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ABSTRACT 
It is common that two populations are to be compared, and one objective is to test the null 

hypothesis that the two populations have the same response distributions against the 

alternative that the response distributions are different. Three classes of tests are provided for 

this situation, depending on the type of alternative hypothesis. One class of tests has good 

power against shift alternatives (i.e., changes in the location), a second against dispersion 

alternatives (i.e., changes in the scale), and a third against general alternatives. In this research, 

the main focus will be the two-sample test for location problem, especially when the data are 

under nonnormality and heteroscedasticity, since the classical test are based on either of this 

two assumptions. For example, Welch t test (Welch, 1947) improves the simple t test 

(“Student”, 1908) when data are heterogeneous, but it works less efficiently than Wilcoxon 

Rank Sum test (Wilcoxon, 1945) when the data are skewed. Wilcoxon test is powerful under 

nonnormality but it behaves poorly under heteroscedasticity. 

In fact, without the parametric assumption of the underlying distribution of the data, the 

uniformly most powerful test does not exist. But under certain circumstance, there exists 

locally most powerful test. Some of the appropriate parametric and nonparametric tests will 

be introduced in section 4 for different conditions. When there is no prior information about 

the conditions of the data, there are other statistical procedures available, such as Adaptive 

test (Bickel, 1982), Maximin efficiency robust test (Gastwirth, 1966), Maximum test (Tarone, 

1981; Fleming & Harrington, 1991) etc. At the end a new Maximum test is proposed, when 

the underlying distribution of the data is a priori unknown. For a good presentation of the 

Microarray data, the test results can be plotted using the so-called Volcano Plot. There is also 

an improved Volcano Plot proposed using the concept of confidence interval, which is 

discussed at the end of Chapter A.  

When the data is dichotomized with some priori cut-point, for example maximally selected 

cut point (Hothorn and Lausen, 2002), the inference for binary data can be also used for 

continuous data. At the end of Chapter B, a new method for the construction of confidence 

intervals for the ratio of proportions is also discussed.  

All the tests and methods for confidence intervals are compared via Monte-Carlo simulation, 

the simulation results are shown in chapter A and B respectively. Among all the candidate 

tests, there are no clear winner in all the conditions, but when the data are under nonnormality 

and heteroscedasticity, Welch t test behaves relatively better than others, although the 

assumption of the test is violated. The new method for the confidence interval of ratio of 

proportions is proved to maintain the nominal level of confidence (95 percent). 
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GENERAL INTRODUCTION 

 

For the two-sample location problem, Student’s t-test was developed by “Student” (Gossett, 

1908) to deal with the problems associated with inference based on small samples. The 

classical t-test based on the assumption of normally distributed data and variance 

homogeneity. In the heterogeneous variance case (so called Behrens-Fisher problem), Welch 

t-test (Welch, 1947) was proposed to fill this void. It is very often that doubts on the 

normality exist, consequently distribution free test, such as Wilcoxon rank sum test 

(Wilcoxon, 1945) is favorable. But the Wilcoxon test also based on the homogeneous 

variance. When such condition is violated, the Wilcoxon test will have poor power than 

expected. Such violation of assumption is very common and serious in the microarray data, in 

this paper all the examples and simulation conditions will be chosen to mimic the microarray 

data. But the results and conclusion in this paper are not limited to the microarray data, they 

can be used to all kinds of experimental data when the data are under certain conditions. 

The problems occurred in the analysis of array data is one of the motivations of this research. 

Firstly some characteristics of microarray data will be characterized in chapter A. The similar 

problems can be found also in horticulture science, another two data sets from horticulture 

experiments will also be introduced. Different distribution systems are also introduced to 

mimic the data generating mechanism, such as some standard probability distributions 

(Normal, Lognormal, Exponential, etc.) and some other distribution systems which can 

generate distributions with short tails, long tails, skewness and kurtosis. In this thesis, mixture 

of normal distributions, Fleishman distribution and Johnson distribution are used for the 

purpose of generate such nonstandard distributions. When the data with certain characteristics 

are possible to regenerate, different test can be compared with such regenerated data. This 

kind of techniques is called Monte-Carlo simulation. In Chapter A, the general idea of the 

simulation study is reviewed, and the usual method for random number generating is also 

introduced. 

The test results can be presented efficiently using the so-called Volcano plot; Volcano plot is 

nothing but a scatter plot of the base 2 logarithm of the ratio of means versus the base 10 

logarithm of the p value from the statistical test. One disadvantage of the Volcano plot is that 

the distance of two points is hard to interpret since the x- and y-axis are in two different scales. 

To make the interpretation easier, a modified version of Volcano plot is proposed, which use 

the confidence intervals instead of the p values for the y-axis. The confidence interval for the 
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ratio of means of two samples will be calculated. And the base 2 logarithm of the lower 

limited of the confidence interval for the ratio will be plotted when the estimated ratio is 

larger than 1 and the base 2 logarithm of the upper limit of the confidence interval for the 

ratio will be plotted when the estimated ratio is smaller than 1. In this plot, both x- and y-axis 

are of the same meaning, namely fold change. The x-axis is the estimated fold change, and the 

y-axis is how extreme the fold change can be. In the modified Volcano plot, the points with 

both estimated ratio and lower limit larger than 1 and the points with both estimated ratio and 

upper limit larger smaller than 1 are interesting, since they are more likely to give the 

significant result in the corresponding test. The details of both the Volcano plot and the 

modified Volcano plot will be discussed in Chapter A. 

Also when the data is dichotomized with some priori cut-point, for example maximally 

selected cut point (Hothorn and Lausen, 2002), the inference for binary data can be also used 

for continuous data. In this research, a review the inference for the ratio is made, especially 

the method for construction of confidence intervals for the ratio of two proportions. A new 

method (add-4 asymptotic method) for the construction of confidence intervals for the ratio of 

proportions is proposed. The proposed new method is proved to maintain the nominal level of 

confidence (0.95) for the confidence interval via Monte-Carlo simulation. 
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1. CHAPTER A  

 
Introduction to Microarray Data 
 

It is necessary to know whether the data are really fulfilled the assumption of the statistical 

tests before conducting the statistical analysis. For example, when the experimental data is 

nonnormal but variance homogeneous, Wilcoxon test can be used. Thus the distributional 

characteristics of Microarray data are important for choosing the appropriate statistical test. 

Microarray experiments are conducted in such a manner as to profile the behavior patterns of 

thousands of nucleic acid sequences or protein simultaneously. Plus, they are capable of being 

automated and run in a high throughput mode. Thus they generate mountains of data and data 

analysis is necessary for converting data to knowledge. But the microarray data have some 

characteristics, such as small number of replicates, missing values, variance heterogeneity, 

nonnormality, bimodal distribution, different shapes in two samples, etc., which make the 

statistical analysis hard to implement. Several datasets are investigated, which is shown in 

Table 1: 

 

Table 1 Data sets investigated in this study 

Dataset Name Replications  Gene Number Type 

Armstrong et al. (2002) 24 ALL, 20 MLL 12582 Oligo. 

Golub et al. (1999) 25 ALL, 47AML 7129 Oligo. 

Singh et al. (2002) 50 Normal, 50 Tumor 12600 Oligo. 

Yeoh et al. (2002) 27 E2APBX,79 TEL AML 12625 Oligo. 

Shipp et al. (2002) 19 DLBCL, 19 FL 7129 Oligo. 

Garber et al. (2001) 29 Ade, 31 others 22115 cDNA 

Gruvberger et al. (2001) 28 ER+, 30 ER- 3389 cDNA 

Khan et al. (2001) 23 EWS, 20 RMS  2303 cDNA 

Huang  et al. (2001) 8 Tumor, 8 Normal 12558 cDNA 

Summary of the 9 data sets used to study the characteristics of the dataset. The number of genes (or, more 

precisely, the number of array elements) is indicated. The middle column description of the experiment, sample 

size and the comparison we studied. For details, see the web supplement. Abbreviations: E2APBx, GIST, 
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gastrointestinal stromal tumor; ER, estrogen receptor; AML, acute myeloid leukemia; BPH, benign prostate 

hyperplasia; DLBC, diffuse large B cell lymphoma; FL, follicular lymphoma; EWS, Ewing’s sarcoma; RMS, 

rhabdomyosarcoma; MLL, mixed lineage leukemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid 

leukemia. 

Characteristics of Microarray data: 
 

In this thesis, the characteristics of Singh et al. (2002) data set will be shown as a example, 

because Singh data are of the largest sample size among all the available datasets. It is more 

reliable to describe the distribution shapes of Microarray data. The design of this experiment 

is to determine whether global biological differences underlie common pathological features 

of prostate cancer and to identify genes that might anticipate the clinical behavior of this 

disease. The sample sizes of both samples are 50.  

To describe the distributions for all the genes, four descriptive statistics are to be used. They 

are mean, standard deviation, skew and kurtosis. With these four statistics, the distributional 

information of the Microarray data can be roughly described.  

The histograms of two samples are shown in Figure 1, which globally indicates the 

differences of gene expression. 

 

Figure 1 Histograms of tumor (blue) and normal (red) samples.  
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The Histograms above only show the global profiles of the gene expression differences, i.e. 

only the means of all the genes in the first group and the second group are plotted separately. 

We can see the differences between two the two samples, but we cannot find out how many 

genes are really differently expressed. Thus, the genewise absolute and relative differences for 

each gene between two groups are calculated, the genewise differences and relative 

differences (ratios) study is also performed and shown in Figure 2: 

 

 

 

Figure 2 Genewise mean differences (left) and ratios (right) of tumor sample minus 

normal samples and tumor sample divided by normal sample. 
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The majority of the genes do not expressed differently, so the genewise differences centered 

at 0 as the genewise ratios centered at 1 correspondingly. Because of the different magnitude 

of the gene expression levels between different experiments, comparison of the absolute 

differences is nonsense. The fold change is meaningful in this case, and the majority of the 

fold changes among all the datasets are between 0 and 5, whereas 0 means very big difference. 

There are also relative differences in variations of the data, which can be seen from Figure 3: 

 

Figure 3 Genewise ratios of Standard Deviation (SD) of tumor sample divided by 

normal sample. 

 
It is shown in Figure 3 that majority genes expressions from two samples are variance 

homogeneous (ratios around 1). But there are also part of genes have serious variance 

heterogeneity between two samples, which can be seen in the histogram (ratios near to 0 or 

near to 8). To describe the distributions more precisely, the third and forth moments 

(Skewness and Kurtosis) for the data are also calculated and shown in Figure 4: 
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Figure 4 The histograms of Skewness (left) and Kurtosis (right), green lines show the 

corresponding value for the normality. 

 
The histograms show that the Skewness and Kurtosis differ more or less between two samples. 

The genes expressions data in all the samples deviate from normality (see the green lines for 

skewness and kurtosis for normality). Since the skewness and kurtosis are correlated, the joint 

distributions of skewness and kurtosis are shown in Figure 5: 
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Figure 5 Joint distributions of skew and kurtosis of Normal sample (left) and tumor 

sample (right). The green points indicate the value (0,3) for normality. 

 

From the joint distributions, it is easier to see that most of the gene expression data deviate 

from normality, and some of them are even highly skewed and with sharp distribution curves. 

The skewness locate between –1 to 2 most frequently, there are also highly skewed data, 

which is very likely the consequences of extreme values. After excluding the extreme values 

(usually the highest and lowest 0.5% of the array will be deleted empirically, thus the central 
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part of the distribution curve is better described by skewness and kurtosis), the skewness and 

kurtosis can be shown in Figure 6: 

 

 

 

Figure 6 Joint distributions of skew and kurtosis of Normal sample (left) and tumor 

sample (right) after excluding outliers. 

 
Actually the very extreme skew and kurtosis are stilled caused by extreme values in the 

dataset; this phenomenon can be modeled as mixture distribution, which will be discussed 

later in this section. 
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For detecting and visualizing the differentially expressed genes, Volcano Plot was proposed 

(Wolfinger et al., 2001). The properties of Volcano Plot and comparison with other graphical 

presentations will be discussed in detail in section 5. The Volcano Plot for the example data is 

shown in Figure 7: 

 

Figure 7 The Volcano Plot of Singh data with base-2 logarithm of fold change as 

abscissa versus minus base-10 logarithm of p values from t test. 

 
The Volcano Plot also shows that there are majority of genes did not express differentially (i.e. 

small fold changes and large p values from the t test). But the usage of t test is doubted 

because the nonnormality nature of the data. P values from other nonparametric tests seem 

more appropriate for this purpose, which will be shown also in next section. 

In horticulture science, the experimental data have also such problems. For example, the 

experiment conducted by Schneider and Tatilioglu (Schneider; Tatilioglu, 1996) is designed 

to study the protein band samples of two different Genotypes of chives. The protein band is 

generated through gel. Here the influence on the band samples under rising dosages (0ppm, 

10ppm, 15ppm, 20ppm) of Tetracycline was shown for tetracycline sensitive and tetracycline 

insensitive plants. The endpoint is the integrals of the 18-kilo Dalton Mitochondria Protein 

band. The process of the integral values under rising dosage of Tetracycline is examined as a 

function of the Genotype. Per Genotype and dosage three repetitions are accomplished. The 

descriptive statistics of the dataset are shown in Table 2. 
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Table 2 Data from Schneider and Tatilioglu’s experiments 

 
Dose of Tetra. 0ppm 10ppm 15ppm 20ppm 

Mean  665.00 587.17 408.08 225.38 

SD  255.57 262.12 217.87 112.11 

Tetra is the abbreviation of Tetracycline, SD means Standard Deviation. 

 

With the increase of dose of Tetracycline, the mean and the standard deviation of the 

endpoints becomes much smaller. For the analysis of such data, the test should have the 

robustness against the variance heterogeneity.  

 

Candidate Tests and Simulation Study 
 
Let nXXX 11211 ,..., be i.i.d. with distribution function ( )xF1   and nXXX 22221 ,...,  be i.i.d. with 

distribution function ( )xF2 . 

Parametric two-sample test 

 
t test  

When the data are normally distributed, further we assume that the variances are 

homogeneous, that is 2
2

2
1

2 σσσ ==  

Test statistics:  
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1
2S  and 2

2S are unbiased estimators of 2σ calculated from sample 1 and sample 2, 

respectively. Degree of freedom: 221 −−= nndf . The statistic T has t distribution with df 

degrees of freedom, and we use this statistic for inferential purpose about the two population 

means under the above assumptions.  

 

Welch t test  

We assume here, ( )2
111 ,N~ σµX  and ( )2

222 ,N~ σµX , 
2

2
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Test statistics:  
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Modifications of the t test 

Student t test, Welch t test (or use both t tests after logarithm of the raw data) are commonly 

used. The t test is a simple, statistically based method for detecting differentially expressed 

genes. In replicated experiments, the error variance can be estimated for each gene from the 

log ratios, and a standard t test can be conducted for each gene (Callow, 2000); the resulting t 

statistic or p values can be used to determine which genes are significantly differentially 

expressed. This gene-specific t test is not affected by heterogeneity in variance across genes 

because it only uses information from one gene at a time. It may, however, have low power 

because the sample size, i.e. the number of RNA samples measured for each condition is 

small. In addition, the variances estimated from each gene are not stable: for example, if the 

estimated variance for one gene is small, by chance, the t value can be large even when the 

corresponding fold change is small. It is possible to compute a global t test, using an estimate 

of error variance that is pooled across all genes, if it is assumed that the variance is 

homogeneous between different genes (Arfin, 2000). This is effectively a fold-change test 

because the global t test ranks genes in an order that is the same as fold change; that is, it does 

not adjust for individual gene variability. It may therefore suffer from the same biases as a 

fold-change test if the error variance is not truly constant for all genes. 

As noted above, the error variance (the square root of which gives the denominator of the t 

tests) is hard to estimate and subject to erratic fluctuations when sample sizes are small. More 

stable estimates can be obtained by combining data across all genes, but these are subject to 

bias when the assumption of homogeneous variance is violated. Modified versions of the t test 

find a middle ground that is both powerful and less subject to bias. 

In the ‘significance analysis of microarrays’ (SAM) version of the t test (known as the S test) 

(Tusher, 2001), a small positive constant is added to the denominator of the gene-specific t 

test. With this modification, genes with small fold changes will not be selected as significant; 

this removes the problem of stability mentioned above. The regularized t test (Baldi, 2001) 

combines information from gene-specific and global average variance estimates by using a 
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weighted average of the two as the denominator for a gene specific t test. The B statistic 

proposed by Lonnstedt and Speed (2002) is a log posterior odds ratio of differential 

expression versus non-differential expression; it allows for gene-specific variances but it also 

combines information across many genes and thus should be more stable than the t statistic. 

The t and B tests based on log ratios can be found in the Statistics for Microarray Analysis 

(SMA) package; the S test is available in the SAM software package; and the regularized t 

test is in the Cyber T package. In addition, the Bioconductor has a collection of various 

analysis tools for microarray experiments. Additional modifications of the t test are discussed 

by Pan (2002). 

 

Nonparametric two-sample test    
 
Asymptotic Wilcoxon test 
 
Let ir1 be the rank of iX1 in the combined sample, that is iX1  is the ir1 th smallest in the 

combined sample, then ∑ =
= n

i irW
1 1 , the sum of ranks of the 1X ’s, is defined to be the 

Wilcoxon statistics (Wilcoxon, 1945). The null distribution of the statistic approximates 

normal when sample size is large. 

 

Exact Wilcoxon test 
Using the same Wilcoxon test statistic defined above, the null distribution of the statistic is 

replaced by exact distribution rather than normal approximation. It is used when sample size 

is small. 

 

Maximally Selected Rank test 
The maximally selected rank test is proposed for the classification problem, the idea is to use 

an optimal cut point to distinguish two samples. Let ir1 be the rank of iX1 in the combined 

sample, and )()...1( naa nn denote some scores, µ is a pre specified cut point. A simple linear 

rank statistics (Hajek and Sidak, 1967, p.61) is defined as 

( )nX nnn

n

i
in raraXcS

i
11

1

)()( ∑∑ ≤
=

==
µµµ , where µµ ≤=

iXi IXc )(  are regressors depending on 

µ . Furthermore, when the scores are set equal to the ranks, i.e. iian =)( , µnS  equals to the 

Wilcoxon statistic in section 3.3. The exact distribution of maximally selected rank statistics 

is derived by Hothorn and Lausen (2002).  
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Conover-Salsburg test 
Conover and Salsburg (1988) investigate two kinds of Lehmann alternatives (Lehmann, 1953), 

which only a subset of treated sample will show an improvement. They proposed to use 

scores [ ]4)1/()( += Niian for the statistic defined by Hajek and Sidak (1967) )(
1

iaS
n

i n∑ =
= .  

 

Mood’s Median Test 
Mood’s median test (Mood, 1950) is a nonparametric test, which is alternative to Wilcoxon 

test when variances of two samples are heterogeneous. The test statistic is M = the number of 

2X values that exceed the median of the combined samples (middle observation if 21 nn +  is 

odd, and average of the middles ones if 21 nn +  is even). The distribution of M is 
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2

2
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1

2,1
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m

n

m
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n

mMP nn , 2,...1,0 nm = . A similar formula holds if 21 nn + is odd. 

 

Cramer-von Mises test 

The Cramer-von Mises statistic, ( ) ( )[ ] ( ),1

2

12
2 xdFxFxFW ∫

∞

∞−

−=  where ( )xFi  is the empirical 

CDF based on sample i,. The statistic was suggested independently by Cramer (1928) and von 

Mises (1931). 

 

Kolmogorov Smirnov test 
The Kolmogorov Smirnov test (Kolmogorov, 1973) based on the statistic 

( ) ( ))max( 12 xFxFW −=  where ( )xFi  is the empirical CDF based on sample i,.  

 

Proposed Maximum Test  
 

In many applications, the precise form of the model underlying the data is not known; 

however, several scientifically plausible ones are available. Often optimal tests for each of 

them exist. Unfortunately, use of any one optimal test may lead to a loss of power under 

another model.  
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There are different solutions for such problem, such as adaptive inference when the models 

are very far apart (Bickel, 1982), Maximin efficiency robust test (Gastwirth, 1966, 1985) and 

Maximum test (Tarone, 1981; Fleming & Harrington, 1991)  

 
A nonparametric test can be performed using a linear rank statistic 

( ) i

N

i

VigT ∑
=

=
1

, 

where ( )ig  are real valued scores, and 1=iV  when the ith smallest of the mnN +=  

observations is from the first sample and 0=iV  otherwise. Two-sample tests based on T  are 

distriubtion-free. Under 0H , we have 
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and the standardized statistic 
( )
( )TVar

TET −
 

follows asymptotically a standard normal distribution (Büning & Trenkler, 1994, pp. 127-130; 
Hajek et al., 1999, pp. 57-63). 
 
3 optimal tests to use: 
 
1. Gastwirth test G (short tails) 
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Here, [ ]x  denotes the highest integer less than or equal to x . 
3. Brunner (Brunner and Munzel, 2000) test (Nonparametric Behrens-Fisher Problem) 

To formulate a nonparametric Behrens-Fisher problem, we consider the relative 

treatment effect ( ) ( ).
2

1
21112111 XXPXXPp =+<=  
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The random variable 11X  is called to tend to smaller (larger) values than the random 

variable 21X  if 






 <>
2

1

2

1
pp  and the two random variables are called 

tendentiously equal if 
2

1=p . 

To estimate the relative treatment effect p and to derive its asymptotic distribution it 
is more convinient to express p in terms of the disbribution functions. To this end, we 

use the so-called normalized version ( ) ( ) ( )[ ]xFxFxF iii
+− +=

2

1
 of the distribution 

function (Ruymgaart, 1980) where ( ) ( )xXPxF ili <=−  is the left-continuous version 

and ( ) ( )xXPxF ili ≤=+  is the right-continuous version of the distribution function. 

Then, the relative treatment effect p can be written as ∫= 21dFFp and the hypothesis 

of no treatment effect is written as 
2

1
: 210 == ∫ dFFpH p . We note that 

FFFH F == 210 :  implies 
2

1
:0 =pH p  because 

2

1=∫ FdF , which follows from 

integration by parts. 
To estimate the relative treatment effect p , the distribution functions 1F  and 2F  are 

replaced by their empirical counterparts ( ) ( ) ( )[ ]xFxFxF iii
+− += ˆˆ

2

1ˆ . 

( ) ( )∑
=

−− −=
in

k
ik

i

i Xxc
n

xF
1

1ˆ  

( ) ( )∑
=

++ −=
in

k
ik

i

i Xxc
n

xF
1

1ˆ  

( ) ( )∑
=

−=
in

k
ik

i
i Xxc

n
xF

1

1ˆ  

where 

( )




>
≤

=−

0,

0,

1

0

x

x
xc  called left-continuous 

( )




≥
<

=+

0,

0,

1

0

x

x
xc  called right-continuous 

( ) ( ) ( )[ ]xcxcxc −+ +=
2

1
 called normalized 

version of indicator function.  

Let ( ) ( )xF
N

n
XH i

i

i∑
=

=
2

1

 denote the combined distribution function and let 

( ) ( )xF
N

n
XH i

i

i ˆˆ
2

1
∑

=

=  denote the normalized version of the combined empirical 

distribution function. Note that ( )
2

1ˆ +⋅= ikij XHNR  is the rank of ikX  among all 
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N observations. Let 2,1,
1

1 == ∑
=

−
⋅ iRnR

in

k
ikii , denote the mean of the ranks ikR  in the 

ith sample.  

Then, it follows that  








 +
−== •∫ 2

11ˆˆˆ 2
2

1
21

n
R

n
FdFp  

is an unbiased and consistent estimator for the relative treatment effect p .  

The statistic ( ) 2
122

1
ˆ NN NRRpN σσ •• −=







 −  has, asymptotically, a standard 

normal distribution under 
2

1
:0 =pH p , where 

[ ]2
2
21

2
1

2 nnNN σσσ += . 

The variances 2
1σ and 2

2σ  are unknown and must be estimated from the data.  

( ) ,ˆ
222

iii nNS −=σ  
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S  

is the empirical variance of  ( )i
ikik RR − , ( ) ( )

2

1ˆ +⋅= ik
i

ik XHNR  denotes the (within) rank 

of ikX  among in  observations within the ith sample.  

Thus, under pH 0 , the statistic 

NN

BF
N

RR

N

pN

W
σσ ˆ

1
ˆ

2

1
ˆ

12 •• −
⋅=








 −
=  

has, asymptotically , a standard normal distribution under hypothesis 

 

The asymptotical distribution of the Maximum of the above three standardized statistics is 

possible to derive. Assume that the standardized optimal statistics are asymptotically jointly 

multivariate normal with correlation matrix { }ijρ . And the joint density function of the three 

standardized statistics is ),,( 321 xxxf . Define the maximum of 321 ,, XXX  are mX , and when 

xXm ≤ , it means each of 3,2,1, =≤ ixX i . Then the Asymptotic distribution of mX  is just 

the integral 321321 ),,( dxdxdxxxxf
mi xX
∫
<

. But the asymptotic distribution of a maximum statistic 

may be not available, or, if available, the asymptotic approximation can be poor (Freidlin & 

Korn, 2002). Therefore, this test can, for large sample-sizes be performed simulation-based 

only, i.e. Bootstrap or permutation-based. The Bootstrap or permutation distribution of the 
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maximum statistic can be obtained with resampling with or without replacement respectively. 

For example, in the permutation case, the data from two samples are pooled together, and in 

each resampling, generate a permutation of the pooled data, and take the first 1n  numbers as 

the first group and the next 2n as second group. Perform the test and save the statistics. Repeat 

this process for N, say 4,000, times. We can use the 4,000 stored statistics to generate the 

empirical distribution of the statistic, and then the decision of the test can be made from the 

observed statistic depending on the empirical distribution. The only difference between a 

permutation resampling and Bootstrap resampling is that Bootstrap resampling sample from 

the raw data with replacement. 

 

Distribution systems    
 
To model the nonnormality of the real data, distribution systems are needed. The suggestion 

to use “typical” nonnormality, such as lognormal, Beta, Gamma, Weibull, student t 

distributions etc., has been made by Pearson and Please (1975). In the literature, there appear 

other methods for generating nonnormality, such as adding outliers, using extreme 

nonnormality (chi square, rectangular, lognormal, exponential, t, Cauchy distributions), 

transformation to unknown nonnormality and Tabular.  

But the above method is either hard for the researcher to manipulate the distribution 

parameters (mean, variance, skewness, kurtosis, etc.) or hard to implement in Monte Carlo 

simulation. Thus, some other distribution systems are adapted for generating nonnormality in 

the simulation study, which fulfill the following requirements: they should have a priori 

known parameter, enable the researcher to change distributions with the least amount of 

difficulty, be realistic simulations of empirical distributions, capable of generating widely 

different distributions, and should operate as efficiently as possible.  

The first used system is Fleishman system (Fleishman, 1978). The idea behind is a 

polynomial transformation, and will be called the power method. The transformation is of the 

form 32 dXcXbXaY +++= , where X  is a random variate distributed normally with zero 

mean and unit variance, )1,0(N , Y will have a distribution dependent upon the constants. 

With the restriction of mean, variance, skew and kurtosis, the four coefficients (a, b, c and d) 

can be found (for details see Fleishman, 1978). Some of the coefficients for certain 

combination of skew and kurtosis are tabulated, which are used in this report. One thing to 
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notice is the limitation of Fleishman system, the possible space of the skew and kurtosis can 

be described by a parabola: 0717247.00629576.02 +×< kurtosisskew . 

Histograms of some nonnormal distributions generated by Fleishman system are shown in 

Figure 8: 

 
Figure 8 Some distributions generated by Fleishman system 

 
Due to the limitation of Fleishman system, other distribution systems are used; the second 

used system is Johnson distribution. Starting from a continuous random variable Z  whose 

distribution is unknown and is to be approximated and subsequently sampled, Johnson (1949) 

proposed a set of four normalizing translations. These translations have the general form 








 −⋅+=
λ

ξδγ Z
gX  

Where X  is a standard normal random variate (that is ( )1,0~ NX ), γ  and δ  are shape 

parameters, λ is a scale parameter, ξ  is a location parameter, and ( )⋅g  is a function whose 

form defines the four distribution families in the Johnson translation system, 
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In the support of all these four functions, it can be proven to be monotonic increasing.  

The random variable Z  has the following characteristics: 

Cumulative distribution: 

( ) 














 −⋅+Φ=
λ

ξδγ z
gzFZ  

Density function: 

( ) 














 −⋅+






 −⋅=
λ

ξδγφ
λ

ξδ z
g

z
gzfZ

'  

According to Hill et al. (1976), the Johnson curves can be fitted using Moment Matching 

Estimate, which is implemented by in Software R, package SuppDists.  

As shown before, the extreme skew and kurtosis are caused by the extreme values exists in 

the dataset. In fact that not only unimodal distribution exists in real data set, such extreme 

values can also be understood as another components of the distribution, consequently the 

distribution system should be able to generate bimodal or multimodal distributions. Mixture 

distribution is used for this purpose, though Johnson system has the same functionality. In this 

study, only two normal components are used. Suppose  ),(~ 2
111 σµNX  has the (Probability 

Density Function) PDF )( 11 xf , and ),(~ 2
222 σµNX has the PDF )( 22 xf . Since the support 

of 1X  and 2X  are ),( ∞−∞ , if X is a random variable which may come from the above two 

populations, the support of X is also ),( ∞−∞ . Random variable X  has the PDF 

( ) ( ) ( )xfaxafxf 21 1)( −+= .  (a is called mixing probability or proportion, a of the times 

from the first component, 1-a of the times from the second component.) 

Since: 

( ) ( ) ( )( ) ( ) ( ) ( ) 1))1(11)( 2121 =−+=−+=−+= ∫∫∫∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

aadxxfadxxafdxxfaxafdxxf  

The mean of X is ))1()( 21 µµ aaXE −+=  

The variance of X is ( ) ( )2
21

2
2

2
2

2
1

2
1 )1()1()()( µµµσµσ aaaaXV −+−+−++=  

Two mixture distributions are shown in Figure 9: 
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Figure 9 Two mixture distributions. Blue one with 0.9N(0,1) +0.1N(2,0.25), and red one 

with 0.9N(0,1)+0.1N(4,0.25). 

 
The above introduced distribution system are flexible to model and simulate the real data, but 

the mechanism of generating the real data might be more complex, the simple transformation 

and mixture might not be sufficient for investigation.  

 

Monte-Carlo simulation 

 

Outline of Monte-Carlo Simulation 
 
The different statistical tests can be compared via Monte-Carlo simulation. In the simulation, 

the random variate will be generated under different specific conditions. For example, when 

the type I error of t test is under investigation. The random data should be generated under the 

null hypothesis condition. The underlying distribution of the data is set to be normal 

distribution with equal variances. Use software R for instance, the normally distributed 

random number can be generated using command rnorm with other necessary arguments. The 

t test is also a function in software R with command name t.test. Conduct t test for the 

generated random variate N, say 10,000, times and count the number of significant results. 

The number of significant results divided by the simulation number 10,000 is the estimation 

of the type I error rate of t test under the null hypothesis. If one of the two samples is shifted 
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from the other, the power of the sample can be also estimated using the same process. The 

confidence intervals of the estimated type I error rate and the power can be also calculated 

using the inference for proportions. The estimated type I error and the power are denoted by p, 

the confidence interval is 
( )

N

pp
zp

−± 1
, where z depends on the level of confidence desired. 

 

Generating of Random Number 
 

There are different ways for the random number generation. Here only a general idea of 

generating random variables of different types is given. This is done by simply determining 

values of the uniform variable. Consider the following fact: 

Let random variable Y be distributed normally over the unit interval 10 << y . Suppose that 

( )xF  is a distribution function of the continuous type, which is strictly increasing when 

( ) 10 << xF . If the relationship ( )XFY =  is defined, the inequalities xX ≤  and 

( ) ( )xFXF ≤  are equivalent. Thus, with ( ) 10 << xF , the distribution of X  is 

( ) ( ) ( )[ ] ( )[ ]xFYxFXFxX ≤=≤=≤ PrPrPr  

because ( )XFY = . However, ( ) ( )yGyY =≤Pr , so we have 

( ) ( )[ ] ( )xFxFGxX ==≤Pr , ( ) 10 << xF . 

That is, the distribution function of X is ( )xF . This result permits us to simulate random 

variables of different types. This is done by simply determining values of the uniform variable 

Y, usually with a computer. 

 

But in the simulation of random variables using uniform random variables, it is frequently 

difficult to solve ( )xFy =  for x. Thus other methods are necessary. For instance, consider the 

important normal case in which we desire to determine X so that it is ( )1,0N . Of course, once 

X is determined, other normal variables can then be obtained through X by the transformation 

µσ += XZ . To simulate normal variables, Box and Muller (Hogg, Craig, 1995) suggested 

the following transformations, let 21,YY be a random sample from the uniform distribution 

over 10 << y . Define 1X  and 2X  by 

( ) ( )2
2/1

11 2cosln2 YYX π−=  

( ) ( )2
2/1

12 2cosln2 YYX π−=  
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The random variables1X  and 2X  are proved to be independent standard normal random 

variables. For the proof see for example Hogg and Craig. 

 

Simulation Results and Discussion 
 
Condition I: Normality with variance heterogeneity 

From the investigation of Microarray datasets, there are roughly 25% genes fulfil the 

assumption of normality (via Kolmogorov-Smirnov testing). But the variances are 

heterogenous for some of the genes. Thus the first condition considered here is Normality 

data with variance heterogeneity. 

The simulation is designed with sample size 10 only; both samples are normally distributed 

with mean difference 0,0.5,1,1.5,2,2.5,3, standard deviance ratio 1, 1.5, 2, 3, 5, 7,10. Three 

candidate tests, Welch t test, Exact Wilcoxon test and maximally selected test are used. 

10,000 replications and 0.05 significant level are used. 

The power matrices for three tests are shown in table 3-5: 

 

Table 3 Power matrix for Welch t test. SDR means standard deviance ratio, MD means 

mean difference. 

      SDR 

MD 

1 1.5 2 3 5 7 10 

0 0.050 0.056 0.044 0.063 0.050 0.045 0.049 

0.5 0.172 0.120 0.119 0.075 0.057 0.058 0.054 

1 0.555 0.359 0.254 0.138 0.087 0.066 0.071 

1.5 0.868 0.707 0.478 0.279 0.127 0.079 0.088 

2 0.985 0.898 0.739 0.440 0.203 0.130 0.076 

2.5 1.000 0.983 0.920 0.628 0.284 0.189 0.111 

3 1.000 0.998 0.981 0.780 0.378 0.238 0.143 
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Table 4 Power matrix for maximally selected rank test. 

 
 
    SDR 

MD 

1 1.5 2 3 5 7 10 

0 0.059 0.072 0.111 0.213 0.336 0.451 0.490 

0.5 0.161 0.125 0.170 0.232 0.375 0.435 0.530 

1 0.471 0.338 0.289 0.312 0.377 0.468 0.537 

1.5 0.773 0.633 0.517 0.405 0.470 0.451 0.555 

2 0.937 0.773 0.718 0.612 0.538 0.532 0.546 

2.5 0.934 0.940 0.834 0.762 0.579 0.578 0.575 

3 0.958 0.883 0.940 0.851 0.683 0.601 0.624 

 

Table 5 power matrix for Exact Wilcoxon test. 

 
     SDR 

MD 

1 1.5 2 3 5 7 10 

0 0.045  0.053  0.049  0.075  0.088  0.077  0.094 

0.5 0.155  0.115  0.106  0.083  0.071  0.079  0.093 

1  0.511  0.327  0.240  0.139  0.101  0.123  0.105 

1.5  0.833  0.660  0.446  0.273  0.165  0.113  0.123 

2  0.979  0.869  0.698  0.438  0.226  0.159  0.120 

2.5 1.000  0.980  0.884  0.616  0.294 0.240  0.167 

3 1.000  0.995  0.965  0.751  0.392  0.278  0.190 
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The simulation results show that when the variances are homogeneous, all the tests control the 

alpha. But even with no mean difference but variance heterogeneity, the Welch t test is the 

best candidate because the alpha is always controlled regardless of the ratio of standard 

deviation. The Exact Wilcoxon and Maximally Selected test behaves too liberal in this case. 

 

Condition II: Nonnormality with Fleishman System 

The distribution is skewed from the investigation of real microarray data, after deleting the 

extreme values; the skew and kurtosis are limited to a domain that Fleishman can be used to 

describe the shapes of the underlying density curves. In this scenario, five tests (Welch t test, 

Asymptotic Wilcoxon test, Exact Wilcoxon test, Maximally selected test and Mood’s median 

test) are compared under normal (N(0,1) vs. N(0.75,1), sample size 25 with expected power 

75%), Fleishman with Skew 1.5 Kurtosis 3.75 and Fleishman with Skew 2 and Kurtosis 7 

distributions. Sample sizes (25,25) (20,20) (15,15) (10,10) are used. 

The simulation results under three distributions can be seen in Table 6-8: 

Table 6 Power matrix for five tests under normality. 

Under the null 

Sample size T MS EW AW Mood 

25: 0.0510 0.0530 0.0534 0.0560 0.0568 

20: 0.0488 0.0542 0.0482 0.0482 0.0146 

15: 0.0516 0.0602 0.0486 0.0486 0.0164 

10: 0.0464 0.0536 0.0416 0.0416 0.0104 

Under the alternative 

25: 0.7442 0.6046 0.7098 0.7162 0.6510 

20: 0.6374 0.5250 0.6186 0.6186 0.3578 

15: 0.5022 0.4274 0.4708 0.4708 0.2764 

10: 0.3398 0.2982 0.3070 0.3070 0.1684 
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Table 7 Power matrix for five tests under Fleishman with skew 1.5, kurtosis 3.75 

Under the null 

Sample size T MS EW AW Mood 

25: 0.0500  0.0522  0.0484  0.0502  0.0570 

20: 0.0524  0.0534  0.0524  0.0524  0.0150 

15: 0.0470  0.0624  0.0494  0.0494  0.0188 

10: 0.0404  0.0540  0.0430  0.0430  0.0104 

Under the alternative 

25:  0.7492  0.8832  0.8570  0.8602  0.7602 

20: 0.6472  0.7854  0.7658  0.7658  0.4692 

15: 0.5410  0.6788  0.6216  0.6216  0.3732 

10: 0.3962  0.4396  0.4364  0.4364  0.2320 

 

Table 8 Power matrix for five tests under Fleishman with skew 2, kurtosis 7 

 
Under the null 

Sample size T MS EW AW Mood 

25:  0.041  0.050  0.040  0.043  0.049 

20:  0.045  0.052  0.052  0.053 0.015 

15: 0.046  0.049  0.038  0.038  0.019 

10: 0.038  0.055  0.047  0.047  0.014 

Under the alternative 

25: 0.735  0.951  0.914  0.918  0.839 

20: 0.6472  0.7854  0.7658  0.7658  0.4692 

15:  0.560  0.800  0.709  0.709  0.465 

10: 0.391  0.526  0.494  0.494  0.289 
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The simulation results above show that under the null, regardless of the distributions all the 

candidate tests controls alpha. When the data is normally distributed, the t test is proven to be 

the best test for all sample sizes. But when the data is skewed, Maximally selected test 

behaves the best, for example as shown in Table 7, the power of MS test under all sample 

sizes are much higher than t test and also slightly higher than Wilcoxon test. Mood’s median 

test works well in moderate sample sizes (25-15), but the power decreases dramatically when 

the sample size falls to be 10, which is not surprising since more than 12 observations is 

recommended in the literature.  

 

Condition III: Mixture of two Normals 

 

Conover-Salsburg test is a good candidate test when only a subset of treated sample will show 

an improvement. The simulation for this test is designed as Sample Size 25 balanced, with 

5000 simulation replicates.  

The simulation results of this test show that it controls alpha, 0.0476, under the null. And 

when two samples are N(0,1) and. N(0.75,1), the power of Conover-Salsburg test is 0.6216, 

whereas the expected power for t test is 0.75. When the two samples are designed to N(0,1) 

and 0.7N(0,1)+0.3N(5,1), The power of CS test is 0.7566 whereas t test has the power of 

0.2423. 

 

 
Condition IV :  Simulation for Maximum Test 
 
Since the characteristics of microarray data include not only one problem at a time, the most 

powerful test in each case cannot work well for all the genes in microarray data. The 

Maximum of some standardized statistics is proposed. The simulation study is conducted to 

check the alpha robustness and the power of this test compared with t test and Wilcoxon test 

for sample size 25. The simulation number are set to be 1,000 since the Bootstrap procedure 

are very computation intensive. The Bootstrap replication is 400 for the Maximum test. 

The 3 components of Maximum Test are simulated separately under normality to check the 

alpha and power. 

The results are shown in table 9: 
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Table 9 Simulation study for the 3 components of Maximum Test 

          Test 

 

Distribution  

 

Gastwirth Test 

 

Long Tail Test 

 

Brunner Test 

Expected alpha 

and Power of t 

test  

N(0,1) vs. N(0,1) 0.0476 0.049 0.0457 0.05 

N(0,1) vs.(0.75,1) 0.659 0.651 0.749 0.75 

 

The simulation results shows that each test controls alpha in normal case, but the t test is the 

most powerful test.  But Brunner Test is a very good test, which controls the type I error and 

gives almost the same power like t test. 

Since the Gastwirth test is powerful when the data have short tail (small kurtosis), the 

LongTail test is powerful when the data have long tail (larger kurtosis) and Brunner Test is 

powerful for the non-parametric Behrens-Fisher problem. The combination of these three tests 

is hoped to have better performance than other candidate tests.  

Under the normality with homogeneous variance the Maximum Test is proved to control 

alpha and has the power smaller than t test, which can be seen in table 10. 

Table 10 Type I error and power of Maximum test under normality and variance 

homogeneity 

                           Test 
Distribution 

Maximum Test  Expected alpha and power of 
Welch t test 

N(0,1) vs. N(0,1) 0.0525 0.050 
N(0,1) vs. N(0.75,1) 0.6848 0.750 
 
Again the results show that the t test is more powerful than Maximum Test when data is 

normally distributed, and the reason why the Maximum Test is less powerful than t test is that 

some price must be paid for the Gastwirth Test and the TongTail Test, which are not as 

powerful as the t test or the Brunner Test. 

Under the variance heterogeneity, the type I error and power of Maximum Test can be shown 

in table 11: 

 

Table 11 Type I error and power of Maximum test under normality and variance 

heterogeneity. 

                           Test 
Distribution 

Maximum Test  Welch t test Exact Wilcoxon 
Test 

N(0,1) vs. N(0,2) 0.057 0.046 0.074 
N(0,1) vs. N(0.75,2) 0.324 0.371 0.349 
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The simulation result shows that under normality and variance heterogeneity, exact Wilcoxon 

test does not control alpha, whereas Maximum Test and Welch t test has the type I error near 

to the nominal 0.05. The power of Welch t test is higher than Maximum Test in this case. 

 

When the data is nonnormal, for example Fleishman distribution with skew 2 and kurtosis 7, 

the simulation results of Maximum test can be shown in table 12: 

 

Table 12 Type I error and power of Maximum under nonnormality and variance 

heterogeneity. 

                        Test 
Distribution 

Maximum Test Welch t test exact Wilcoxon 

Fleishman(0,1,2,7) vs. Fleishman(0,1,2,7) 0.033 0.037 0.042 
Fleishman(0,1,2,7) vs. Fleishman(0,2,2,7) 0.158 0.056 0.172 
Fleishman(0,1,2,7) vs. Fleishman(0.75,1,2,7) 0.936 0.745 0.912 
Fleishman(0,1,2,7) vs. Fleishman(0.75, 2,2,7) 0.270 0.356 0.267 
 
The simulation results show that under nonnormality (right skewed) and variance 

homogeneity, the Maximum Test, Welch t test and exact Wilcoxon test controls alpha, but the 

Maximum Test and Welch t test is conservative. Under variance heterogeneity, only Welch t 

test controls alpha, both the Maximum Test and exact Wilcoxon test are anticonservative. 

Under variance homogeneity, the Maximum Test has the highest power among three tests. 

But under variance homogeneity, Welch t test performs best which guarantee the type I error 

and have higher power than other two tests. 

This result implies that in the situation of nonnormality and variance heterogeneity, Welch t 

test is the best candidate test though the assumption of normality is violated. The Maximum 

Test is conducted with more realistic assumption, but it does not control the type I error under 

this condition.  

 
Graphical Presentation of the Test Results 

The test results, such as p values or the confidence interval of some parameters can be 

presented graphically. On is the so-called Volcano Plot.  

Volcano plot    

The test results can be presented efficiently using the so-called Volcano Plot, Volcano Plot is 

nothing but a scatter plot of the base 2 logarithm of the ratio of means versus the base 10 
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logarithm of the p value from the statistical test. One disadvantage of the Volcano Plot is that 

the distance of two points is hard to interpret since the x- and y-axis are in two different scales. 

The microarray data will be used to illustrate this kind of plot. 

The identification of the important differentially expressed genes from massive amounts of 

microarray data is an interesting and current biostatistics problem. Different approaches have 

been proposed, such as testing procedures, e.g. significance analysis of microarrays (Tusher et 

al. 2001) and graphical tools, e.g. the MAplot (shows log fold-change as a function of mean 

log expression level) (Cope et al., 2004). The volcano plot (Wolfinger et al., 2001), a 

combination of testing and graphical approaches, is a simple scatter plot, where p is the two-

sided p-value of the common two-sample t-test. In Figure 1 such a plot is given for the 

Affymetrix-type oligonucleotide arrays by Shipp et al. (2002) and the interpretation is as 

follows: the abscissa <0 indicates under expression, >0 over expression, the ordinate   

indicates non-significant finding and   significant findings, where the nominal   or 

multiplicity-adjusted   false positive error rates can be used. Therefore, genes can be identified 

which are both significant (low p-values) and relevant (high log-ratios). This plot implicitly 

assumes the approximate validity of the Gaussian distribution. Although probe (expression) 

level data were pre-processed several-fold (normalized, log-transformed), doubts on the 

Gaussian distribution and variance homogeneity assumption exist. One example of this plot 

can be seen in figure 10. 

 

Modified volcano plot    
The reason for graphing statistical significance (p-value) versus biological relevance (ratio) 

needs an explanation, particularly because the p-value alone is currently the gold standard for 

reporting statistical comparisons between treatments and controls in bio-medical publications. 

The p-value is a single probability [0, 1] estimated from the effect difference, variance, 

sample size, and based on the fulfillment of the underlying test assumptions. Why is the 

simultaneous consideration of significance and relevance particularly important for 

microarray data? The objective is the identification of highly over- or under-expressed genes. 

Although the same design is used for all genes, different sample sizes and different variances 

occur at evaluation, e.g. the plotted lymphoma data (Shipp et al., 2002) use 19 chips each, but 

the sample sizes and variances for gene S62696_s_at (unigene-ID) are n1 = 5, n2 = 11 and 

2 2
1 2142237, 22904σ σ= = . Also, the distribution between different genes in the same 

experiment may be different. Therefore, using the t-test based on its p-value alone (even after 
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log-transformation) can lead to serious misclassifications. A further question that arises is if 

the presentation of significance versus relevance is appropriate when the significance is 

obtained from a t-test of the difference ( )Treatment Controlx x−  and the relevance is represented by 

the ratio Treatment

Control

x

x
. The consideration of the ratio seems to be biologically appropriate even if 

for log-transformed data the original multiplicative model is transferred into an additive 

model. However, if the ratio is an appropriate measure for relevance, then the use of the p-

value from a parametric test for ratios is consequent. This test is according to Sasabuchi 

(1988):  

,1 / 221
Treatment Control

i df

Treatment Control

X X
t t

MSE
n n

α
θ

θ
−

−= ∝
+

 

where MSE denotes the common mean square error estimator, df is the degrees of freedom 

2Treatment Controldf n n= + −  and tdf,1-α/2 the quantile of the t distribution. In comparison with 

the common t-test, this test inherently needs an a-priori definition of a threshold θ, e.g. θ =2, 

the so-called 2-fold rule. Furthermore, the question of whether a xy-graph of p-value vs. ratio 

estimate is appropriate arises. The ratio represents a percentage of k-fold change, and the p-

value a probability. We propose the presentation of statistical significance by the upper/lower 

limit of the confidence interval instead of the p-value, because confidence intervals offer 

information about the distance from the null-hypothesis (distance to 1), the direction of the 

effect (larger/smaller than 1), and the variability (width) simultaneously. Although confidence 

intervals for the difference are frequently used in biomedical research, the ratio-to-control 

confidence intervals can be directly medically interpreted for some problems (Feuerstein et al. 

1997). Sometimes the ratio problem is transformed via log-transformation into a difference 

problem which assumes log-normal distributed endpoints. A two-sided parametric confidence 

interval for a ratio according to Fieller (1954) is: 

2 2

2
Control Treatment Treatment Control

upper
Control

x x ax bx ab

x a
θ

+ + −
=

−
 

2 2

2
Control Treatment Treatment Control

lower
Control

x x ax bx ab

x a
θ

− + −
=

−
 

2
2,1 / 2Control Treatmentdf n n

Control

MSE
a t

n α= + − −= and 2
,1 / 2df

Treatment

MSE
b t

n α−=  
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The side condition 2
Controlx a>  is simply a one-sided test for control mean values larger than 

zero, i.e., this approach is limited to non-zero control effects.  

 

Sometimes skewed data, multimodal distributed data or data with outliers requiring a non-

parametric confidence interval can be observed in microarray data. According to Hothorn and 

Munzel (2002), the two-sided non-parametric confidence interval for the ratio 

,

,

( )

( )
i Treatment

i Control

med x

med x
δ = is ( ) ( )1;

Treatment Controlw n n wδ δ − +
 
   where , ,1 / 2Treatment Controln nw α−  denotes the lower 

quantile of the Wilcoxon test. The asymptotic or exact confidence interval can be estimated 

using Hodges-Lehman (1963) confidence intervals with the R-package exactRankTest after 

log-transformation of the raw data. One example can be see in the following figure: 

 

Figure 10 Original (a) and modified volcano plot (b) for lymphoma data 

 

Other modifications of the volcano plot are available, e.g. the p-value based on a small sample 

test using local pooled errors (Jain et al. (2003). Multiple volcano plots were proposed, e.g. 

for interspecies comparisons and different organ tissues. 
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2. CHAPTER B 
 
Introduction to Inference for Proportions 

In clinical trails, frequently we need to compare some new drugs or treatments with the 

classical ones. Therefore we divided all the patients randomly to two groups, one group 

treated with new drugs, the other treated with old one or placebo. After a period of time, we 

want to see how many patients in each group recovered from the disease, and whether this 

new drugs or treatment are really more efficient compared with the classical ones, In these 

cases the goal of the user would be to find out whether the new developed treatment shows 

any (statistically) significant response at all. The natural way is to use the 2×2 contingency 

tables. Then the problems are inverted to the comparison of two proportions.   

For instance, the data from table 13: 

 

Table 13 Cross-Classification of Smoking By Lung Cancer (Doll and Hill, 1950) 

 

the 2×2 contingency table above gives us the data from a survey, the table can be transformed 

to be the following table 14: 

Table 14 Estimated Conditional Distributions 

 

 

 

 

Then the two-sample test is to compare the “yes” proportions between two groups. The two 

2×2contingency tables can be formalized to be: 

 

Table 15 The Observed 2×2 contingency table, x. 

 

 

 

 

 

Smoker YES NO Total             

Cases 688 21 709 

Controls 650 59 709 

Smoker YES NO Total 

Cases 0.96 0.04 1.0 

Controls 0.92 0.08 1.0 

Response Success Failure Row_Total 

Population1 X11 X12 N1 

Population2 X21 X22 N2 

Col_Total M1 M2 N 
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The estimated conditional distribution table is given by: 

Table 16 Estimated Conditional Distributions 

 

 

 

 

 

Here 11 nX ii =π , 2iπ =1- 1iπ . The difference of proportions of successes, 11π - 21π , is a basic 

comparison of proportions.  The hypothesis can be formalized as: 

H0: 21 ππ ≤   

HA: 21 ππ ≥   

The difference of proportions falls between –1.0 and +1.0. But a value 11π - 21π  of fixed size 

may have greater importance when both pi are close to 0 or 1 than when they are not. For 

instance, the difference between 0.010 and 0.001 may be more noteworthy than the difference 

between 0.510 and 0.501, even though both are 0.009. In such cases, we need some other kind 

of statistics to show the difference. 

An alternative is Odds Ratio, the odds is defined: 

π
π

−=Ω 1  

Ω is nonnegative, with Ω >1.0 when a success is more likely than a failure. The Odds Ratio is 

given by: 

( )
( ) 2112

2211

22

11

2

1

1

1

ππ
ππ

ππ
ππθ =

−
−

=
Ω
Ω

= . 

The odds ratio can equal any nonnegative number. The condition 21 Ω=Ω , θ=1, corresponds 

to independence of X and Y. When ∞<< θ1 , subjects in row 1 are more likely to have a 

success than are subjects in row 2; that is 21 ππ < . For the proportions just given, the odds 

ratios are 
( )
( ) 10

001.01001.0

010.01010.0
1 ≈

−
−=θ  and 

( )
( ) 1

501.01501.0

510.01510.0
2 ≈

−
−=θ . The odds of success in 

row 1 are 10 times the odds in row 2. This does not mean that the probability 21 10ππ = .  

 

If we need more direct interpretation of our comparison, we need the risk ratio  (or relative 

risk), which is defined below: 

Response Success Failure Row_Total  

Population1 
11π  12π  1.0 

Population2 
21π  22π  1.0 
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2

1

π
πρ =  

It can be any nonnegative number. A relative risk of 1.0 corresponds to independence. For the 

proportions just given, the relative risk are 0.10001.0010.0 ≈  and 02.1401.0410.0 ≈ . By 

this means we can see the difference of the two proportions in relative point of view.  

 

There are some relationships between Odds Ratio and Relative Risk. From definition  

odds ratio = relative risk 








−
−

1

2

1

1

π
π

.  

Their magnitudes are similar whenever the probability iπ  of the outcome of interest is close 

to zero for both groups. In our example, the risk ratio and the odds ratio are almost the same 

with value 10 because both 0.010 and 0.001 are all close to zero. Because of this similarity, 

when each iπ  is small, the odds ratio provides a rough estimate of the relative risk. 

The sample relative risk is 21 ˆˆ ππ=r . Like the odds ratio, it converges to normality faster on 

the log scale. The asymptotic standard error of log r is  

( )
21

22

2

11

1 11
log 







 −+−=
nn

r
π

π
π

πσ . 

The Wald interval exponentiates endpoints of ).(logˆlog 2 rzr σα±  It works well but can be 

somewhat conservative. There is an alternative method, score method (Koopman 1984,). The 

fact that the score intervals are computationally more complex than Wald intervals the 

principle behind them is simple. However, currently they are not available in standard 

software. 

 

The following are three score test statistics for Binomial Ratio. 

Suppose 1π is the response rate of an experimental treatment and 2π is the response rate of an 

active control treatment. Define the ratio of binomial proportions as (1.3) 

2

1

π
πρ =      

In a non-inferiority clinical trial the objective is not to demonstrate that the experimental 

treatment is superior to the control but rather to demonstrate that the experimental treatment is 

not significantly inferior. Accordingly a non-inferiority margin, ñ0, is specified a priori and 

we test the null hypothesis of inferiority 
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00 : ρρ ≥H  versus the one sided alternative hypothesis of non-inferiority 01 : ρρ <H  

The test is carried out under the assumption that ñ is at its threshold null value 0ρρ = . Let 

Ω∈y denote any generic 2×2 table of the form of Table 1.3 that might be observed if we 

generated n1 independent Bernoulli trials each with probability 1π  and n2 independent 

Bernoulli trials each with probability 2π . The probability of observing any Ω∈y . under H0 

is 

( ) ( ) ( ) ( ) 22211211

0,1 101011
21

2

11

1 11 XXXX

X

n

X

n
yf πρπρππ

ρπ −−















=  The test statistic (see Miettinen 

and Nurminen, 1985) is defined as 

( )( ) ( )( )
1

11
2

0

2

22

102

~1~~1~
ˆˆ

)(

nn

yD
ππρππ

πρπ
−+−

−=  

where 
j

j
j n

x 1ˆ =π  for j = 1, 2, and 1
~π  and 2

~π are the maximum likelihood estimates of 1π  and 

2π , respectively, restricted under the null hypothesis to satisfy the requirement that 

012
~~ ρππ = . Miettinen and Nurminen (1985) have shown that one may obtain these restricted 

maximum likelihood estimates by solving a quadratic likelihood equation. 

Thus 

A

ACBB

2

4~
2

1

−−−=π
and 102

~~ πρπ = , 

 where NA 0ρ= , ( )11012120 XnXnB ρρ +++−= , 2111 XXC +=  

Under H0 this test statistic has mean 0 and variance 1. 

For the construction of the unconditional exact confidence interval for the risk ratio, we have 

three choices of test statistics for test based interval estimation. Suppose we take n1 

independent Bernoulli samples from treatment 1 and n2 independent Bernoulli samples from 

treatment 2. Let Ω∈y  denote any generic 2 × 2 table that might be observed, and let x be the 

2x2 table that was actually observed. Define 

j

j
j n

x 1ˆ =π  

for j = 1, 2. The unstandardized test statistic  
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( ) ( )( )
( )( )5.05.0

5.05.0

211

121

++
++

=
ny

nX
yD  is to compute an exact confidence interval for ρ . This statistic 

was proposed initially by Gart and Nam (1988). The 0.5 terms were necessary to ensure that 

the statistic and its reciprocal are defined whenever y11 or y12 are zero. We have observed 

that the unstandardized statistic is extremely conservative, leading to wider confidence 

intervals and larger p-values than could be obtained by other exact methods such as Agresti 

and Min (2001). Therefore we also use a test based exact confidence interval using the 

standardized statistic 

( )( ) ( )( )
1

11

2

22

102

~1~~1~
ˆˆ

)(

nn

yD
ππππ

πρπ
−+−

−=  

for j = 1, 2, and 1
~π  and 2

~π are the maximum likelihood estimates of 1π  and 2π ,respectively, 

restricted under the null hypothesis to satisfy the requirement that 012
~~ ρππ = . The use of this 

test statistic has been proposed by Miettinen and Nurminen (1985) for asymptotic confidence 

intervals and by Chan and Zhang (1999) for exact confidence intervals. Confidence intervals 

derived by the above standardized statistic are shorter than corresponding intervals derived by 

the unstandardized statistic. 

 

Miettinen and Nurminen confidence Interval 

The test statistic is adopted and assumed to have a standard normal distribution. The 

asymptotic ( )%1100 α−× confidence interval ( )*
*

~,~ ρρ is obtained by inverting the 

corresponding one-sided hypothesis tests. Thus *
~ρ  satisfies the equality 

( ) ( )
( )( ) ( )( ) 2~1~~1~1

1

11

2

22

111*221 α
ππππ

ρ =

























−+−
−Φ−

nn

nXnX
 

where 1
~π  and 2

~π are the maximum likelihood estimates of 1π  and 2π ,respectively, under the 

restriction that *12
~~ ρππ = . Similarly *ρ satisfies the equality  

( ) ( )
( )( ) ( )( ) 2~1~~1~

1

11

2

22

111
*

221 α
ππππ

ρ =

























−+−
−Φ

nn

nXnX
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where 1
~π  and 2

~π are the maximum likelihood estimates of 1π  and 2π ,respectively, under the 

restriction that 
*

12
~~ ρππ = . 

 

Katz, Baptista et. al. method 

This method was first proposed by Katz, Baptista, Azen and Pike (1978), and subsequently 

modified by Gart and Nam (1988). It assumes that, in large samples, under the alternative 

hypothesis 0ρρ =  the statistic 

5.0

5.0
log

5.0

5.0
log)(log

1

11

2

12

+
+−

+
+=

n

X

n

X
yD  

is approximately normal with mean 0logρ and variance 

5.0

1

5.0

1

5.0

1

5.0

1
ˆ

111221

2

+
−

+
+

+
−

+
=

nXnX
s  

therefore the asymptotic ( )%1100 α−× confidence interval for ρlog  is 

( ) szxD ˆlog 2α±  

An asymptotic two-sided p-value based on the above log statistic is 

( )( )( )xDp Φ−= 122  

 

Koopman method 

 

Koopman’s (1984) method is based on inverting a chi-square test under the alternative 

hypothesis 0ρρ = . Under this hypothesis the test statistic  

( )( ) ( )
( )

( )
( )222

2
2221

111

2
1111

ˆ1ˆ

ˆ

ˆ1ˆ

ˆ
0 ππ

π
ππ
π

ρ −
−+

−
−=

n

nX

n

nX
yDU  

is distributed asymptotically as chi-square with 1 df. 1π̂  and 2π̂ are the maximum likelihood 

estimates of 1π  and 2π , under the restriction 0ρρ = . Koopman (1984) has provided the 

following expressions for 

( ) ( ) } ( ){ ][
N

XXNnXXnnXXn

2

4
ˆ

21
2111012111201211120

1

+−+++−+++= ρρρπ  

and 012 ˆˆ ρππ = . At the observed value, x, an approximate ( )%1100 α−×  two-sided 

confidence region for ρ  is thus given by { ( )( ) }αχρ −< 1,1
2: xDU  where αχ −1,1

2  is the 
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α−1  fractile of the chi-square distribution with 1 df. One can establish that pU is a convex 

function of ρ . Therefore the above confidence region is an interval of the form ( )*
* , ρρ  

where 

( )( ) ( )( ) αρρ χ −== 1,1
2

*
*

xDUxDU  

An asymptotic two-sided p-value based on the Koopman statistic is 

( )( )xUp ρχ ≥= 2
12 Pr  evaluated at 1=ρ ,where 

2
1χ is a random variable distributed as chi-

square with 1 df. 

Suppose X is from a binomial distribution bin(n, p). Our goal is to construct a (1-α )% 

confidence interval for the parameter p. The most widely used or known is based on an 

asymptotic normal approximation to the distribution of n
X=

∧
π

 

Wald: 
( ),,ˆˆ 2

2
nz πσπ α±

 

Where 2
αz

 is the 1-α /2 quantile of the standard normal distribution, and  

( ) ( ) nn πππσ ˆ1ˆ,ˆ2 −=   

is the variance of π̂ . The above so-called standard interval is known to perform poorly. Wald-

tests do not control α(type Ι error). I.E. Wald interval has a bad performance for some n’s and 

p’s. (e.g. Agresti and Caffo,2000).A much better alternative is to use the score interval: These 

references showed that a much better confidence interval for a single proportion is based on 

inverting the test with standard error evaluated at the null hypothesis, which is the score test 

approach. This confidence interval, due to Wilson (1927), is the set of p0 values for 

which
( )

2
000 1ˆ αππππ zn <−−
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The mid point of this interval is  
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it can be written as 
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recall 
4

2
2 ≈αz

, Xn =π̂ , i.e. number of success can be written as4

2

+
+

n

X

. 

 

Add-4 Method for the Difference of Two Proportions 

Agresti and his Co-workers proposed a simple approach for constructing a confidence interval 

for a binomial proportion. They noticed that, and as a simplification proposed adding 4 

pseudo-observations with one-half as successes and the other half as failures to obtain a 

modified estimator of ).4/()2(~, ++= nXππ  Then their Adding-4 confidence interval is 

obtained by using p
~

 in the Wald interval: 

Adding-4:  

( )4,~~ 2

2
+± nz πσπ α

 

It performs surprisingly well. Under the same idea, the difference of two proportions is 

showed below: We observe two independent binomial variables:  

),(~ 111 πnbinX  and ),(~ 222 πnbinX   

The goal is to construct a (1-α)% confidence interval for 12 ππ − . The Wald interval is  

( ) ( ),,ˆ,ˆˆˆ 22
2

11
2

2
21 nnz πσπσππ α +±−

 

where 111ˆ nX=π and 222ˆ nX=π . Its performance is not satisfactory, as for one binomial 

proportion. The score interval can be extended, but it lacks a close form. Agresti and Caffo 

(2000) generalize the Adding-4 method as 

Adding-4:    

( ) ( ),2,~2,~~~
22

2
11

2

2
12 +++±− nnz πσπσππ α  

Where ( ) ( )2/1~ ++= iii nXπ  for 2,1=i . The add-4 approach works quite good for the test of 

the difference of proportions. 

 

Proposed Confidence Interval for the Ratio of Two Proportions 
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Let random variate (r.v.) X ~ ( )π,nBin . Observations from n Bernoulli trails x , LM estimate 

of success probability π is 
n

x=π̂ . From CLT, π̂  is normally distributed with mean π  and 

standard error 
( )

n

ππ −1
. 

Let 21,ππ denote the success probabilities of two samples, the relative risk  is defined as 

21 ππρ = . Sample relative risk is 21 ˆˆ ππ=r , log transform is ( )rlog  

Since iπ̂  is asymptotically normally distributed, ( )iπ̂log  is differentiable for 1ˆ0 ≤< iπ , then 

under mild condition using delta method, it is easy to show that ( )iπ̂log  is distributed 

normally with expectation ( )πlog , and standard error 
21

ˆ

ˆ1







 −

ii

i

n π
π

. 

Consequently, ( )rlog  is a linear combination of two normally distributed variables, and then 

it is again a normally distributed random variable with expectation ( )ρlog  and standard 

error ( )( )
21

22

2

11

1

ˆ

ˆ1
ˆ

ˆ1
log 


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Add-4 method for the Ratio of two Proportions 

We define new statistics (add 4 statistic) 21
~,~ ππ as 

4

2~
+
+

=
i

i
i n

Xπ  2,1=i  

Because iπ~  is only a linear transformation of iX , which is asymptotically normally 

distributed random variable, iπ~  is easily proven to be normally distributed with the following 

expectation and standard error. 

Expectation of π~ ( )
4

2~
+
+=

n

n
E

ππ  

Standard error of π~ ( ) ( )
4

1~
+

−
=

n

n ππ
πσ  

bias of π~  is ( ) ( )
4

42~~
+

−=−=
n

Ebias
ππππ ππ  

 

Sample add-4 relative risk is 21
~~~ ππ=r  

Log-transformation of π~  risk is under the mild condition, and then according to the delta 

method, the expectation and the standard error of π~  can be derived as: 
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Log-transformation of the sample add-4 relative risk is a linear combination of two normally 

distributed r.v. , then the expectation and the standard error of ( )r~log  are: 
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Consequently, from the large sample inference theory, Wald confidence interval is 

constructed as:  
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Simulation Results and Discussion 

Sample size 50, balanced case, success probability for sample 1: 0.01, 0.05, 0.10, 0.25, 0.50, 

0.75, 0.90, 1,00, Risk ratio: 1 (to check the control for alpha!) and success probability for 

sample 2: rp1 . Significant level: 0.05. Coverage probability when nominal probability 0.05 

is shown in Table 8: 

 

Table 8: Coverage probability of p1 from 0.01 to 1.00 when true ratio = 1 

p1 0.01 0.05 0.10 0.25 0.50 0.60 0.75 0.95 1.00 

Cov. Prob. 1 0.9963 0.9837 0.9614 0.951 0.9428 0.9609 0.9941 1.00 

When p1 is zero, the coverage probability is 1.00.It can be shown in Figure 11: 
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Figure 11 Coverage probability of add-4 confidence interval. 

More closely to the range of p1 from 0.35 to 0.65, the results can be shown in Table 13: 

 
Table 17 Coverage probability of p1 from 0.25 to 0.65 when true ratio = 1 

p1 0.35 0.40 0.45 0.50 0.55 0.60 0.65 
Cov. Prob. 0.9523 0.9511 0.9555 0.9542 0.9488 0.9534 0.9537 
 
It can be shown in Figure 11: 

 
Figure 12 Coverage probability of add-4 confidence interval. p1 from 0.35 to 0.65. 
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3. GENERAL DISCUSSION 
 
When there is no assumption on the underlying distribution of the data, there is no uniformly 

most powerful test. As shown in the simulation study in Chapter A, in each specific condition, 

there is locally most powerful test. For instance, when the data is normally distributed with 

variance homogeneity, the sample t test is the most powerful test, whereas with variance 

heterogeneity, the Welch t test is the most powerful test. Under nonnormality, such as 

lognormal or certain Fleishman distribution, the Wilcoxon test is the most powerful test when 

there is only a location shift between the two groups. And in the mixture case, the Conover 

Salsburg Test is the most powerful test to detect the subset of response. There is no universe 

winner for all the conditions. 

A simple test, which is appropriate for all the condition, seems impossible, but there are 

methods to combine different tests. Since the mixture distribution case is rare, in this thesis 

the test is proposed to solve the problem with a priori unknown unimodal distribution, which 

can be distributions with short tail, long tail, skew and heteroscedasticity. The Maximum test 

is proposed for this purpose.  

But the simulation result shows that although the Maximum test begins with the more realistic 

assumption (only the unimodal distribution of data), it does not behave as efficient as the 

Welch t test when the underlying distribution of the data is nonnormal and variance 

heterogeneity. This also implies that when the data are skewed and the variances of two 

samples are not equal, the Welch t test is still a good candidate while the Welch t test is robust 

against nonnormality. Thus, in the application of Microarray data, the commonly used Welch 

t test is reasonable. 

The new add-4 confidence interval for the ratio of two proportions is proved to maintain the 

nominal level of confidence (0.95) when the true ratio is 1. Especially when the first 

proportion is from 0.35 to 0.65, the actual level of coverage is very close to 0.95. Further 

study can be done when the true ratio is other numbers than 1 and sample size is smaller than 

50. 
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APPENDIX 
 
R codes for the candidate tests which is not available in R or any R package. 

 

R codes for the descriptive statistics of Microarray data: 

############## A function to change all the zero values in matrix to NaN 

#################################### 

############################# 29.01.2004 by Donghui Ma  

##################################################### 

zerotoNaN <- function(M){ 

 diM <- dim(M) 

 M1  <- matrix(as.numeric(M>0),diM[1],diM[2]) 

 M2 <- M2 <-( M + abs(M))/2 

 Mf <- M2/M1 

 Mf 

    } 

##########################################################################################

################### 

Outlier.test  <- function(x,lower.b,upper.b) { 

 x <- x[complete.cases(x)] 

 lower.outlier <- sum(as.numeric(x< lower.b)) 

 upper.outlier <- sum(as.numeric(x> upper.b)) 

 outlier  <- c(lower.outlier,upper.outlier) 

 outlier 

         } 

 

##########################################################################################

################### 

#################################### To calculate SKewness and Kurtosis 

##################################### 

pianfengdu <- function(x)  { 

 n  <- length(x) 

 mx <- mean(x) 

 sx  <- sd(x) 

 Skew <- (sum((x-mx)^3))/((n-1)*sx^3) 

 Kurtosis <- (sum((x-mx)^4))/((n-1)*sx^4) 

 SK <- c(Skew,Kurtosis) 

 SK 

     } 
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##########################################################################################

################### 

pool   <- read.table("C:/Temp/singh.txt",header=T)      # read the txt file to a data 

frame  # 

no    <- length(pool[1,])-1         # get the total number of the 

observation # 

pool.matrix <- as.matrix(pool[,2:no])     # read the data frame to a 

matrix   # 

pool.matrix <- zerotoNaN(pool.matrix)     # get rid of negative 

and give NaN   # 

ng  <- length(pool.matrix[,1])     # get the number of genes  

  # 

g1.matrix <- as.matrix(pool[,grep("N", names(pool))])  # read the frist group to a matrix  

 # 

n1   <- length(g1.matrix[1,])     # sample size 1  

   # 

g2.matrix <- as.matrix(pool[,grep("T", names(pool))])  # read the second group to a matrix  # 

n2   <- length(g2.matrix[1,])     # sample size 2  

   # 

g1.matrix <- zerotoNaN(g1.matrix)      # get rid of the 

negative to NaN  # 

g2.matrix <- zerotoNaN(g2.matrix)      # get rid of the 

negative to Nan   # 

##########################################################################################

################### 

####################################### define Information 

Matrics########################################### 

# Mean  SE CV Skewness Kurtosis Normality Lognormality 

lower.outlier upper.outlier # 

GeneInfo.pg <- GeneInfo.rmoutlier.pg <- matrix(NA,no,9) # pooled two group after pre-testing   

 # 

GeneInfo.g1 <- GeneInfo.rmoutlier.g1 <- matrix(NA,ng,9) # for the first group     

 # 

GeneInfo.g2 <- GeneInfo.rmoutlier.g2 <- matrix(NA,ng,9) # for the second group   

  # 

################################# calculation the summary statistics 

######################################## 

# pool all the genes for each sample, to get the 0.25 and 0.975 quantile, they are lower.bound & upper.bound# 

# for detecting outliers respectively         

    # 
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pool.g1 <- pool.g2 <- c() 

for(g in 1:ng)  { 

 # for sample I # 

 complete.g1      <- as.numeric(g1.matrix[g,]) 

 complete.g1      <- complete.g1[complete.cases(complete.g1)] 

 nober.g1       <- length(complete.g1) 

 # pool all the genes for sample I # 

  if (nober.g1 > 2 )  { 

 SD.com.g1      <- (complete.g1-mean(complete.g1,na.rm=T))/sd(complete.g1) 

 pool.g1      <- c(pool.g1,SD.com.g1) 

     } # end of pooling # 

 # for sample II # 

 complete.g2      <- as.numeric(g2.matrix[g,]) 

 complete.g2      <- complete.g2[complete.cases(complete.g2)] 

 nober.g2       <- length(complete.g2) 

 # pool all the genes for sample II # 

 if (nober.g2 > 2) { 

 SD.com.g2      <- (complete.g2-mean(complete.g2,na.rm=T))/sd(complete.g2) 

 pool.g2          <- c(pool.g2,SD.com.g2) 

    } # end of pooling # 

   } # end of for g in 1:ng #   

lower.b.g1 <- quantile(pool.g1,prob=0.025,na.rm=T) 

upper.b.g1 <- quantile(pool.g1,prob=0.975,na.rm=T) 

lower.b.g2 <- quantile(pool.g1,prob=0.025,na.rm=T) 

upper.b.g2 <- quantile(pool.g1,prob=0.975,na.rm=T) 

# calculation for the information matrices # 

for(g in 1:ng)  { 

 # for sample I# 

 complete.g1      <- as.numeric(g1.matrix[g,]) 

 complete.g1      <- complete.g1[complete.cases(complete.g1)] 

 nober.g1       <- length(complete.g1) 

 if (nober.g1 >= 20) {  

 GeneInfo.g1[g,1] <- mean(complete.g1) 

 GeneInfo.g1[g,2] <- sd(complete.g1) 

 GeneInfo.g1[g,3] <- GeneInfo.g1[g,2]/GeneInfo.g1[g,1] 

 complete.g1      <- (complete.g1-mean(complete.g1,na.rm=T))/sd(complete.g1) 

 SkewKurtosis.g1  <- pianfengdu(complete.g1) 

 GeneInfo.g1[g,4] <- SkewKurtosis.g1[1] 

 GeneInfo.g1[g,5] <- SkewKurtosis.g1[2] 

 GeneInfo.g1[g,6] <- as.numeric(shapiro.test(g1.matrix[g,])$p.value > 0.05) 
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 GeneInfo.g1[g,7] <- as.numeric(shapiro.test(log(g1.matrix[g,]))$p.value > 0.05) 

 Outliers.g1      <- Outlier.test(complete.g1,lower.b.g1,upper.b.g1) 

 GeneInfo.g1[g,8] <- Outliers.g1[1] 

 GeneInfo.g1[g,9] <- Outliers.g1[2] 

    } # end for if # 

 # for sample II # 

 complete.g2      <- as.numeric(g2.matrix[g,]) 

 complete.g2      <- complete.g2[complete.cases(complete.g2)] 

 nober.g2       <- length(complete.g2) 

 if (nober.g2 >= 20) {  

 GeneInfo.g2[g,1] <- mean(complete.g2) 

 GeneInfo.g2[g,2] <- sd(complete.g2) 

 GeneInfo.g2[g,3] <- GeneInfo.g2[g,2]/GeneInfo.g2[g,1] 

 complete.g2      <- (complete.g2-mean(complete.g2,na.rm=T))/sd(complete.g2) 

 SkewKurtosis.g2  <- pianfengdu(complete.g2) 

 GeneInfo.g2[g,4] <- SkewKurtosis.g2[1] 

 GeneInfo.g2[g,5] <- SkewKurtosis.g2[2] 

 GeneInfo.g2[g,6] <- as.numeric(shapiro.test(g2.matrix[g,])$p.value > 0.05) 

 GeneInfo.g2[g,7] <- as.numeric(shapiro.test(log(g2.matrix[g,]))$p.value > 0.05) 

 Outliers.g2      <- Outlier.test(complete.g2,lower.b.g2,upper.b.g2) 

 GeneInfo.g2[g,8] <- Outliers.g2[1] 

 GeneInfo.g2[g,9] <- Outliers.g2[2] 

 

    } # end for if # 

  } # end of for g # 

 

 

# Graphical presentation # 

# for the mean # 

GI1.g1 <- hist(GeneInfo.g1[,1],freq=F,breaks=1000) 

GI1.g2 <- hist(GeneInfo.g2[,1],freq=F,breaks=1000) 

plot(GI4.g1,col="red",main="Histogram of Means of Sample I(red) and II(blue)",xlab="Genewise Mean of 

Gene Expression Level") 

lines(GI4.g2,col="blue") 

# for the deviation # 

GI2.g1 <- hist(GeneInfo.g1[,2],freq=F,breaks=1000,xlim=c(0,500)) 

GI2.g2 <- hist(GeneInfo.g2[,2],freq=F,breaks=1000,xlim=c(0,500)) 

plot(GI2.g1,col="red",main="Histogram of SDs of Sample I(red) and II(blue)",xlab="Genewise SD of Gene 

Expression Level",,xlim=c(0,500)) 

lines(GI2.g2,col="blue",xlim=c(0,500)) 
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# for the CV # 

GI3.g1 <- hist(GeneInfo.g1[,3],freq=F,breaks=1000) 

GI3.g2 <- hist(GeneInfo.g2[,3],freq=F,breaks=1000) 

plot(GI3.g2,col="blue",main="Histogram of CVs of Sample I(red) and II(blue)",xlab="Genewise CV of Gene 

Expression Level",xlim=c(0,3)) 

lines(GI3.g1,col="red") 

# for the Skewness # 

GI4.g1 <- hist(GeneInfo.g1[,4],freq=F,breaks=1000) 

GI4.g2 <- hist(GeneInfo.g2[,4],freq=F,breaks=1000) 

plot(GI4.g1,col="red",main="Histogram of Skewness of Sample I(red) and II(blue)",xlab="Genewise Skewness 

of Gene Expression Level",sub="Green Vertical Line (x=0)is The Skewness for Normal Distribution") 

lines(GI4.g2,col="blue") 

abline(v=0,col="green") 

 

# for the Kurtosis # 

GI5.g1 <- hist(GeneInfo.g1[,5],freq=F,breaks=1000) 

GI5.g2 <- hist(GeneInfo.g2[,5],freq=F,breaks=1000) 

plot(GI5.g1,col="red",main="Histogram of Kurtosis of Sample I(red) and II(blue)",xlab="Genewise Kurtosis of 

Gene Expression Level",sub="Green Vertical Line(x=3) is The Kurtosis for Normal Distribution") 

lines(GI5.g2,col="blue") 

abline(v=3,col="green") 

 

# Joint distribution of Skewness and Kurtosis# 

GI45.g1 <- hist2d(GeneInfo.g1[,4],GeneInfo.g1[,5],na.rm=T,nbins=200,xlab="Skewness",ylab="Kurtosis") 

GI45.g2 <- hist2d(GeneInfo.g2[,4],GeneInfo.g2[,5],na.rm=T,nbins=200,xlab="Skewness",ylab="Kurtosis") 

persp(GI45.g1$x,GI45.g1$y,GI45.g1$counts,col="red",main="2D Histogram of Skewness and Kurtosis of 

Sample I(red) and II(blue)",xlab="Skewness",ylab="Kurtosis",zlab="Frequency",xlim=c(-1.4,7),ylim=c(0,45)) 

#points(GI45.g1$x,GI45.g1$y,GI45.g1$counts,col="blue") 

 

 

par(new=TRUE) 

persp(GI45.g2$x,GI45.g2$y,GI45.g2$counts,col="blue",main="2D Histogram of Skewness and Kurtosis of 

Sample I(red) and II(blue)",xlab="Skewness",ylab="Kurtosis",zlab="Frequency",xlim=c(-1.4,7),ylim=c(0,45)) 

# add a line for normal !!!!!!!!!!!!!!!!!!# 

 

# Genewise comparision # 

hist((GeneInfo.g2[,1]-GeneInfo.g1[,1]),freq=F,breaks=1000,col="grey",xlim=c(-300,300),main="Genewise 

differences in Mean, Sample II minus I",xlab="Genewise Differences of Gene Expression Level") 

# Mean Ratio # 
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hist((GeneInfo.g2[,1]/GeneInfo.g1[,1]),freq=F,breaks=1000,col="grey",main="Genewise Ratios in Mean, 

Sample II / I",xlab="Genewise Ratios of Gene Expression Level") 

 

hist((GeneInfo.g2[,2]-GeneInfo.g1[,2]),freq=F,breaks=1000,col="grey",main="Genewise differences in SD, 

Sample II minus I",xlab="Genewise Differences of SD of Gene Expression Level",xlim=c(-100,100)) 

# SD Ratios# 

hist((GeneInfo.g2[,2]/GeneInfo.g1[,2]),freq=F,breaks=1000,col="grey",main="Genewise Ratios in SD, Sample 

II minus I",xlab="Genewise Ratios of SD of Gene Expression Level",xlim=c(0,8)) 

 

hist((GeneInfo.g2[,3]-GeneInfo.g1[,3]),freq=F,breaks=1000,col="grey",main="Genewise differences in CV, 

Sample II minus I",xlab="Genewise Differences of CV of Gene Expression Level") 

hist((GeneInfo.g2[,4]-GeneInfo.g1[,4]),freq=F,breaks=1000,col="grey",main="Genewise differences in 

Skewness, Sample II minus I",xlab="Genewise Differences of Skewness of Gene Expression Level") 

hist((GeneInfo.g2[,5]-GeneInfo.g1[,5]),freq=F,breaks=1000,col="grey",main="Genewise differences in 

Kurtosis, Sample II minus I",xlab="Genewise Differences of Kurtosis of Gene Expression Level") 

GI45.g2m1 <- hist2d((GeneInfo.g2[,4]-GeneInfo.g1[,4]),(GeneInfo.g2[,5]-

GeneInfo.g1[,5]),na.rm=T,,xlab="Skewness",ylab="Kurtosis") 

persp(GI45.g2m1$x,GI45.g2m1$y,GI45.g2m1$counts) 

 

R codes for VolcanoCI Plot: 

#####################The input file should be in such Format#####################  

# GeneID  Control1 ... Controln  Treatment1 ... Treatmentn   

# GeneName1 12.3       23.3  89.0  90.0   # 

# ...  ..  ..  ..  ..  # 

# geneNameN ..  ..  ..  ..  # 

################################################################################# 

########################Read the Data file to R using the follwing code  # 

pool  <- read.table("C:/Temp/shipp.txt",header=T) 

no    <- length(pool[1,])-1  # get the total number of the observation# 

pool.matrix <- as.matrix(pool[,2:no])  # read the data frame to a matrix  # 

ng  <- length(pool.matrix[,1]) # get the number of genes  # 

g1.matrix <- as.matrix(pool[,grep("DLBC", names(pool))]) #the 1st group  # 

g2.matrix <- as.matrix(pool[,grep("FSCC", names(pool))])  #the 2nd group # 

n1   <- length(g1.matrix[1,]) # sample size 1   # 

n2   <- length(g2.matrix[1,]) # sample size 2   # 

# If data file contains negative obseravtions which should be casewise deleted  # 

# run the following code to substitute the negative number with NA  # 

pool.matrix[pool.matrix <= 0] = NA 

g1.matrix[g1.matrix <= 0] = NA 

g2.matrix[g2.matrix <= 0] = NA 
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################################################################################# 

###############################R-codes for CIs ################################## 

library(exactRankTests) 

RM.CI <- function(x1,x2,alpha=0.05,min.n1n2 = 2) { 

 x1  <- x1[complete.cases(x1)] 

 x2  <- x2[complete.cases(x2)] 

 n1 <- length(x1) 

 n2 <- length(x2) 

 LB  <- NA 

 EST  <- NA 

 UB  <- NA 

 

 if (n1 >=min.n1n2 & n2 >= min.n1n2) { 

  n <- n1 + n2 

  x <- c(x1,x2) 

  # a factor coding the two groups #  

  cell <- factor(rep(c("Normal","Tumor"),c(n1,n2))) 

  mydata <- data.frame(expression = x,cell,row.names=NULL) 

  pos <- wilcox.exact(I(log(expression)) ~ cell, data = mydata, alternative = 

"two.sided",conf.int=TRUE,conf.level=(1-alpha)) 

  LB <- exp(pos$conf.int)[1] 

  UB <- exp(pos$conf.int)[2] 

  EST<- exp(pos$estimate[[1]]) 

    } # end of if n1 n2 >=2  # 

 CI <- c(LB,EST,UB) 

 CI 

     } 

# two-sided Fieller CI # 

fieller.CI <- function(x1,x2,alpha=0.05,min.n1n2=2) {    

 x1  <- x1[complete.cases(x1)] 

 x2  <- x2[complete.cases(x2)] 

 n1  <- length(x1) 

 n2  <- length(x2) 

 LB  <- UB <- est <- NA 

 if (n1 >=min.n1n2  & n2 >= min.n1n2 ) { 

  mx1 <- mean(x1) 

  mx2 <- mean(x2) 

  v <- n1+n2-2 

  sp <- (var(x1)*(n1-1)+var(x2)*(n2-1))/v 

  CT <- qt(alpha/2,v) 
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  g <- ((sp)*(CT^2))/(n1*(mx1^2)) 

  if (g < 1) { # g < 1 just direct calculation # 

   est  <- mx2/mx1 

   LB <- (est - sqrt(g*(est^2+(1-g)*(n1/n2))))/(1-g) 

   UB <- (est + sqrt(g*(est^2+(1-g)*(n1/n2))))/(1-g) 

    } 

  if (g >=1)  { 

   est.inv <- mx1/mx2 

   est <- 1/est.inv 

   g.inv <- ((sp)*(CT^2))/(n2*(mx2^2))  

   LB <- 1/((est.inv + sqrt(g.inv*(est.inv^2+(1-g.inv)*(n2/n1))))/(1-

g.inv)) 

   test <- (est.inv - sqrt(g.inv*(est.inv^2+(1-g.inv)*(n2/n1))))/(1-g.inv) 

   UB <- ifelse(test>0,1/test,Inf) 

    } 

    } # end of if n1 & n2 #  

 CI <- c(LB,est,UB) 

 CI 

     } 

 

 

##############################PLotting Part###################################### 

par(mfrow=c(1,2)) ############# Plot Volcano and CI-FOLD together ############### 

 

################################## Volcano Plot ################################# 

############ only plot and give the coordinates for the plotting   ############## 

Volcano.LR<- function(min.n1n2) { 

log2.gene.EST <- gene.EST <- gene.VTP <- rep(NA,ng) 

for (i in 1:ng) { 

 x1 <- g1.matrix[i,] 

 x2 <- g2.matrix[i,] 

 x1  <- x1[complete.cases(x1)] 

 x2  <- x2[complete.cases(x2)] 

 n1 <- length(x1) 

 n2 <- length(x2) 

 if (n1>=min.n1n2 & n2 >=min.n1n2) { 

 gene.temp  <- t.test(x1,x2) 

 mx1 <- gene.temp$estimate[[1]] 

 mx2 <- gene.temp$estimate[[2]] 

 if (mx1 !=0 & mx2 != 0) {log2.gene.EST[i]<- log2(mx2/mx1)} 
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 gene.VTP[i] <- -log10(gene.temp$p.value) 

    } # end of if n1 n2 # 

  }  # end of for ng # 

x.min <- quantile(log2.gene.EST,probs=0.01,na.rm=T) 

x.max <- quantile(log2.gene.EST,probs=0.99,na.rm=T) 

x.lim <- max(abs(x.min),abs(x.max)) 

 

 

y.max <- quantile(gene.VTP, probs=0.99,na.rm=T) 

y.lim <-abs(y.max) 

 

# plotting part # 

par(bg="white") 

plot(log2.gene.EST,gene.VTP,col="blue",xlim=c(-x.lim,x.lim),ylim=c(0,y.lim),main="Volcano 

Plot",xlab="log(Ratio)",ylab="log(p.value from t.test)") 

abline(v=0,h=0) # for the x,y aixes # 

text(-x.lim/2,y.lim-0.5,labels="Under-expressed genes") 

text(x.lim/2,y.lim-0.5,labels="Over-expressed genes") 

return(list(log2.gene.EST,gene.VTP))     

    }# end of Vocalno.LR# 

Vol.LR <- Volcano.LR(15)  # at least 15 observations in each group #  

##################################################################################### 

 

############## a function for CI-FOLD Plot,log2.gene.EST & gene.VTP ############### 

CI.FOLD.plot<- function(method="nonpar", # nonpar= Ratio of two media; fieller = fieller's method 

   alpha = 0.05,  # alpha for CI 

   col="blue", 

   pch = 16, 

   xlab = "log2(Hodges-Lehmann Estimator)", 

   ylab = "(-)log(Lower(Upper) Limit | Over(Under)-expressed genes)", 

   main = "CI-FOLD PLOT ", 

   aid.lines = TRUE, # abline(c(0,1)) and abline(c(0,-1))# 

   fold.arc = 2, 

   VIG.names = TRUE,global = TRUE)  { 

gene.EST <- log2.gene.EST <- gene.VTP <- rep(NA,ng) 

if (method == "nonpar") { # for the nonpar CI method # 

for (i in 1:ng) { 

 gene.temp  <- RM.CI(g2.matrix[i,],g1.matrix[i,],alpha=alpha,min.n1n2=15) 

 gene.EST[i]  <- gene.temp[2] 

    if (is.na(gene.EST[i])==FALSE) { 
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 log2.gene.EST[i]<- log2(gene.EST[i]) 

 if (gene.EST[i] >=1) { 

  gene.VTP[i] <- log2(gene.temp[1])  # over  expression then Lower bound# 

    } # end of if gene.EST # 

 if (gene.EST[i] < 1)  { 

  gene.VTP[i] <- -log2(gene.temp[3]) # under expression then upper bound# 

    } 

     } 

  }  # end of for ng # 

    } # end of the nonpar CI method# 

if (method == "fieller") { # for the fieller CI method # 

for (i in 1:ng) { # only 2 samples all > 2 obs calculated Fieller CI # 

 gene.temp  <- fieller.CI(g2.matrix[i,],g1.matrix[i,],min.n1n2=15) 

 gene.EST[i]  <- gene.temp[2] 

    if (is.na(gene.EST[i])==FALSE) { 

 log2.gene.EST[i]<- log2(gene.EST[i]) 

 if (gene.EST[i] >=1) { 

  gene.VTP[i] <- log2(gene.temp[1])  # over  expression then Lower bound# 

    } # end of if gene.EST # 

 if (gene.EST[i] < 1)  { 

  gene.VTP[i] <- -log2(gene.temp[3]) # under expression then upper bound# 

    } 

     } # for if is.na # 

  } # end of for i # 

    } # end of fieller CI method # 

 

x.min <- quantile(log2.gene.EST,probs=0.01,na.rm=T) 

x.max <- quantile(log2.gene.EST,probs=0.9999,na.rm=T) 

x.lim <- max(abs(x.min),abs(x.max)) 

y.max <- quantile(gene.VTP, probs=0.9999,na.rm=T) 

y.lim <-abs(y.max) 

ss <- max(x.lim,y.lim) 

 

# plotting part # 

if (global==TRUE) { plot(log2.gene.EST,gene.VTP,col=col,main=main,xlab=xlab,ylab=ylab,xlim=c(-

ss,ss),ylim=c(-ss,ss)) } 

else {plot(log2.gene.EST,gene.VTP,col=col,main=main,xlab=xlab,ylab=ylab,xlim=c(-ss,ss),ylim=c(0,ss))} 

abline(v=0,h=0) # for the x,y aixes # 

text(-ss/2,ss-0.5,labels="Under-expressed genes") 

text(ss/2,ss-0.5,labels="Over-expressed genes") 
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if (aid.lines == TRUE) { abline(c(0,1),type="p",col=col) ; abline(c(0,-1),col=col,type="p") } 

# for the fold.arc # 

lfc <- log2(fold.arc) 

abp <- lfc/sqrt(2) 

dots.over<- seq(abp,lfc,by=0.001) 

dots.under<- seq(-lfc,-abp,by=0.001) 

vrtd.over <- sqrt(lfc^2-dots.over^2) 

vrtd.under<- sqrt(lfc^2-dots.under^2) 

lines(dots.over,vrtd.over,col=col) 

lines(dots.under,vrtd.under,col=col) 

if (VIG.names==TRUE)  { 

 CanMarker.over <- which(log2.gene.EST > 0 & gene.VTP > 0 & 

log2.gene.EST^2+gene.VTP^2>lfc^2) 

 CanMarker.under <- which(log2.gene.EST < 0 & gene.VTP > 0 & 

log2.gene.EST^2+gene.VTP^2>lfc^2) 

 text(log2.gene.EST[CanMarker.over],gene.VTP[CanMarker.over],labels=as.character(pool[CanMark

er.over,1]),col=rainbow(length(as.character(pool[CanMarker,1])))) 

 text(log2.gene.EST[CanMarker.under],gene.VTP[CanMarker.under],labels=as.character(pool[CanM

arker.under,1]),col=rainbow(length(as.character(pool[CanMarker,1])))) 

   } 

return(list(log2.gene.EST,gene.VTP)) 

    }# end of CIFOLD # 

#CI.FOLD.plot(method="nonpar",VIG.names=T,global=T) 

 

 

 

a<-CI.FOLD.plot(method="nonpar", 

   aid.lines = TRUE,  

   fold.arc = 4.5, 

   VIG.names = T,global = T) 
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R codes for the proposed Maximum Test: 

 

MAX.test <- function(x,...) UseMethod("MAX.test") 

 

MAX.test.default <-  

function(x,y,alternative = c("two.sided","less","greater"), 

  method = c("Statistic","p.value"), 

  approx = c("normal","t"), # only useful when use method p.value # 

  resampling = c("Bootstrap","Permutation"), 

  resam.num = 400 , 

  conf.level = 0.95, ...) 

{ 

alternative = match.arg(alternative) 

method <- match.arg(method) 

approx <- match.arg(approx) 

resampling <- match.arg(resampling) 

DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(y))) 

 

if(!is.numeric(x)) stop("`x' must be numeric") 

if(!is.numeric(y)) stop("`y' must be numeric") 

x <- x[complete.cases(x)] 

y <- y[complete.cases(y)] 

m <- length(x) 

if(m < 1) 

 stop("not enough x observations") 

n <- length(y) 

if(n < 1) 

 stop("not enough y observations") 

N <- m + n 

z <- c(x,y) 

 

if (method == "Statistic") 

{ 

 if (resampling == "Bootstrap") 

 { 

  MAX.obs <- MAX.MIN(x,y,alternative = alternative)$MaxStat[[1]] 

  MAX.boot <- rep(NA,resam.num) 

  for (i in 1:resam.num ) 

  { 

   z.b <- sample(z,replace=T) # with replacement# 
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   x.b <- z.b[1:m] 

   y.b <- z.b[(m+1):(m+n)] 

   MAX.boot[i] <- MAX.MIN(x.b,y.b,alternative = alternative)$MaxStat[[1]] 

  } 

 }# end of if resampling bootstrap # 

 if (resampling == "Permutation") 

 { 

  MAX.obs <- MAX.MIN(x,y,alternative = alternative)$MaxStat[[1]] 

  MAX.boot <- rep(NA,resam.num) 

  for (i in 1:resam.num ) 

  { 

   z.b <- sample(z) # without replacement # 

   x.b <- z.b[1:m] 

   y.b <- z.b[(m+1):(m+n)] 

   MAX.boot[i] <- MAX.MIN(x.b,y.b,alternative = alternative)$MaxStat[[1]] 

  } 

 } 

PVAL.boot <- switch(alternative,  

      two.sided = ((sum(MAX.boot >= abs(MAX.obs))+sum(MAX.boot <= -

abs(MAX.obs)))+1)/(resam.num+1), 

                    less = (sum(MAX.boot <= MAX.obs)+1)/(resam.num+1), 

          greater =  (sum(MAX.boot >= MAX.obs)+1)/(resam.num+1)) 

 

RVAL <- list(DataName = DNAME, 

         Method = method, 

      MAX.observed = MAX.obs, 

      p.value = PVAL.boot) 

return(RVAL) 

} # end of if method "statistic" # 

 

if (method == "p.value") 

{ 

MIN.obs <- MAX.MIN(x,y,alternative = alternative,approx = approx)$MinPval[[1]] 

MIN.boot <- rep(NA,resam.num) 

 if (resampling == "Bootstrap") 

 { 

  for (i in 1:resam.num ) 

   { 

   z.b <- sample(z,replace=T) 

   x.b <- z.b[1:m] 
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   y.b <- z.b[(m+1):(m+n)] 

   MIN.boot[i] <- MAX.MIN(x.b,y.b,alternative = alternative,approx = approx)$MinPval[[1]] 

   } 

 }# end of if resampling Bootstrap # 

 if (resampling == "Permutation") 

 { 

  for (i in 1:resam.num ) 

   { 

   z.b <- sample(z) 

   x.b <- z.b[1:m] 

   y.b <- z.b[(m+1):(m+n)] 

   MIN.boot[i] <- MAX.MIN(x.b,y.b,alternative = alternative,approx = approx)$MinPval[[1]] 

   } 

 }# end of if resampling Permutation # 

 

PVAL.boot <- (sum(MIN.obs <= MIN.boot)+1)/(resam.num+1) 

RVAL <- list(DataName = DNAME, 

         Method = method, 

      MIN.observed = MIN.obs, 

      p.value = PVAL.boot) 

return(RVAL) 

} # end of if method "p.value"# 

 

} # end of Max.test.default # 

 

# Max of Statistics and Min of P value # 

 

MAX.MIN <- function(x,y,alternative = c("two.sided","less","greater"),approx = c("normal","t")) 

{  

alternative <- match.arg(alternative) 

approx <- match.arg(approx) 

sp.g  <- GLR.test(x,y,alternative = alternative,type = "G") 

sp.l  <- GLR.test(x,y,alternative = alternative,type = "L") 

sp.h  <- GLR.test(x,y,alternative = alternative,type = "H") 

sp.b  <- c(Brunner.test(x,y)$Statistic ,Brunner.test(x,y,approx = approx)$p.value) 

 

Max.Stat <- max(sp.g[[1]],sp.l[[1]],sp.h[[1]], sp.b[[1]]) 

Min.Pval <- min(sp.g[[2]],sp.l[[2]],sp.h[[2]], sp.b[[2]]) 

RVAL <- list(MaxStat = Max.Stat, 

      MinPval = Min.Pval) 
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return(RVAL) 

} 

 

####################################################################### 

################## generalized Linear Rank Tests ###################### 

#########by Donghui Ma##### depends on package exactRankTests ######### 

####################################################################### 

cscores.more <- function(y, type=c("Gastwirth", "LongTail",  

                            "HoggFisherRandles"), int = FALSE,  

                            maxs=length(y), ... ) { 

type <- match.arg(type) 

if (!(all.equal(floor(maxs),maxs))  || maxs < 1)  

stop("maxs is not an positiv integer") 

N <- length(y) 

RET <- switch(type,"Gastwirth" = { 

     r <- rank(y) 

     r[r <= (N+1)/4] <- r[r <= (N+1)/4]-(N+1)/4 

     r[r > (N+1)/4 & r < 3*(N+1)/4] <- 0 

     r[r >= 3*(N+1)/4] <- r[r >= 3*(N+1)/4]-3*(N+1)/4 

     r}, 

     "LongTail" = { 

     r <- rank(y) 

     r[r < floor(N/4)+1] <- -(floor(N/4)+1) 

     r[r >= floor(N/4)+1 & r <= floor(3*(N+1)/4)] <-  

                     r[r >= floor(N/4)+1 & r <= floor(3*(N+1)/4)]-(N+1)/2 

     r[r > floor(3*(N+1)/4)] <- (floor(N/4)+1) 

     r}, 

     "HoggFisherRandles"={ 

     r <- rank(y) 

     r[r <= (N+1)/2] <- r[r <= (N+1)/2]-(N+1)/2 

     r[r >  (N+1)/2] <- 0 

     r} 

        ) # end of switch # 

attr(RET, "scores") <- type 

RET 

      

      }# end of function cscores.more # 

GLR.test <- function(x,...) UseMethod("GLR.test") 

 

GLR.test.default <-  



69 

 

function(x,y,alternative = c("two.sided","less","greater"), 

  type = c("Gastwirth", "LongTail", "HoggFisherRandles"), 

  exact = NULL, conf.int = FALSE, conf.level = 0.95, ...) 

{ 

    alternative <- match.arg(alternative) 

    type <- match.arg(type) 

    if(conf.int) { 

        if(!((length(conf.level) == 1) 

             && is.finite(conf.level) 

             && (conf.level > 0) 

             && (conf.level < 1))) 

            stop("conf.level must be a single number between 0 and 1") 

    } # end of if(conf.int)# 

    DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(y)))  

    if(!is.numeric(x)) stop("`x' must be numeric") 

    if(!is.numeric(y)) stop("`y' must be numeric") 

 

    x <- x[complete.cases(x)] 

    y <- y[complete.cases(y)] 

    m <- length(x) 

    if(m < 1) 

        stop("not enough x observations") 

    n <- length(y) 

    if(n < 1) 

        stop("not enough y observations") 

    N <- m + n 

    r <- cscores.more(c(x, y), type = type)  

    T <- sum(r[seq(along = x)]) 

    ET  <- (m/N)*sum(r) 

    VT <- ((m*n)/((N^2)*(N-1)))*(N*sum(r^2)-(sum(r)̂2)) 

    STATISTIC <- (T-ET)/sqrt(VT) 

    PVAL <- switch(alternative, two.sided = 2*(1-pnorm(abs(STATISTIC))),less = pnorm(STATISTIC), 

               greater = 1-pnorm(STATISTIC)   ) 

    RVAL <- list(Statistic = STATISTIC, 

          p.value = PVAL) 

    return(RVAL) 

     

} # end of GLR.test.default #    

 

########################################################################### 
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#################### Brunner Test Biom. J 2000 42, 17-25  ################# 

############################## by Donghui Ma ############################## 

Brunner.test <- function(x,y,alternative = c("two.sided","less","greater"), 

                         conf.level = 0.95,approx = c("normal","t"),...) { 

alternative <- match.arg(alternative) 

approx <- match.arg(approx) 

DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(y))) 

if(!is.numeric(x)) stop("`x' must be numeric") 

if(!is.numeric(y)) stop("`y' must be numeric") 

x <- x[complete.cases(x)] 

y <- y[complete.cases(y)] 

m <- length(x) 

if(m < 1) 

 stop("not enough x observations") 

n <- length(y) 

if(n < 1) 

 stop("not enough y observations") 

N <- m + n 

dim(x) <- m 

dim(y) <- n 

# normalized empirical distribution function of data# 

F <- function(data,xx){(0.5*(sum((xx-data)>0)+sum((xx-data)>=0)))/length(data)}  

# normalized combined empirical distribution function # 

H <- function(xx) {length(x)*F(x,xx)/N + length(y)*F(y,xx)/N} 

# Rank of X.ij among all N observations # 

R.N <- function(xx) { N*H(xx)+0.5 } 

# mean of ranks R.ij in the ith sample # 

R.M.I <- function(data) { 

 RMI <- sum(apply(data,1,R.N))/length(data) 

 RMI } 

# empirical variance of R.ij -R.ij(i) (within rank of X.ij among ni obs in ith sample)#  

S2 <- function(data)  { 

 # Rank of X.j among all n observations, within ith sample Rank # 

 R.n <- function(xx) { length(data)*F(data,xx)+0.5} 

 mn <- length(data) 

 S22 <- (1/(mn-1))*sum((apply(data,1,R.N)-apply(data,1,R.n)-R.M.I(data)+(mn+1)/2)^2) 

 S22    } # end of S2# 

Var.n <- function(data) {S2(data)/(N-length(data))^2} 

Var.N <- N*(Var.n(x)/m+Var.n(y)/n) 

# Calculation of Statistics for Brunner Test # 
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STATISTIC <- (R.M.I(y)-R.M.I(x))/sqrt(N*Var.N) 

names(STATISTIC) <- "Brunner" 

# p value calculation # 

if (approx == "normal") 

{ 

PVAL <- switch(alternative, two.sided = 2*(1-pnorm(abs(STATISTIC))),less = pnorm(STATISTIC), 

               greater = 1-pnorm(STATISTIC)   ) 

 

RVAL <- list(Statistic = STATISTIC, 

      p.value = PVAL, 

      Null.Hypothesis = "relative effect = 1/2", 

      Alternative.Hypothesis = paste("Relative effect ",  

         deparse(alternative), "1/2")) 

return(RVAL) 

} 

if (approx == "t") 

{ 

df <- t.test(x,y,alternative = alternative,conf.level = conf.level)$parameter 

PVAL <- switch(alternative, two.sided = 2*(1-pt(abs(STATISTIC),df)),less = pt(STATISTIC,df), 

               greater = 1-pt(STATISTIC,df)   ) 

RVAL <- list(Statistic = STATISTIC, 

      p.value = PVAL, 

      Null.Hypothesis = "relative effect = 1/2", 

      Alternative.Hypothesis = paste("Relative effect ",  

         deparse(alternative), "1/2")) 

return(RVAL) 

}   

     } # End of Brunner Test # 

R codes for Mixture of Normals: 

################################################################################### 

# function to generate random numbers under mixture of at most three distributions# 

# By Donghui Ma                                                                   # 

# 21.08.03                                                                        # 

################################################################################### 

#all the arguments should be given, even the third component is empty, 0,0,0 given# 

 

rmix <- function(n,m1,s1,p1,m2,s2,p2,m3,s3,p3) { 

 

mv  <- c(m1,m2,m3) 

mpv <- c(p1,p2,p3) 



72 

 

dn  <- c(1,2,3) 

x   <- rep(NA,n) 

rm  <- matrix(data=0,nrow=n,ncol=3) 

P1  <- sample(dn,n,replace = TRUE, prob = mpv) 

for (i in 1:n)  { 

 rm[i,P1[i]] <- 1 

 x[i] <- 

rm[i,1]*rnorm(1,mean=0,sd=1)+rm[i,2]*rnorm(1,mean=5,sd=1)+rm[i,3]*rnorm(1,mean=10,sd=1) 

 

  } # end of for loop # 

x 

 

 

 

      } # end of the function# 

 

R codes for the Fleishman System 

 

The test.txt file can be found in the disk attached. ma <- read.table("C:/Temp/test.txt",header=T) 

ma.matrix <- as.matrix(ma[,2:5]) 

 

rFleishman <- function(n,m=0,std=1,SK.ABCD,...) { 

 x1 <- rnorm(n) 

 x2 <- SK.ABCD[[1]]+x1*SK.ABCD[[2]]+(x1^2)*SK.ABCD[[3]]+(x1^3)*SK.ABCD[[4]] 

 x  <- m + std*x2 

 x 

       } 
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R codes for Mood Median Test: 

# Large Sample min(n1,n2) > 12 mood median test # 

median.atest <- function(x1,x2)  { 

 ZC <- qnorm(0.975, mean=0, sd=1, lower.tail = TRUE) 

 sx1<- sort(x1) 

 sx2<- sort(x2) 

 n1 <- length(x1) 

 n2 <- length(x2) 

 N  <- n1 + n2 

 s  <- ceiling(N/2) 

 vs <- (n1/2)-0.5-ZC*sqrt((n1*n2)/(4*N)) 

 v3 <- round(vs) 

 v4 <- round(n1-vs)+1 

 L  <- sx2[s-n1+v3+1]- sx1[n1-v3] 

 U  <- sx2[s-n1+v4]  - sx1[n1-v4+1] 

 CI <- c(L,U) 

 CI 

    } # end of the function # 

 

 

# calculation of factorial # 

jiecheng <- function(x) { 

 jc <- 1 

 if (x == 0) jc <- 1 

 else  { 

  for (i in 1:x)  { 

   jc <- jc*i 

    } 

  } 

 jc 

   } 

# calculation of combination# 

zuhe <- function(n,k)  { 

 zuhe <- jiecheng(n)/jiecheng(k)/jiecheng(n-k) 

 zuhe  

   } 

 

# exact mood median test# 

median.etest <- function(x1,x2) { 

 p1  <- c() 
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 p1[1] <- 0 

 p2  <- c() 

 p2[1] <- 0 

 i    <- 1 

 n1 <- length(x1) 

 n2 <- length(x2) 

 N  <- n1 + n2 

 s  <- ceiling(N/2) 

 v  <- max(n1-s,0):min(n1,N-s) 

 lv <- length(v) 

 j    <- 1 

 if (sum(p1)<=0.025){ 

  p1[i] <- (zuhe(n1,v[i])*zuhe(n2,N-s-v[i]))/zuhe(N,N-s) 

  i <- i + 1 

  p2[i] <- 0 

      }  

 if (sum(p2)<=0.025){ 

  p2[j] <- (zuhe(n1,v[lv+1-j])*zuhe(n2,N-s-v[lv+1-j]))/zuhe(N,N-s) 

  j <- j + 1 

  p2[j] <- 0 

      } 

 CI <- c(v[i-1],v[lv-j]) 

 CI 

 

  

    } 
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