CanMarker.over],gene.VTP[CanMadker],labels=as.character(pool[CanMark
er.over,1]),col=rainbow(length(as.character(poofjarker,1]))))

text(log2.gene.EST[CanMarker.under],gene.VTP[CanMaukeer],labels=as.character(pool[CanM
arker.under,1]),col=rainbow(length(as.character{j@amMarker,1]))))

}
return(list(log2.gene.EST,gene.VTP))
}# end of CIFOLD #

#CI.FOLD.plot(method="nonpar",VIG.names=T,global=T)

a<-Cl.FOLD.plot(method="nonpar",
aid.lines = TRUE,
fold.arc = 4.5,
VIG.names = T,global = T)



R codes for the proposed Maximum Test:

MAX.test <- function(x,...) UseMethod("MAX.test")

MAX.test.default <-
function(x,y,alternative = c("two.sided","less"  &ater"),
method = c("Statistic","p.value"),
approx = c("normal”,"t"), # only useful when usethod p.value #
resampling = c("Bootstrap”,"Permutation"),
resam.num =400 ,
conf.level =0.95, ...)
{
alternative = match.arg(alternative)
method <- match.arg(method)
approx <- match.arg(approx)
resampling <- match.arg(resampling)
DNAME <- paste(deparse(substitute(x)), "and", dep@ubstitute(y)))

if(lis.numeric(x)) stop(""x' must be numeric")
if(lis.numeric(y)) stop("’y' must be numeric")
X <- Xx[complete.cases(x)]

y <- y[complete.cases(y)]

m <- length(x)

if(m < 1)

stop("not enough x observations")

n <- length(y)

if(n < 1)

stop("not enough y observations")
N<-m+n

z <-c(x.y)

if (method == "Statistic")

{

if (resampling == "Bootstrap")

{
MAX.obs <- MAX.MIN(x,y,alternative = alternativéMaxStat[[1]]
MAX.boot <- rep(NA,resam.num)
for (i in 1:resam.num)

{

z.b <- sample(z,replace=T) # with replacement#
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x.b <-z.b[1:m]
y.b <- z.b[(m+1):(m+n)]
MAX.boot[i] <- MAX.MIN(x.b,y.b,alternative = aktrnative)$MaxStat[[1]]
}
}# end of if resampling bootstrap #
if (resampling == "Permutation”)
{
MAX.obs <- MAX.MIN(x,y,alternative = alternativéMaxStat[[1]]
MAX.boot <- rep(NA,resam.num)
for (i in 1:resam.num)
{
z.b <- sample(z) # without replacement #
X.b <- z.b[1:m]
y.b <- z.b[(m+1):(m+n)]
MAX.boot[i] <- MAX.MIN(x.b,y.b,alternative = aktrnative)$MaxStat[[1]]
}
}

PVAL.boot <- switch(alternative,
two.sided = ((sum(MAX.boot >= abs(MAX.obs)is(MAX.boot <= -
abs(MAX.obs)))+1)/(resam.num+1),
less = (sum(MAX.boot <= MAX.gh4)/(resam.num+1),
greater = (sum(MAX.boot >= MAX.obs)+I@éam.num+1))

RVAL <- list(DataName = DNAME,
Method = method,
MAX.observed = MAX.obs,
p.value = PVAL.boot)

return(RVAL)

} # end of if method "statistic" #

if (method == "p.value")
{
MIN.obs <- MAX.MIN(x,y,alternative = alternative,ppox = approx)$MinPval[[1]]
MIN.boot <- rep(NA,resam.num)
if (resampling == "Bootstrap")
{
for (i in 1:resam.num)
{
z.b <- sample(z,replace=T)
x.b <-z.b[1:m]



y.b <- z.b[(m+1):(m+n)]
MIN.boot[i] <- MAX.MIN(X.b,y.b,alternative = a#trnative,approx = approx)$MinPval[[1]]
}
}# end of if resampling Bootstrap #
if (resampling == "Permutation")
{
for (i in 1:resam.num)
{
z.b <- sample(z)
X.b <- z.b[1:m]
y.b <- z.b[(m+1):(m+n)]
MIN.bootfi] <- MAX.MIN(x.b,y.b,alternative = aéirnative,approx = approx)$MinPval[[1]]
}

}# end of if resampling Permutation #

PVAL.boot <- (sum(MIN.obs <= MIN.boot)+1)/(resam.ntift)
RVAL <- list(DataName = DNAME,
Method = method,
MIN.observed = MIN.obs,
p.value = PVAL.boot)
return(RVAL)
} # end of if method "p.value"#

} # end of Max.test.default #

# Max of Statistics and Min of P value #

MAX.MIN <- function(x,y,alternative = c("two.sided'less","greater"),approx = c("normal”,"t"))

{

alternative <- match.arg(alternative)

approx <- match.arg(approx)

sp.g <- GLR.test(x,y,alternative = alternative,typ&s")

sp.l <- GLR.test(x,y,alternative = alternative,typ&.")

sp.h <- GLR.test(x,y,alternative = alternative,typéd")

sp.b <- c(Brunner.test(x,y)$Statistic ,Brunnet(teg,approx = approx)$p.value)

Max.Stat <- max(sp.g[[1]],sp-[[1]],sp-h[[1]], sdk]])
Min.Pval <- min(sp.g[[2]],sp.l[[2]],sp.h[[2]], sp[E2]])
RVAL <- list(MaxStat = Max.Stat,

MinPval = Min.Pval)
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return(RVAL)
}

HH R R R R
HHH A A generalized Linear Rank TestsH#itHHHHHHHHHHH
HHHHEAH#DY Donghui Ma##### depends on packageRealcT ests #Hi##HHH
R B R A T A R
cscores.more <- function(y, type=c("Gastwirth", fgdail",

"HoggFisherRandlesti},+ FALSE,

maxs=length(y), ... ) {
type <- match.arg(type)
if (!(all.equal(floor(maxs),maxs)) || maxs < 1)
stop("maxs is not an positiv integer")
N <- length(y)
RET <- switch(type,"Gastwirth" = {

r <- rank(y)

rfr <= (N+1)/4] <- r[r <= (N+1)/4]-(N+1)/4

rfr > (N+1)/4 & r < 3*(N+1)/4] <- 0

rfr >= 3*(N+1)/4] <- r[r >= 3*(N+1)/4]-3*(N+1}4

h

"LongTail" ={

r <- rank(y)

r[r < floor(N/4)+1] <- -(floor(N/4)+1)

r[r >= floor(N/4)+1 & r <= floor(3*(N+1)/4)] <

rfr >= floor(N/4)+1 & r <= flor(3*(N+1)/4)]-(N+1)/2

r[r > floor(3*(N+1)/4)] <- (floor(N/4)+1)

h

"HoggFisherRandles"={

r <- rank(y)

r[r <= (N+1)/2] <- r[r <= (N+1)/2]-(N+1)/2

rfr> (N+1)/2] <-0

r}

) # end of switch #

attr(RET, "scores") <- type
RET

}# end of function cscores.more #
GLR.test <- function(x,...) UseMethod("GLR.test")

GLR.test.default <-



function(x,y,alternative = c("two.sided","less"  &ater"),
type = c("Gastwirth", "LongTail", "HoggFisherRaedl),
exact = NULL, conf.int = FALSE, conf.level = 0.95) .

alternative <- match.arg(alternative)
type <- match.arg(type)
if(conf.int) {
if(!((length(conf.level) == 1)
&& is.finite(conf.level)
&& (conf.level > 0)
&& (conf.level < 1)))
stop("conf.level must be a single nuntietween 0 and 1")
} # end of if(conf.int)#
DNAME <- paste(deparse(substitute(x)), "andparse(substitute(y)))
if(lis.numeric(x)) stop(""x' must be numeric")

if(lis.numeric(y)) stop("y' must be numeric")

X <- Xx[complete.cases(X)]
y <- y[complete.cases(y)]
m <- length(x)
if(m < 1)

stop("not enough x observations")
n <- length(y)
if(n < 1)

stop("not enough y observations")
N<-m+n
r <- cscores.more(c(x, y), type = type)
T <- sum(r[seq(along = x)])
ET <- (m/N)*sum(r)
VT < ((m*n)/((N*2)*(N-1)))*(N*sum(r*2)-(sum(r)}2))
STATISTIC <- (T-ET)/sqrt(VT)
PVAL <- switch(alternative, two.sided = 2*(1-pnuabs(STATISTIC))),less = pnorm(STATISTIC),

greater = 1-pnorm(STATISTIC) )
RVAL <- list(Statistic = STATISTIC,
p.value = PVAL)

return(RVAL)

} # end of GLR.test.default #

HHHHHHH
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HHHHHHE A Brunner Test Biom. J 2000 4251 ####HHHH
HHHHHEHHHHER AR A DY Donghui Ma #HHHHH-
Brunner.test <- function(x,y,alternative = c("twided","less","greater"),
conf.level = 0.95,approg@®normal”,"t"),...) {
alternative <- match.arg(alternative)
approx <- match.arg(approx)
DNAME <- paste(deparse(substitute(x)), "and", dep@usbstitute(y)))
if(lis.numeric(x)) stop(""x' must be numeric")
if(lis.numeric(y)) stop("'y' must be numeric")
X <- x[complete.cases(X)]
y <- y[complete.cases(y)]
m <- length(x)
if(m < 1)
stop("not enough x observations")
n <- length(y)
if(n < 1)
stop("not enough y observations")
N<-m+n
dim(x) <-m
dim(y) <-n
# normalized empirical distribution function of d#t
F <- function(data,xx){(0.5*(sum((xx-data)>0)+sumxX(data)>=0)))/length(data)}
# normalized combined empirical distribution fuocti#
H <- function(xx) {length(x)*F(x,xx)/N + length(y)E(y,xx)/N}
# Rank of X.ij among all N observations #
R.N <- function(xx) { N*H(xx)+0.5 }
# mean of ranks R.ij in the ith sample #
R.M.I <- function(data) {
RMI <- sum(apply(data,1,R.N))/length(data)
RMI }
# empirical variance of R.ij -R.ij(i) (within randf X.ij among ni obs in ith sample)#
S2 <- function(data) {
# Rank of X.j among all n observations, withinsdmmple Rank #
R.n <- function(xx) { length(data)*F(data,xx)+0.5}
mn <- length(data)
S22 <- (1/(mn-1))*sum((apply(data,1,R.N)-apply@atR.n)-R.M.I(data)+(mn+1)/2)"2)
S22 }# end of S2#
Var.n <- function(data) {S2(data)/(N-length(dat@)”
Var.N <- N*(Var.n(x)/m+Var.n(y)/n)
# Calculation of Statistics for Brunner Test #
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STATISTIC <- (R.M.I(y)-R.M.I(x))/sqrt(N*Var.N)

names(STATISTIC) <- "Brunner"

# p value calculation #

if (approx == "normal")

{

PVAL <- switch(alternative, two.sided = 2*(1-pnorfa&STATISTIC))),less = pnorm(STATISTIC),
greater = 1-pnorm(STATISTIC) )

RVAL <- list(Statistic = STATISTIC,
p.value = PVAL,
Null.Hypothesis = "relative effect = 1/2",
Alternative.Hypothesis = paste("Relative effg
deparse(alternative), "1/2"))
return(RVAL)
}
if (approx =="t")
{
df <- t.test(x,y,alternative = alternative,confééw conf.level)$parameter
PVAL <- switch(alternative, two.sided = 2*(1-pt(aBIATISTIC),df)),less = pt(STATISTIC,df),
greater = 1-pt(STATISTIC,df) )
RVAL <- list(Statistic = STATISTIC,
p.value = PVAL,
Null.Hypothesis = "relative effect = 1/2",
Alternative.Hypothesis = paste("Relative effe
deparse(alternative), "1/2")
return(RVAL)
}
} # End of Brunner Test #
R codes for Mixture of Normals:
HHHH R R R A A R
# function to generate random numbers under mixatie¢ most three distributions#
# By Donghui Ma #
#21.08.03 #
HHHHHH A A R R R R

#all the arguments should be given, even the tlardponent is empty, 0,0,0 given#

rmix <- function(n,m1,s1,p1,m2,s2,p2,m3,s3,p3) {

mv <- c¢(ml,m2,m3)

mpv <- ¢(pl,p2,p3)
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dn <-¢(1,2,3)
X <-rep(NA,n)
rm <- matrix(data=0,nrow=n,ncol=3)
P1 <- sample(dn,n,replace = TRUE, prob = mpv)
for (iin 1:n) {
rm[i,P1[i]] <- 1
x[i] <-

rm[i,1]*rnorm(1,mean=0,sd=1)+rm[i,2]*rnorm(1,means8=1)+rm[i,3]*rnorm(1,mean=10,sd=1)

} # end of for loop #

} # end of the function#

R codes for the Fleishman System

The test.txt file can be found in the disk attached.<- read.table("C:/Temp/test.txt",header=T)
ma.matrix <- as.matrix(ma[,2:5])

rFleishman <- function(n,m=0,std=1,SK.ABCD,...) {
x1 <- rnorm(n)
X2 <- SK.ABCD[[1]]+x1*SK.ABCD[[2]]+(x1"2)*SK.ABCD[[3]]+(x1"3)*SK.ABCDI[[4]]
X <-m + std*x2

X



R codes for Mood Median Test:
# Large Sample min(n1,n2) > 12 mood median test #
median.atest <- function(x1,x2)  {

ZC <- gnorm(0.975, mean=0, sd=1, lower.tail = TRUE)

sx1<- sort(x1)

sx2<- sort(x2)

nl <- length(x1)

n2 <- length(x2)

N <-nl+n2

s <- ceiling(N/2)

Vs <- (n1/2)-0.5-ZC*sqrt((n1*n2)/(4*N))

v3 <- round(vs)

v4 <- round(nl-vs)+1

L <-sx2[s-n1+v3+1]- sx1[n1-v3]

U <-sx2[s-nl+v4] - sx1[nl-v4+1]

Cl <-c(L,V)

Cl

} # end of the function #

# calculation of factorial #

jiecheng <- function(x)  {

jc<-1
if(x==0)jc<-1
else {
for (i in 1:x) {
jc <-jc*i
}
}
jic
}

# calculation of combination#
zuhe <- function(n,k) {
zuhe <- jiecheng(n)/jiecheng(k)/jiecheng(n-k)

zuhe

# exact mood median test#
median.etest <- function(x1,x2)  {
pl <-¢()



pl[1] <-0
p2 <-c()
p2[1] <- 0
i <1
nl <- length(x1)
n2 <- length(x2)
N <-nl+n2
s <- ceiling(N/2)
v <- max(nl-s,0):min(nl1,N-s)
Iv <- length(v)
j <1
if (sum(p1)<=0.025){
pl[i] <- (zuhe(nl,v[i])*zuhe(n2,N-s-v[i]))/zuhe(N-s)
i<-i+1
p2[i]<-0
}
if (sum(p2)<=0.025){
p2[j] <- (zuhe(nl1,v[lv+1-j])*zuhe(n2,N-s-v[lv+1})/zuhe(N,N-s)
j<-j+1
p2[j] <-0
}
ClI <- c(V[i-1],v[Iv-]])
Cl
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