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Kurzzusammenfassung

Eine Aufgabe von Populationsgenetikern ist die Untersuchung von Populationen mit dem
Ziel, diese in Gruppen zu unterscheiden. Ziel dieser Arbeit ist es, Populationen durch
statistisches Testen zu differenzieren. Datengrundlage dazu sind z.B. Analyseergebnisse
von genetischen Markern. Diese sind spezifisch für einen Genort und bilden den Allelzu-
stand eines Individuums an diesem Genort unabhängig von Umwelteinflüssen ab. Popu-
lationen können verglichen werden, indem zunächst aus einer repräsentativen Stichprobe
von Individuen der jeweiligen Population an einem repräsentativen Genort, Allelfrequen-
zen geschätzt werden. Darauf basierend können die Varianzen innerhalb der Popula-
tionen zum Verhältnis zur totalen Varianz als Unterscheidungsmaß genommen und so
Populationen unterschieden werden. Diese Idee wird in den nach Weir and Cockerham
(1984) beschriebenen F-Statistiken von Wright (1951) in der vorliegenden Arbeit als Maß
zur genetischen Differenzierung genutzt. Über das Hardy-Weinberg Gleichgewicht kön-
nen Genotypfrequenzen für die Population geschätzt und basierend auf der Stichprobe
von Individuen zur Berechnung der Teststatistik verwendet werden. Der p-Wert wird
zur statistischen Auswertung genutzt. Die dazu nötige Verteilung wird empirisch durch
Bootstraps, die über die Populationen stratifiziert sind, erstellt. Die Verteilungen sind, ab-
hängig von der Allelfrequenz, z.T. sehr diskret, was zu einem sehr konservativen oder sehr
liberalen p-Wert führt. Das Verfahren kann für den Vergleich zwischen zwei Populatio-
nen, den Globalvergleich mehrerer Populationen und den paarweisen Vergleich mehrerer
Populationen eingesetzt werden. Bei einem paarweisen Vergleich ist die Implementation
einer Multiplizitätsadjustierung nötig. Dazu wird bei dem Bootstrap nur die maximale
Bootstrap Teststatistik mit der originalen Teststatistik verglichen. Neben der Kontrolle
des globalen Fehlerniveaus wird so auch die Korrelation zwischen den Populationsver-
gleichen berücksichtigt. Diese Technik stammt von Westfall and Young (1993), wird in
dieser Arbeit jedoch angepasst. Anstelle des Resamplings der Residuen in einem linearen
Modell wird z.B. die empirische FST -Verteilung verwendet. Simulationen verschiedener
Populationseinstellungen zeigen, dass die Techniken funktionieren und Populationen un-
terschieden werden können. Die Ergebnisse sind jeodch konservativ und schöpfen das
gegebene Fehlerniveau nicht aus. Die Güte ist umso höher, je größer die Populationen
sind, je näher die Allelfrequenzen am Rand liegen und je größer die Allelfrequenzunter-
schiede sind.
Schlagworte: Wright’s FST , empirische FST -Verteilung, stratifizierter Bootstrap, paar-
weise Vergleiche, FWER
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Abstract

One part of the work of population genetics are analyses of populations with the aim to
separate them. The aim of this work is the differentiation of populations by statistical
testing. The data basis for the analysis are genetic marker data, which show specific the
allelic state of an individual at one locus independent from environmental influences. The
populations can be compared by using a representative sample of individuals at a rep-
resentative part of the genome. Allele frequencies are estimated out of the samples and
the proportion of the variance within the populations to the total variance can be used
to separate the populations. The implementation of this idea by Weir and Cockerham
(1984), which basis on the F-statistics of Wright (1951), is used in this work as a measure
of genetic differentiation. With the Hardy-Weinberg Equilibrium the genotype frequen-
cies of the population are estimated from the sampled individuals to calculate the test
statistic. The p-value is used for the statistical interpretation. The required distribution is
empirically estimated with a over the populations stratified bootstrap. The distributions
are, depending on the allele frequencies and sample sizes, very discrete. That leads to a
very liberal or very conservative p-value. This method can be used for the comparison
of two and multiple populations. Multiple populations are then compared with a global
and an all pair comparison. The all pair comparison requires a multiplicity adjustment,
so only the maximal test statistic of each bootstrap is compared with the original test
statistic. Therefore the family wise error rate is controlled and the correlation between
the comparisons is taken into account, too. The usage of the maximal test statistic is
adapted from Westfall and Young (1993) but e.g. instead of a normal distribution the
empirical FST distribution is used. The results of the simulations at different settings
prove that the methods work and populations can be separated. The results are quite
conservative, because the given error rate is hardly used. The greater the population
sizes are, the greater the differences of the allele frequencies are and the closer the allele
frequencies are to the border of the frequency range, the better is the power to detect a
difference between the populations.
Keywords: Wright’s FST , empirical FST distribution, stratified bootstrap, all pair com-
parison, FWER
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1 Introduction

1.1 Differentiation of populations

One important topic of populations genetics is the differentiation of populations. The
modern genetics deliver distinct information about the allelic state of each individual of
a population by genetic markers. With sampled data it is possible to estimate allele
frequencies for each sampled population and for all populations together and to use a
constitutive statistic to differentiate them. By this statistic, which deals with the rela-
tionship of genetic variation within versus among populations, the genetic difference of
populations can be quantified. This information can then be used to characterize the ge-
netic structure or gene flow. The greater the difference of the allele frequency between the
populations at the analysed locus is, the greater the difference between the populations
is. This difference is measured by an appropriate statistic, based e.g. on the allelic state
of the sampled individuals. In this work as much genetic variability as possible should be
explained by the difference of the genetic information in at least two populations. There
are several ways available of comparing populations based on genetic markers, e.g. the
comparison of each population at each marker, a conclusion from all markers about each
population, a deduction from multiple populations by each marker or a conclusion from
all markers about multiple populations. In this work only one marker locus is taken into
account by looking at all populations simultaneously. One of several assumptions, which
are described later on, is that the genetic marker is on the locus of interest. Based on the
marker information populations can be differentiated. The locus should be representative
for the genome or the character of interest as well as the individuals for the populations,
too. The aim of this work is to compare populations by statistical testing. More pre-
cisely to reject H0, which states that the populations are equal, through the FST statistic
to separate the populations. An illustration of the dispartment of genetic variability is
shown in Figure 1. There are the total population level (T), the subdivisions (S) and the
individuals (I). Each exemplary individual is considered to have a biallelic locus which
is reviewed. This individual can have one of three genotypes, indicated by a white, gray
or black circle. The classification of the individuals and their genotypes can be done e.g.
with a molecular marker.
After this short introduction a motivating example is presented, a definition of popula-
tions and an explanation of molecular markers is shown. In Chapter 2 the assumptions
and parameters of interest are mentioned. Chapter 3 to 5 explain the basis for simulating
the comparison of two populations, as well as multiple populations at a global comparison
and at an all pair comparison. The simulations are presented in Chapter 6. After the
behavior of the test statistic is known, it is used on example data sets in Chapter 7. In
the end a general discussion in Chapter 8 and at last the appendix, e.g. with the used
R-code, are presented.

1



Figure 1: Genetic variability through individuals (I) , subdivisions (S) and the total
population level (T) of hypothetical samples.

1.2 Motivating example

An example data set, that could be analysed, comes from a trial done by A.-K. Lühmann,
Ph.D. from the Leibniz Universität Hannover. The original data includes 22 populations
from 14 places, extracts of which are shown in Table 1. The data derives from a hap-
loid fungus with an unknown reproduction system. It can also be asexual which would
ignore the Hardy-Weinberg Equilibrium (HWE) assumption of random mating, which is
described in Section 2.1.1. The used markers are originally codominant but were evalu-
ated as a dominant marker by the experimenter. Furthermore, many values are missing.
It is of interest if the sampled populations differ from each other. The fungus popula-
tions should differ from each other, because of low migration between the areas where the
populations are gathered, drift, mutation and selection but also due to other effects that
can occur in populations (Balloux and Lugon-Moulin, 2002). These points do not make
this data set the first choice for an example data set for this work, but a start to show
the structure of data that has to be analysed. It also points out possible problems, which
could violate assumptions. The analysis of the motivating example is shown in Section 7.
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Table 1: Extract form the data set. It contains information about the number of individ-
uals, the main sampling location and the results of a dominant evaluated genetic marker
of 16 loci, coded by 0 or 1.

Individual Location Locus1 . . . Locus16
1 Bremen 1 . . . 0
2 Bremen 1 . . . 0
3 Bremen 1 . . . 1
4 Bremen 0 . . . NA
5 Bremen 1 . . . NA
...

...
...

...
409 Dortmund 1 . . . NA
410 Dortmund 1 . . . NA

...
...

...
...

550 Dortmund 1 . . . 1
551 Dortmund 1 . . . 1

...
...

...
...

716 Lauenau 1 . . . 0

1.3 Populations

There is more than one definition for populations and population structure. A list of 18
definitions out of four backgrounds from ecological, evolutionary and statistical paradigms
or through variations of these is presented by Waples and Gaggiotti (2006). The definition
of a population changed over the years and is now defined as the totality of individuals
of a species in the same area at the same time. Every individual contributes to the
common gene pool. The smallest population structure can be called a ‘deme’ (Balloux
and Lugon-Moulin, 2002) or management unit (MU) (Moritz, 1994). The definition of the
MU is based on a significant divergence of allele frequency. The alleles can originate from
nuclear or mitochondrial loci. Their importance on phylogenetic characteristics depends
on the experimenters opinion. Also not crucial alleles can be used. Palsboll et al. (2007)
adds that independent populations exist, because of local birth and death rates rather
than because of immigration. Rejecting panmixia as the criterion for management units
instead of the genetic divergence can lead to misinterpretation in some cases, so it is useful
to assign MUs by a threshold level of dispersal. Currently there is no general threshold
value or dispersal rate to define populations as separated or not (Waples and Gaggiotti,
2006). There are different methods to get values which can be used to classify populations.
One way is to use ‘gene flow’, the number of migrants per generation which is estimated
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by
mNi (1)

where m is the probability that an individual is a migrant and Ni are the effective popula-
tion sizes (Wright, 1951; Palsboll et al., 2007; Balding et al., 2001). Waples and Gaggiotti
(2006) described the migration rate (m) as the ecological paradigm and migrants per
generation (Nm) as the evolutionary paradigm. In most cases these numbers are un-
known and so methods are required to infer mNi (Leviyang, 2010). These are described
in Section 2.2.2 and use the same statistic used to separate the populations.

1.4 Molecular marker

Different types of markers are available. There are phenotype, protein and DNA markers.
They have a common condition or appearance that correlates with one or more genes. A
phenotype marker can be e.g. blossom colour with the simplifying assumption that it is
under control of just one gene. An example could be Figure 2 where at a biallelic locus
each genotype would have one colour (incomplete dominant) or two colours (dominant
recessive), if a phenotype marker is used. A dominant allele would cover the recessive
allele. Phenotype and protein markers are rare and the results are sometimes not distinct
e.g. in reference to differentiate between the allelic state (Kumar et al., 2009). Mor-
phology based markers become unexact under environmental influences. Protein markers
are unable to detect low levels of variation, because they only screen the protein coding
regions of the genome but they allow a separation between the homozygous genotype
and the heterozygous genotypes (Laurentin, 2009). Molecular markers are DNA-based
and overcome the previously listed disadvantages. DNA markers are distinct and almost
unlimitedly available (Laurentin, 2009). Each molecular marker system uses different
regions in the genome. Mutation rates are not evenly distributed, so that comparisons
with different molecular markers can have varying results depending on the marker re-
gions (Holsinger and Weir, 2009). Depending on the evolutionary distance a molecular
marker with the corresponding mutation rate can be used. The use and number of ge-
netic markers has increased fundamentally since their particular invention (Palsboll et al.,
2007; Kumar et al., 2009). Advantages and disadvantages of many molecular markers are
also reported in Kumar et al. (2009). They also describe an ‘ideal’ molecular marker. It
is highly polymorphic so that differences between the populations can be shown (1), is
codominant to avoid calculations for allele frequencies under strong assumptions (2), has
an even distribution over the genome (unless only a single gene is of interest) (3) and
is selective neutral so that e.g. no environmental methylation can effect the marker (4).
Also the marker detection is easy, fast and cheap (5) and trial replications deliver the
same result a marker with high reproducibility would do (6). Molecular markers can be
separated in many ways. One common possibility is the separation in non PCR based
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markers (e.g. RFLP) and PCR based markers (e.g. RAPD, microsatellite, etc.) the other
commonly used classification is the separation into dominant and codominant markers.

1.5 Dominant and codominant markers

Molecular markers can be classified into dominant and codominant markers. Dominant
markers can only show one homozygote genotype, in most cases the recessive (aa) one.
The homozygote dominant (AA) has the same result as a heterozygote genotype (Aa)
individual. The at the same time shown allele frequencies must be calculated with the
HWE, so the frequency of the heterozygous genotype cannot be determined directly which
leads to an approximation. This marker system is much less informative and a divergence
of the population to the HWE caused by drift can not be shown. If the marker is not
dominant it is compellent codominant.
A codominant marker delivers distinct results for each genotype and the allele frequencies
must not be calculated under the HWE and its assumptions. Heterozygote individuals
can be distinguished from homozygote individuals. This marker type delivers much more
information than the dominant marker, so deviations of populations from the HWE can
be detected.
One example of a nearly ‘ideal’ marker are microsatellite markers. They are codominant
and the distribution depends on the marker used. Microsatellite markers are selective
neutral and offer a good detection and a high reproducibility. Disadvantages are the
unknown mutation rate for a specific locus and the fact that the mutation rate differs
between the microsatellite markers. The repeat types and base composition of the re-
peat can differ between microsatellite type and taxonomic group (Bachtrog et al., 2000).
Other influencing factors are the position on the chromosome, length of the allele and
whether or not they have flanking sequences (Balloux and Lugon-Moulin, 2002). Their
mutation rate is approximately at 10−3 which is quite high in comparison to other molec-
ular markers (Weber and Wong, 1993; Jarne and Lagoda, 1996). The drawback is their
pricy production, because of the required effort to produce them.

2 Model

2.1 Assumptions

2.1.1 Hardy-Weinberg principle

The mathematician G. H. Hardy and the physicist W. Weinberg developed a way to
describe allele frequencies in a population independently from each other, in 1908. In fact
the law of equilibrium in absence of selection was already pronounced by W.E. Castle
in 1903. He verified the 1:2:1 distribution by U. Yule but eliminated some mistakes
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(Aichinger and Grimm, 2008). The basic of the Hardy-Weinberg principle are Mendel’s
inheritance laws. The standard example to describe the Hardy-Weinberg equilibrium
(HWE) is a biallelic locus where p stands for the frequency of the dominant allele A and
q for the frequency of the recessive allele a.

(p+ q) ∗ (p+ q) = p2 + 2pq + q2 = 1 (2)

p+ q = 1 (3)

The dominant allele A and the recessive allele a have the frequency p and q, totaled they
add up to 1. In this case of a dominant recessive gene, there are three possible genotypes:
AA, Aa and aa with the frequency p2, 2pq and q2. The equilibrium, where the allele
frequencies of the offspring are the same as in the parental generation, has some strong
requirements. There is no type of mutation to the genome of each individual, no migration
into or out of the population and no selection which would benefit or handicap any allele.
Genetic drift or the bottle neck effect is excluded at the HWE, because a bulk of the
population would be eliminated. As a result the remaining individuals would represent
different allele frequencies than the gene pool before, because of the reduced population
size. In small populations inbreeding occurs more often resulting in an increasing amount
of homozygote individuals. The last assumption of the HWE is random mating, so each
individual has the same chance to mate with a random individual. The exclusion of non
random mating, drift and inbreeding requires a large population. If these assumptions
are fulfilled, an ideal population is the result and the HWE will be obtained after one
generation of random mating, because the allele frequencies are constant. It is for example
possible to calculate the frequency of the heterozygous genotype for each allele, if the
frequency of the homozygous individuals is known. This relation is shown in Figure 2
and is a popular scheme which is shown in many publications, as e.g. in Aichinger and
Grimm (2008).
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Figure 2: Genotype frequencies as a function of allele frequency in Hardy-Weinberg equi-
librium, at a biallelic locus.

2.1.2 Falconer’s additive model

The statistic, that will be used later on, includes sums of different terms of variance. The
principle of adding terms of variance was adapted for breeding trials by Falconer (1970)
from Fisher’s additive model (Fisher, 1930). In the model it is assumed that the sum of
the variance within populations and between populations is the total variance. It bases on
the model of the additive genotype or additive effect of genes. If one locus is considered
the genotype value is an addition of the breeding value and the dominance deviation. The
breeding values for the genotypes are shown in Table 2. The parameter β denotes the
slope of the regression line of the number of A in a genotype to the breeding value.

Table 2: Breeding values for the genotypes at a biallelic locus under HWE in the Falconer
model.

Genotype Breeding value
AA 2β1 = 2pβ
Aa β1+β2 = (p-q)β
aa 2β2 = -2qβ

At HWE the breeding value is null otherwise the population is not in HWE:

2q2pβ + 2pq(p− q)β − 2p2qβ = 2pqβ(p+ q − p− q) = 0
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The breeding value is also called the additive genotype which stands for the additive effect
of genes. At a single locus G the model is reduced by epistatic effects and can be written
as

G = A

where A is the sum of breeding values. Analogue to G, the F statistics FST , FIT and FIS

are assembled by the ratio of the sum of variance terms under the assumptions of the
Falconer Model.

2.1.3 Mutation models

Usually, at more complicated settings, different mutation models can be assumed. The
simple setting here with a single biallelic locus with allele A and a, HWE and a single
generation simplifies the mutation model. A mutation can change A to a or a to A.

2.2 Parameter of interest

2.2.1 Allele frequency

For the comparison of populations, applicable data are allele frequencies e.g. by a genetic
marker this data can be generated or observed for each population. With a classification
of each individual to a population it is possible to sum the information of the allelic state,
to get an population estimate. The allele frequency for the whole population can be
obtained by the genotypes of the individuals of each subpopulation. With this information
one important value, the frequency of the dominant allele p, is known if the sums of the
homozygote dominant genotype AA is added to one half of the heterozygote Aa. The
frequency q of the recessive allele is easy to obtain with Equation 3. The proportion of
the heterozygous individuals can be obtained under the assumption of HWE, too. Four
important values are available by counting and summarizing marker data. The first is
the state of the genetic marker of individual indk with k = 1, . . . , n. The calculations
of the other three, the allele frequencies, genotype frequencies and population sizes are
based on the observed individuals. Let I be the number of the compared populations and
index i has the range 1, . . . , I. Information about the frequency of the dominant allele pi,
the proportion of the heterozygous individuals of the population hi and the size ni of the
population, can be obtained by the individuals of the populations. The used R code to
estimate p̂i, ĥi is shown in Section A.1.2.

2.2.2 Wright’s F-statistics

The aim to differentiate populations, can be accomplished with several statistics. Popula-
tion differentiation parameters are the method of choice, because a value of differentiation
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is presented which shows the correlation or relation of the populations. One of these pa-
rameters are Wright’s F-statistics (Wright, 1951), which were invented by Sewall Wright
in the 1920s to separate cattle breeds. Although the idea is similar to a simple one way
ANOVA (analysis of variance), simplified adding variances to a total variance, it is not
the same as the ANOVA F statistics, even though they are both called F statistics. They
were introduced to analyse the genetic structure of diploid populations, by the depar-
ture of genotype frequencies from HWE, more precisely the divergence of heterozygosity
(Holsinger and Weir, 2009). Wright’s F-statistics are put together through the F coeffi-
cients. The F coefficients T , S and I allocate the genetic variability to the total population
level (T ), to the subdivisions (S) and to the individuals (I) (Hedrick, 2000). An illustra-
tion of T , S and I is shown in Figure 1. I and S together from the inbreeding coefficient
FIS or simply f . It is a measure of the size of genetic inbreeding within subpopulations
and can range from –1, if all individuals are heterozygous, to +1, if there are no observed
heterozygous individuals. The overall fixation index is FIT or F . It describes the correla-
tion of alleles between individuals and the population, more precisely the mean deviance
of genotype frequencies from the HWE at the total population level (Holsinger and Weir,
2009). The last of the three F statistics is FST or θ. FST is the ‘most commonly used
measure of genetic divergence among populations’ (Palsboll et al., 2007; Holsinger and
Weir, 2009). It compares the variance of the allele frequencies within the populations
with the total population variance of allele frequencies and thus separates populations. It
can also be defined by allele correlations of subpopulations relative to the total popula-
tion (Holsinger and Weir, 2009) or as the extent of divergence among populations relative
diversity within the species (Charlesworth, 1998). It can take values between null, if the
populations are identical, and one if the subpopulations have completely different fixed
alleles or in other words are completely separated (Myles et al., 2008). Originally it was
defined by Wright to take positive values only (Hedrick, 2000). It gives information about
the correlation between two alleles, chosen at random within subpopulations, relative to
alleles sampled at random from the total population (Wright, 1951, 1965). Therefore, it
measures inbreeding due to the correlation among alleles, because they are found in the
same subpopulation or more precisely the heterozygote deficit relative to its expectation
under HWE is measured. Even if a codominant marker is used, the HWE is still assumed
by FST . The relationship of the F statistics is (Balding et al., 2001):

(1− FIT ) = (1− FIS)(1− FST )

Each of the F-statistics has a certain area of application. There are different ways to esti-
mate a statistic from data like maximum-likelihood estimates, Bayesian estimates (Pearse
and Crandall, 2004) and method-of-moments estimates as FST (Weir and Cockerham,
1984). It needs parameters from the populations, as the frequency of the dominant allele
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pi and the frequency of the heterozygous genotype hi and at last the size ni. The im-
plementation of Wright’s F-statistics here is basically adapted from Weir and Cockerham
(1984), which is in case of FST a method of moment estimate with bias correction. To
calculate the three F-statistics three variance components are needed, considering a single
biallelic locus. The FST statistic bases on the ratio of this three variance components.
n̄ is the average sample size and N the sum of the ni with i = 1, . . . , I. The squared
coefficient of variation of sample size is formulated by nc:

nc =
(In̄−N2)/(In̄)

I − 1

p̄ is the average sample frequency of the dominant allele pi:

p̄ =
I∑

i=1

nipi

In̄

The sample variance of the frequency of allele pi over all populations is described by s:

s =
I∑

i=1

ni(pi − p̄)2

(I − 1)n̄

and the average heterozygote frequency of allele p is represented by h̄:

h̄ =
I∑

i=1

nihi

In̄

Now that the variance terms can be calculated, the first is the variance between popula-
tions:

a =
n̄

nc

(
s−

(
1

ni − 1

)(
p̄(1− p̄)−

(
I − 1

I

)
s−

(
1

4
h̄

)))
where 1/4h̄ represents the effect of dominance deviation. The second is b, the variance
between individuals within populations:

b =

(
n̄

n̄− 1

)(
p̄(1− p̄)−

(
I − 1

I

)
s−

(
2n̄− 1

4n̄

)
h̄

)
The third, c, is the variance between gametes within individuals:

c =
1

2
h̄

With the variance terms the FST statistics can be written shortly as shown in Equations
4 to 6. Not available estimates or also missings for FST can occur if a+b+c become null,
which happens if all individuals of both populations have all the homozygous dominant
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or homozygous recessive allele or are all heterozygous. To sum up, a single FST value is
an estimate of differentiation of two populations, based on allele frequency and is used for
the further analysis. The R-Code is shown in Section A.1.4.

θ = FST =
a

a+ b+ c
(4)

F = FIT =
1− c

a+ b+ c
(5)

f = FIS =
1− c
b+ c

(6)

3 Comparison of two populations at a single locus

With the parameters of interest it is now possible to separate populations. The methods
of the statistical testing, used in this work to separate two populations, are explained in
this chapter.

3.1 Parameter estimiation

3.1.1 Allele frequency

The populations are compared by the estimated allele frequencies ĥi and p̂i of the sampled
individuals. The populations size ni is counted for each population. Individuals can either
have an allelic state measured by the genetic marker of e.g. 0, 1 or 2 which indicates either
the homozygous dominant, heterozygous or homozygous recessive genotype.

3.1.2 FST

As described, the FST statistic, represented by the parameter θ, is estimated by θ̂ for the
comparison of two populations based on the allele frequencies and size of each population.

3.2 Hypotheses

The null hypothesis, required for statistical testing, is tested at a given type I error rate
α. The null hypothesis is rejected if the θ value is greater than null.

H0 : θ = 0

HA : θ > 0

The HA is accepted at the given α, because the H0 can be rejected, because θ > 0. In
this case a difference between the populations is shown.
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3.3 Error rate

The result that H0 is rejected, if in truth the populations are equal, should occur maximal
at α percent of the cases if the experiment is repeated.

3.4 Test statistic

The test statistic is simply
T̂ = θ̂O

where θ̂O is the ‘original’ test statistic of the not resampled values, as shown in Equation
4. θO is used directly and the statistic is not standardised over the variance, as e.g. in a
t-test.

3.5 Distribution of the test statistic

Bootstrapping is a statistical method of resampling for statistical inference and was first
described by Efron (1979) and can be used to estimate the accuracy of statistical esti-
mates, e.g. their the standard error, bias or mean. The bootstrap here is used to get
an empirical FST distribution (Efron and Tibshirani, 1993). This distribution bases on
the used data. Resampling usually means that the observed values are completely re-
arranged at random to the populations with repetition if the aim is statistical testing.
After that, the location of θO in the resampled distribution is declared to be under the
null hypothesis or not. The bootstrap here does not completely rearrange the individuals
at random to the populations, but is stratified for each population. A nonparametric
bootstrap procedure is used with a stratification by subpopulations. At a nonparametric
bootstrap the theoretical distribution function is replaced by a nonparametric estimate
and a simulated empirical distribution is the result (Efron and Tibshirani, 1993; Büning
and Trenkler, 1998). For a given sample, repeated samples are drawn with replacement of
the same size as the original. Some values of the original sample are not in the bootstrap
sample, some can therefore be included once or more. The resampling should always be
under the null hypothesis. To get the unknown FST distribution under H0, populations
with an equal frequency of the dominant allele are simulated and bootstrapped to get
example data. In each of the B bootstrap replications with b = 1, . . . , B, a bootstrap FST

statistic is calculated by giving each population values. That are the allelic states 0, 1
or 2 of the individual haplotypes, of the original observed data, with a population index
for each individual. The distribution is essential for statistical testing, because out of it
a p-value can be calculated which is used to test the null hypotheses. The distribution
bases on the results of

θ̂b − θ̂O
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and is estimated of each of the B bootstraps where θ̂O is the original test statistic and θ̂b

the bootstrap test statistic. θ was defined by Wright (1951) to range between null and
one. Through this simple estimation of the distribution under H0 a negative θ, which is
not defined, can occur. The needed quantile for the p-value is the original test statistic θ̂O

and is at the upper side of the distribution. It is a cut point at which the H0 is rejected
and HA is valid.
Another possibility instead of the bootstrap distribution would be the assumption of a
distribution to the test statistic. A χ2 or Dirichlet (Weir and Hill, 2002) distribution are an
alternative, because θ has quadratic terms. These distributions are adequate assumptions
but probably at high sample sizes only. The better the assumed distribution fits to test
test statistic, the better are the results. That is because it is used to estimate p-values,
confidence intervals, bias and variance of an estimator for the statistic of interest (Efron,
1979; Westfall and Young, 1993). As mentioned above θ̂O is used to decide for H0 or
HA. There are of course other ways of getting this cut point as there are options of using
a different distribution as the H0 bootstrap distribution but the bootstrap is one of the
easiest to implement and should work (Davison and Hinkley, 1997; Efron and Tibshirani,
1993). As an example, bootstrapping over loci was performed by Weicker et al. (2001)
with 5000 replications for estimates of Cockerham’s θ with upper and lower limits but not
stratified over populations. The result of Weicker et al. (2001) is that the estimated θ̂ are
quite close to the actual θ, depending on the sample size. The larger the populations are
the smaller is the difference between the estimated and the actual θ.

3.6 p-value

Comparing populations by FST requires a cut point at which populations can be declared
to be different but there do not exist any clear FST constraints (Charlesworth, 1998). A
solution for that is the p-value. The p-value is the probability of sampling observations,
to be more extreme than the actual sample, given the H0 to be true. For the p-value here
at first an estimate of the original statistic θ̂O of a comparison between two populations
and the H0 distribution out of the bootstrap are needed.
The p-value is

p̂ =
# (θ̂b > θ̂O)

B

where # is the number of greater bootstrap test statistics and θ̂b the estimated resampled
bootstrap test statistic. The p-value is then the proportion of greater θ̂b to θ̂O under the
mentioned model- and distributional assumptions. In this work it is intended to compare
two populations by a p-value based on θ̂O and calculated by a bootstrap to reject H0 with
a certain α. If the H0 is rejected the HA, the populations are different, is assumed.
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3.7 Discussion

The used method to compare two populations has a drawback. The statistic is not
standardised over the variance, as for example the t-test statistic. The variances of the
test statistic are not estimated, because it would be quite extensive and probably not
much more satisfying as it is now. A sample variance is included in the calculation of the
FST statistic but no variance of FST is estimated. This is not optimal but very simple.
Weir and Cockerham (1984) suggest the use of a jackknife procedure to estimate sample
variances. Jackknifing is a resampling method as the bootstrap but with the difference
that for each repetition a data point or observation out of the original data is omitted.
Of course the null hypothesis can not be proved. If no difference between the populations
can be shown, it could be that the sample size is too small, the allele frequencies are too
low or the distribution is too discrete. The discreteness makes it difficult to get a proper
distribution under H0, so that a cut point can not be estimated properly.

4 Global comparison of multiple populations at a single

locus

The next step, after the comparison of two populations is explained, is the comparison
of multiple populations. The important fact of the global comparison is the control of
a global error rate for all comparisons simultaneously. All populations are compared
together. This can then have the result, that there no difference between the populations
can be shown. The alternative is that there is a difference between them. This difference
can be due to one or more populations but it is not known which populations can be
separated.

4.1 Parameter estimation

4.1.1 Allele frequency

For the I populations I values for each ni, ĥi and p̂i have to be estimated, each as described
for two populations.

4.1.2 FST

For the I populations a single global θ̂ is calculated out of ni, ĥi and p̂i which is applied
for all populations.
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4.2 Hypotheses

The global null- and alternative hypothesis over all of the multiple populations looks
similar to the hypotheses for two populations but with a different parameter used.

H0 : θG = 0

HA : θG > 0

H0 can not be rejected, if the global θG is null. HA is assumed if at least due to one of
the populations θG becomes greater than null.

4.3 Error rate

The error rate at the global hypothesis is α as in the two population comparison, because
only a single hypothesis is tested. In maximal α percent of the repetitions H0 is rejected
although it is true, if the experiment is repeated.

4.4 Test statistic

The test statistic is again simply
T̂Glob = θ̂O

because only a single statistic is estimated for all populations. The calculation of θO is
shown in Equation 4.

4.5 Distribution of the test statistic

Similar as for two populations, the distribution under the null comes from

θ̂b − θ̂O

and is calculated for each of the B bootstraps but with the global theta is used.

4.6 p-value

The p-value for the global hypothesis is calculated similar as for two populations but of
course the global θ is used.

p̂G =
# (θ̂b > θ̂O)

B
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4.7 Discussion

The use of a global hypothesis for multiple populations is the simplest step forward, if more
than two populations are considered. Because only a single θ is calculated, the result is as
easy to interpret as the results for two populations. If the H0 can not be rejected this is a
sufficient result for more than two populations. The result of a global test is a bit similar to
the result of an ANOVA. It has the advantage of comparing multiple populations without
concerning about adjustments for multiple hypotheses. The disadvantage, when H0 is
rejected and HA accepted, is that the result can not be sufficient for the experimenter,
because mostly it is of interest due to which population(s) H0 is rejected. It stays unclear
how many and which of the populations can be separated by θ. If this is of interest, an
all pair comparison between the populations can be done.

5 All pair comparison of multiple populations at a sin-

gle locus

If no difference between the populations can be shown, the all pair comparison does not
deliver further information. It delivers further information if there is a difference between
the populations, because it shows the differing populations.

5.1 Parameter estimation

5.1.1 Allele frequency

For the I populations I values for each ni, ĥi and p̂i with i = 1, . . . , I have to be estimated,
as described for two populations.

5.1.2 FST

For I populations, θ̂Oj values are calculated with j = 1, . . . , J and J = I(I − 1)/2.

5.2 Hypotheses

With more than two populations an all pair comparison should be done. The hypotheses
cover all of the j local hypotheses with J = I(I − 1/2). The decision to reject the H0

bases on θ̂j. The H0 is rejected if the corresponding test statistic is greater then null.
H0 can not be rejected if the corresponding comparison has a θ̂ of null. If at least one
comparison has a θ greater than null, then the H0 has to be rejected and the alternative
is assumed.

H0 :
J⋂

j=1

θj = 0
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HA : max θj > 0

In HA the maximal of θj is used. If it is not greater than null, all other HA can not be
accepted.

5.3 Error rate

At more than two comparisons, or more precisely multiple hypotheses, different error rates
can be defined. The local error rate covers a single hypothesis. There are as much local
error rates, as there are hypotheses and each true H0 hypothesis is rejected at most with
the probability α. The global error rate has at most the probability of α of rejecting a
true H0 under the assumption, that all H0 are true. The family wise error rate (FWER)
belongs to the multiple error rate and is the probability α for rejecting at least one H0,
given the H0 is true (Horn and Vollandt, 1995). The FWER should be controlled but
there are two types. The weakly FWER is controlled if all H0 are true. Even if a single
H0 is rejected, the global error rate is no more controlled for the other hypotheses. In
the strong sense the FWER is controlled independently of true or false null hypotheses.
This is desired if multiple hypotheses are of interest (Horn and Vollandt, 1995). The
multiplicity adjusted pairwise FST test statistics should keep the FWER, which is shown
in Section 6.5.

5.4 Test statistics

The test statistics are
T̂AP = θ̂bj − θ̂Oj

with b = 1, . . . , B and j = 1, . . . , J .

5.5 Joint distribution of the test statistics

The difference between the bootstrap for two populations and the bootstrap for multiple
hypotheses is, that the joint distribution of the test statistics is of interest instead of a
single distribution. There are more than one distribution of test statistics. The test statis-
tics are correlated because of the all pair comparison, e.g. 1 vs. 2 and 2 vs. 3. Therefore
the maximal test statistic method is used. There are J comparisons and therefore J
test statistics. As described by (Westfall and Young, 1993), but for a different statistic,
the maximal bootstrap test statistic of θbj is taken and every statistic which is greater
than the original, is counted. For each of the J original test statistics at each bootstrap
replication it is counted, if any of the J bootstrap test statistics θb is greater than one
of the J θO. This leads to a local conclusion under a controlled FWER. If a single θ is
greater than null the H0 is rejected, which than counts for all smaller FST statistics, too.
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If there are more FST statistics, then a multivariate distribution can be assumed which
means J dimensions instead of a univariate distribution if two populations with a single
hypothesis are tested. The more dimensions there are, the harder it becomes to get a cut
point, because the more populations there are the more has to be cut of the area where
the H0 can be rejected. In Section 6.4 this is illustrated for three populations but for two
of three comparisons only.

5.6 Adjusted p-value

If more than one hypothesis is considered, then through the Bonferroni inequality the
probability of rejecting H0 although it is true increases. The multiple α raises with the
number of hypotheses. This is solved with an adjusted p-value by using the maximum of
the multiple test statistics. The p-value is the proportion of the maximal bootstrap θbj

statistics greater than the original statistic θOj, divided by the number of bootstraps B.
The p-value is calculated under the assumption of a multivariate distribution, because of
the multiple comparisons and is now already adjusted for this multiplicity

p̂j =
#(max θ̂bj > θ̂Oj)

B

with b = 1, . . . , B and j = 1, . . . , J . As a mathematical definition the multiple p-value is:

p̂j = inf {α | Hj is rejected at FWE = α}

Where Hj are the null hypothesis, p̂j is the adjusted p-value or also the smallest signifi-
cance level, where Hj can be rejected, using a simultaneous test procedure.

5.7 Discussion

Westfall and Young (1993) also took the maximum of the test statistics with the as-
sumption of a multivariate distribution but resampled residuals in a linear model. They
standardised over the variance, but in this work the variance of θ̂O under H0 is not esti-
mated. If the variance of FST would be estimated, the used method would be more similar
to Westfall and Young (1993) but still with a different distribution assumed. Where here
the distribution is unknown and empirical, Westfall and Young (1993) assumed normally
distributed observations in a linear model with resampling to make conclusions about the
distribution of the residuals, so the conclusions are not directly negotiable. The advantage
of using the maximum of the bootstrap test statistics is that the FWER is controlled. It
was not tested, if it is controlled strongly or weakly but the results are quite conservative.
The control of the FWER strongly is desirable for multiple comparisons. There are other
options as e.g the Bonferroni α adjustment, which divides α by the number of hypotheses.
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The disadvantage of the Bonferroni adjustment is, that it becomes conservative with an
increasing number of hypotheses (Horn and Vollandt, 1995). The other disadvantage is,
that uncorrelated test statistics are assumed, which is not the case at the used all pair
comparison of populations.

6 Simulations

6.1 Generation of Populations

As described, genetic markers are distinct and they are used at sampled individuals of
populations to separate the populations. That marker data contains information to ex-
plain the variability within and between the populations. The ‘ideal’ marker should be
as much informative as possible, this excludes missing values and includes codominance.
The representative individuals of the populations are the basis for marker data. For sim-
ulations the populations are generated under this assumptions of an ideal marker, e.g.
to ensure that no missing values occur and that the true allele frequencies are known.
Populations can be described by the frequency of the dominant allele (p) per locus and
the population size. The populations for all simulations are based on the HWE so each
genotype frequency of the dominant allele p is calculated under the HWE. The allele
frequency p is a single value of a single locus of each population. Each population has
discrete allele frequencies. The used population sizes are equal, but it is also possible to
create different population sizes. One way to summarise the individuals of a population is
shown in Figure 3. There are three populations with ten individuals each and no missing
value. Each field contains a value of 0, 1 or 2. This stands for each genotype or marker
condition. Null would be the homozygous recessive genotype aa, one the heterozygous
Aa and two the homozygous dominant genotype. This information can come for example
from a polyacrylamid gel electrophoresis of a PCR with null, one and two marker bands.
The values 0, 1 and 2 are drawn from the multinomial distribution. This distribution is
chosen, because it is the multivariate generalisation of a binomial distribution and, instead
of the two values null and one, three endpoints can occur. The R code, to generate the
populations as described, is shown in Section A.1.1.
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Figure 3: Example output of the function to generate populations. Three populations
are shown with ten individuals each. The given frequency of p for the populations one to
three are 0.1, 0.5 and 0.9.

6.2 Bootstrap distribution of FST under H0 for two populations

6.2.1 Settings

For the bootstrap distribution two populations with an equal sample size of 100 are
compared. 1000 bootstraps are done. The simulated allele frequencies of pi are 0.001,
0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5.

6.2.2 Results

The density of the distributions of the FST statistic given the allele frequency of pi with
0.001, 0.0025, 0.005, 0.01, 0.025 and 0.05 are shown in Figure 4. For each pi new popula-
tions are generated, as described randomly out of a multinomial distribution. Bootstraps
are done and the distribution of the bootstrap test statistics is shown. The percentage
of not available estimates to test statistics, for the allele frequency of this particular sim-
ulated populations, is 35.5% for 0.001, 36.4% for 0.0025, 14.2% for 0.005, 1.3% for 0.01
and null for the rest. This not available estimates can also be called missings. Missings
are set to an FST statistic of null, because this samples do not contain information to
differentiate the populations. The histograms show the density of bootsrap FST statistics
so the histogram has a total area of one. The higher the density, the more bootstrap
test statistics have this certain value. This varies with the generated population and the
allele frequencies. The distribution of the frequencies 0.1, 0.2, 0.3, 0.4 and 0.5 are shown
in Figure 8 in the appendix. There is also an example with an allele frequency p of 0.5
but with 1000 individuals per population in Figure 9 which has a shape, that is not so
influenced by the population size or by the minimal allele frequency. The distribution will
look similarly, if it repeated with a new population but the same settings.
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Figure 4: Simulated FST density distributions from 1000 bootstraps for the allele fre-
quency pi with 0.001, 0.0025, 0.005, 0.01, 0.025 and 0.05 for both of the two randomly
generated populations with 100 individuals. Missings are set to null.

6.2.3 Discussion

Missings occur if all individuals of both populations have all the homozygous dominant
or homozygous recessive allele or are all heterozygous. It is assumed that in this case
there is no difference between the populations, because there is no information and the
statistic is set to null, which can then be shown in the histogram. There is a higher
density at θ = 0, due to the missings. Another possibility would be, to consider only
calculated results and ignore not available estimates. The reason for missings is known
and the conclusion, to decide in these cases to not rejectH0, seems more plausible than the
alternative. The shape of the density distribution as the proportion of missings varies with
the generated marker. If a new population is drawn of which the bootstraps come from,
the shown results will be different especially at small population sizes and extreme allele
frequencies. The percentage of missings for p = 0.001 is one time 100%, where at other
generated data it is only 14.3% and also the profile is different. With more individuals
the distribution becomes more invariant, as shown in the example of 1000 individuals in
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Figure 9 in the appendix. The closer the allele frequency gets to the boundary of null
or one, the greater is the possibility of missings. The less the difference between the
populations is, the higher is the discreteness of the distribution which can also be a single
value. A small sample size can lead to a close estimate of the allele frequency and therefore
a discrete FST distribution, too. A discrete distribution makes it difficult to estimate the
p-value accurately, because it is either too conservative or too liberal. A population size
of 100 individuals is chosen for this simulations to avoid too discrete distributions at all
tested allele frequencies and because it is not too far away from practice. The bootstrap
distribution can get negative as shown e.g. at allele frequency p = 0.05 and is therefore
a bit less discrete. This is partly because of θb - θO but also because of the bootstrap
variation of θb.

6.3 Global bootstrap distribution of FST under H0 for multiple

populations

6.3.1 Settings

For the global bootstrap distribution of six populations with an equal sample size of 100,
1000 bootstraps are done. The simulated allele frequencies of pi are 0.001, 0.0025, 0.005,
0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5.

6.3.2 Results

The density of the distributions of the global FST statistic, given the allele frequency
of pi with 0.001, 0.0025, 0.005, 0.01 and 0.025, are shown in Figure 5. For each pi

new populations are generated randomly, bootstraps are done and the distribution of
the bootstrap test statistics is shown as a histogram. The percentage of missings to the
number of test statistics for the allele frequencies is 34.6% for 0.001, 2.1% for 0.0025,
4.4% for 0.005 and null for the rest. The missings are set to an FST statistic of null. The
maximum density decreases the closer the allele frequencies are to 0.5. The distributions of
the allele frequencies 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 are shown in Figure 10 in the appendix.
There is also a more invariant example with an allele frequency p for all populations of
0.5, because 1000 individuals per population are used. This is shown in Figure 11 in the
appendix.
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Figure 5: Simulated global FST density distributions of six populations from 1000 boot-
straps for the allele frequency pi with 0.001, 0.0025, 0.005, 0.01, 0.025 for all of the
randomly generated populations with 100 individuals. Missings are set to null.

6.3.3 Discussion

In a reduced form the results of the global bootstrap distributions correspond to the
results for two populations. However, they are not comparable to each other, because the
basis e.g. the degree of freedom and so the distributions are different. The FST value
is calculated from six populations. All of them must have identical information about
the individuals, so that a missing can occur. The more populations there are, the less
missings should occur, because of the higher sample size. The discreteness diminishes
with decreasing extreme allele frequencies. The skewness of the global FST looks a bit
similar to an F-distribution with df > 2, except the smallest frequency of 0.001. It is a
quadratic statistic and the resulting skewness is affected by the FST adjustment but it
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can not eliminated. There many of reasons that affect the skewness of the distribution.
One of them is, that the variance of an allele frequency at the border of the frequency
range can not be as high as an allele frequency in the middle of the frequency range. The
higher the population size is, as e.g. shown with 1000 individuals instead of 100, the less
is the difference in the shape of the distribution if new populations are created and a new
bootstrap distribution is shown.

6.4 Bootstrap distribution of FST values of an all pair comparison

for multiple populations under H0

6.4.1 Settings

For the multivariate bootstrap distribution three populations with an equal sample size
of 100 are compared and 1000 bootstraps are done. The simulated allele frequencies of pi

are 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5.

6.4.2 Results

The results of the multivariate bootstrap density distribution, given the allele frequencies
of 0.0025, 0.005, 0.01 0.025, 0.05 and 0.1, are shown in Figure 6 and the frequencies from
0.2 to 0.5 in Figure 12 in the appendix. For each pi new populations are generated at
random, bootstraps are done and the distribution of the bootstrap test statistics is shown.
The plots show the correlation of two comparisons, where each includes an identical
population, here ‘Pop1’. Pop2-Pop1 is on the ordinates and Pop3-Pop1 on the abscissas.
The boundaries should mark the area of negative FST values. For the first setting of pi =
0.001 there are no estimates available so it is not shown. The number of missings for the
other settings are up to 379 of the 1000 bootstraps. At pi = 0.0025 there are 366 missings
at the comparison ‘Pop2 - Pop1’ and 143 at ‘Pop3 - Pop1’. At pi = 0.005 there are 339
and 379 missings for the two comparisons, 2 and 49 for pi = 0.025, respectively. At the
other settings the number of missings is null. Not available estimates are set to null. The
comparison of the results between the frequencies of 0.0025 to 0.1 shows the decrease of
the discreteness, the closer the allele frequency is to 0.5. The difference in the discreteness
between the frequencies 0.2 to 0.4 is not as high as at the smaller frequencies.
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Figure 6: Simulated multidimensional FST density distributions. Shown are two of three
of the all pair comparison. Three populations with 100 individuals, which are generated
out of a multinomial distribution, are compared. They equal allele frequencies of pi are
set to 0.0025, 0.005, 0.01, 0.025, 0.05 or 0.1. 1000 bootstrap replications are done. Not
available estimates are set to null.

6.4.3 Discussion

Illustrating a FST distribution of an all pair comparison can not be clearly arranged
and becomes harder with the number of comparisons, because the number of dimensions
increases. Therefore only the illustration of two comparisons is reasonable to be shown.
As expected the distribution is discrete at a small allele frequency and becomes less
discrete the closer the frequency is to p = 0.5. Estimates behind the boundaries, or to
be more precise smaller than null, are in an undefined area. A value of null represents
completely identical populations and a value smaller than null is not interpretable. The
more populations are compared, the more dimensions occur and the more conservative
the statistic becomes. The area which is smaller as the border θO shrinks with the number
of dimensions, because the area under H0 increases. The more dimensions there are, the
more bootstrap repetitions are needed to estimate the distribution or the discreteness will
increase.

6.5 α simulations

At the α simulations the populations are compared under H0. This is done to see, if
the test is liberal or conservative. The type I error rate α is then the number of com-
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parisons with differentiated populations. The measured α is the indicator for a liberal
or conservative test. If the actual α is higher as given, the test is liberal and the test is
conservative if the actual α does not reach the given α. The simulations are done with
an equal allele frequencies pi for all populations, so that there is no difference between
the populations. The test is allowed to reject H0 maximal in α% of the repetitions and
lead to a false positive result, because H0 is true but rejected. At multiple populations,
more than one comparison is made. That increases the probability to see a difference
between two populations, although in truth there is no difference. The more comparisons
with a local α are made, the higher is the probability to get a false positive result and to
exceed the given global respectively multiple α. To avoid this, a method is used, where
the maximum test statistic of all comparisons is compared with the original test statistic.
The FWER should therefore be controlled.

6.5.1 Settings

Two and six populations are compared with an allele frequency pi of 0.5 at a single locus
each. The simulated population sizes are 75, 100, 150, 200, 250, 500, 1000, 1500, 2000,
2500, 3000 and 3500 which gives a total of twelve settings. If six populations are compared,
this is done at a global hypothesis and with an all pair comparison, too. The size of the
test is computed for each setting with 10000 replications and 1000 bootstraps at each
replication. The alpha is set to five percent for the local hypotheses as for the global and
the family wise error rate.

6.5.2 Results

The results are shown as test size for each population size and population setting in Table
12 in the appendix. The α simulations show, that the type I error is lower as it is set.
In most of the cases it is nearly null, only for two populations it is up to 2e-04 e.g. at
1500 individuals or 1e-04 at 2500 individuals at the global comparison. Even an increased
population size has no effect to α, independent of the way the populations are compared.

6.5.3 Discussion

The FST statistic delivers conservative results, because in only under one percent of the
cases the null hypothesis is rejected although it is true. The desired result would be, if α%
of the null hypothesis are rejected although they are true, because this type I error is set
to be allowed. With the actual usage of α it can happen that H0 is accepted too often even
though there is a difference between the populations and HA is true. One reason should
be, that the empirical distribution of the test statistic underH0 does not represent the true
distribution, because the difference to θO is used. At multiple populations this simulation
shows that the FWER is controlled, because the size of the test is not greater than the
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set α. Westfall and Young (1993) developed the method of the maximum test statistic to
control the FWER under different conditions. Here a nonnormal distribution is estimated
instead of the valid assumption of an analytic distribution, as the studentized range would
be and so the usage of α is of interest. The FWER in the strong or weakly sense can not
be claimed, because it was not simulated but the conservative results indicate that they
will be probably kept.

6.6 Two populations at a single locus

6.6.1 Settings

The parameter settings for the comparison of two population are a set of all combinations
of the following variables. The allele frequencies of the dominant allele in both populations
go from 0.05 to 0.95 in steps of 0.05. The population size of 5, 10, 25 and 50 is balanced.
In total 1444 different settings are simulated. 10000 replications are done, so 10000 times
new populations are created and each time 1000 bootstraps are done.

6.6.2 Results

In Figure 7 the results of the comparison between two populations are shown. For the
four sample sizes the graphic has on the ordinate the allele frequency of p for population
A and on the abscissa the frequency for population B. The graphic shows the power at
each sample size where a different colour stands for a different range of power. The power
is the probability of rejecting H0 when HA is true. Due to the settings the critical borders
between the simulated 361 settings for each population size are done by interpolation and
are in a range of 0.03 to 0.07. The results of the different allele frequency and sample size
can be compared e.g. when a certain power is reached. The higher the sample size is, the
less the difference of the allele frequency must be to reach the power of interest, which
should be as high as possible under the alternative. Obviously the higher the difference
of the allele frequency is, the better is the power to separate populations and also less
individuals are needed to detect that difference. At a low sample size it is possible, that
the certain power regions can not be reached. The power becomes better, the farther the
allele frequency of the populations is of 0.5.
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Figure 7: Allele frequency (p) of two populations and the corresponding power to detect
a difference for four different population sizes.

6.6.3 Discussion

The ideal result would be a straight line with the preset error α of 0.05 if the allele
frequencies are the same and a power of one if they differ. The higher the population size
gets, the closer the result becomes the ideal result but it is not reached. Higher sample
sizes could be simulated to get closer to the ideal result but this would not lead to further
important conclusions. The used sample sizes are very common at experiments, where
populations should be analysed by genetic marker data. A shrinkage of the difference
of the allele frequency to get a power of 80% can be shown with an increasing sample
size, which fullfills the prospects. The power curves are the steepest at the border allele
frequency. This is comprehensible, because it is easier to show a difference the more
opposed the populations are.
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6.7 Global comparison of multiple populations at a single locus

6.7.1 Settings

The 14 settings for the four population sizes 5, 10, 25 and 50, that are tested, are shown in
Table 3. At the first five settings, all of the six populations have an equal allele frequency
pi of 0.15, 0.25, 0.5, 0.75 and 0.85. The following four settings compare five populations
with a frequency of 0.5 against one population with values for p of 0.15, 0.25, 0.75 and
0.85. These values of p for the aberrant population stay the same for the last five settings
but the other five populations have an equal allele frequency of 0.1 instead of 0.5. Again
the population sizes are balanced, 10000 replications and 1000 bootstraps are done, too.
At the global comparison a single statistic is calculated for all populations at each setting.

Table 3: Settings of the dominant allele p for the global and all pair comparison of six
populations, each for the population size of 5, 10, 25 and 50.

p setting Pop1 Pop2 Pop3 Pop4 Pop5 Pop6
1 0.15 0.15 0.15 0.15 0.15 0.15
2 0.25 0.25 0.25 0.25 0.25 0.25
3 0.5 0.5 0.5 0.5 0.5 0.5
4 0.75 0.75 0.75 0.75 0.75 0.75
5 0.85 0.85 0.85 0.85 0.85 0.85
6 0.5 0.5 0.5 0.5 0.5 0.15
7 0.5 0.5 0.5 0.5 0.5 0.25
8 0.5 0.5 0.5 0.5 0.5 0.75
9 0.5 0.5 0.5 0.5 0.5 0.85
10 0.1 0.1 0.1 0.1 0.1 0.15
11 0.1 0.1 0.1 0.1 0.1 0.25
12 0.1 0.1 0.1 0.1 0.1 0.5
13 0.1 0.1 0.1 0.1 0.1 0.75
14 0.1 0.1 0.1 0.1 0.1 0.85

6.7.2 Results

The results of the global comparison of multiple populations are shown in Table 4. Ta-
ble 10 shows the mean FST values in the appendix. In Table 4 the power to detect a
difference between the populations is shown. The power is the probability, that a false
null hypothesis will be rejected and varies between 0 and 1, so the range is completely
used with the used settings. The power increases, as expected, with the sample size and
with the difference between the populations. It has no influence on the power, in which
direction the allele frequency of the aberrant population differs e.g. visibly at setting six
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and nine. Non available power and FST estimates occur only at a population size of five.
At this population size the settings one, ten and eleven showed one, six and four not
available estimates. The results, if not available FST estimates are set to null and not
available power estimates are set to one, are not influenced, because of the small amount
of not available estimates. The range of the FST values, shown in Table 10, is between
null and 0.5. As expected it is null if there is no difference between the populations and
increases with the difference of the allele frequency. The influence of an increased sample
size seems to be small, because the values are changed only slightly.

Table 4: Each of the 14 rows shows one setting of allele frequencies for each of the
six populations and the corresponding power at a global comparison. Four different
population sizes are tested.

Allele frequencies n = 5 n = 10 n = 25 n = 50
0.15, 0.15, 0.15, 0.15, 0.15, 0.15 0.01 0.00 0.00 0.00
0.25, 0.25, 0.25, 0.25, 0.25, 0.25 0.01 0.00 0.00 0.00
0.5, 0.5, 0.5, 0.5, 0.5, 0.5 0.01 0.00 0.00 0.00
0.75, 0.75, 0.75, 0.75, 0.75, 0.75 0.01 0.00 0.00 0.00
0.85, 0.85, 0.85, 0.85, 0.85, 0.85 0.01 0.00 0.00 0.00
0.5, 0.5, 0.5, 0.5, 0.5, 0.15 0.06 0.11 0.57 0.98
0.5, 0.5, 0.5, 0.5, 0.5, 0.25 0.02 0.02 0.10 0.44
0.5, 0.5, 0.5, 0.5, 0.5, 0.75 0.02 0.02 0.10 0.44
0.5, 0.5, 0.5, 0.5, 0.5, 0.85 0.06 0.12 0.57 0.98
0.1, 0.1, 0.1, 0.1, 0.1, 0.15 0.01 0.00 0.00 0.00
0.1, 0.1, 0.1, 0.1, 0.1, 0.25 0.02 0.02 0.03 0.14
0.1, 0.1, 0.1, 0.1, 0.1, 0.5 0.21 0.38 0.90 1.00
0.1, 0.1, 0.1, 0.1, 0.1, 0.75 0.70 0.95 1.00 1.00
0.1, 0.1, 0.1, 0.1, 0.1, 0.85 0.89 1.00 1.00 1.00

6.7.3 Discussion

The results of the global comparison of multiple populations correspond to the expec-
tations. The greater the difference of the allele frequency is, the higher is the power to
show that the populations are differentiated and the higher is the simulated FST value.
A smaller drawback is the not optimal usage of α, which is the same result as in the α
simulations but for smaller sample sizes, and that no higher FST values than 0.5 occur.
This can be explained by the hypothesis, that multiple populations are tested together
and the effect of a single aberrant population is not as high if two different populations
are compared. The number of not available estimates is smaller as in the comparison
of two populations which bases on the same effect as before. A single FST value can
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still be calculated if a comparison between two population does not deliver a result, be-
cause another comparison with a result leads to a result of the global hypothesis. A not
available estimate at a global comparison occurs only, if all populations have individuals
with identical genetic marker information and this probability decreases quickly at higher
population sizes and less similar allele frequencies.

6.8 All pair comparison of multiple populations at a single locus

6.8.1 Settings

The 14 settings for the four simulated population sizes 5, 10, 25 and 50, are identical to
the settings of the global comparison of six populations. They are shown in Table 3 and
described in Section 6.7.1. Again the population sizes are balanced and 10000 replications
with 1000 bootstraps are done, too. All pair comparisons are done, each population is
compared with each other (Westfall and Young, 1993). For the first five settings the
arithmetic average of the results of all comparisons is calculated and shown. At the next
settings, all the contrasts against the population with the differing allele frequency are
put together and this arithmetic average is shown.

6.8.2 Results

The results for the comparison of multiple populations are shown in the Tables 5, 6 and
11. The results of the FST value simulations are in Table 11 in the appendix, of the
power simulations in Table 5 and the results of the proportion of not available estimates
to available estimates are shown in Table 6. For each sample size the 14 different settings
and their results are averaged and presented. The FST values are in a range between
nearly null and 0.72. If every of the six populations has an equal allele frequency at the
tested locus (0.15, 0.25, 0.5, 0.75 or 0.85), the results are almost null. Some results are
minimally negative with -0.01. If five of the six populations have an allele frequency of 0.5
for p and the other population differs, the result changes symmetrical with the difference
between the one population to the others. The frequencies 0.15 and 0.85 have nearly the
same FST result and the frequency 0.25 and 0.75 are similar to each other, too. The last
five settings show, that the statistic increases with the difference of the allele frequency
between the five groups to the other. The results between the population size show a
certain behavior, too. If every frequency is the same, the value is nearly null. With other
settings an increased sample size leads to a minimal higher FST value.
The power to show a difference between the populations, the probability that a false null
hypothesis will be rejected, varies between 0.01 and 1. It is as expected low with values
nearly null or 0.01, when the frequencies are equal. The power increases with the sample
size, if the frequencies are unequal. The power is nearly the same at the settings, where
the distance to the populations with a frequency of 0.5 is the same, for example 0.15
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respectively 0.85 vs. five times 0.5. The power rises also with an increasing difference of
the allele frequency which is shown at the last five settings. The power is higher, if the
allele frequencies of the five equal set populations are closer to the border of the frequency
range. The power is not as high, if the five equal frequencies are in the middle, of course
with nearly the same distance to the aberrant population, so that it is comparable. If a
p-value could not be calculated it is set to one and the power is only as high as before or
smaller. The more not available estimates there are, the more decreases the power. The
percentage of not available estimates ranges between null percent and about 62%. They
mostly turn up at the smallest sample size and at the end of the allele frequency range,
where the equal population frequency 0.15 and 0.85 at a population size of five are a good
example. There are always more not available estimates, approximately ten times, at the
power data as at the FST data.

Table 5: Each of the 14 rows shows one setting of allele frequencies for each of the
six populations and the corresponding power. An all pair comparison between the six
populations is done. 10000 replications and 1000 bootstraps are done for each setting.
The values in brackets are the power if not available estimates are turned into one. Four
different population sizes are tested.

Allele frequencies n = 5 n = 10 n = 25 n = 50
0.15, 0.15, 0.15, 0.15, 0.15, 0.15 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.25, 0.25, 0.25, 0.25, 0.25, 0.25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.5, 0.5, 0.5, 0.5, 0.5, 0.5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.75, 0.75, 0.75, 0.75, 0.75, 0.75 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.85, 0.85, 0.85, 0.85, 0.85, 0.85 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.5, 0.5, 0.5, 0.5, 0.5, 0.15 0.05 (0.05) 0.13 (0.13) 0.43 (0.43) 0.82 (0.82)
0.5, 0.5, 0.5, 0.5, 0.5, 0.25 0.02 (0.02) 0.03 (0.03) 0.08 (0.08) 0.22 (0.22)
0.5, 0.5, 0.5, 0.5, 0.5, 0.75 0.02 (0.02) 0.03 (0.03) 0.08 (0.08) 0.22 (0.22)
0.5, 0.5, 0.5, 0.5, 0.5, 0.85 0.05 (0.05) 0.13 (0.13) 0.44 (0.44) 0.82 (0.82)
0.1, 0.1, 0.1, 0.1, 0.1, 0.15 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)
0.1, 0.1, 0.1, 0.1, 0.1, 0.25 0.02 (0.01) 0.04 (0.03) 0.05 (0.05) 0.09 (0.09)
0.1, 0.1, 0.1, 0.1, 0.1, 0.5 0.20 (0.09) 0.40 (0.35) 0.79 (0.79) 0.99 (0.99)
0.1, 0.1, 0.1, 0.1, 0.1, 0.75 0.64 (0.28) 0.92 (0.82) 1.00 (1.00) 1.00 (1.00)
0.1, 0.1, 0.1, 0.1, 0.1, 0.85 0.84 (0.36) 0.99 (0.88) 1.00 (1.00) 1.00 (1.00)
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Table 6: Each of the 14 rows shows one setting of allele frequencies for each of the six
populations and the corresponding not available estimates in % for the four different
population sizes. The value without brackets comes from the power data, the value with
brackets from the FST results. An all pair comparison between the six populations is
done. Four different population sizes are tested.

Allele frequencies n = 5 n = 10 n = 25 n = 50
0.15, 0.15, 0.15, 0.15, 0.15, 0.15 34.02 (3.98) 1.99 (0.14) 0.00 (0.00) 0.00 (0.00)
0.25, 0.25, 0.25, 0.25, 0.25, 0.25 4.29 (0.32) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00)
0.5, 0.5, 0.5, 0.5, 0.5, 0.5 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.75, 0.75, 0.75, 0.75, 0.75, 0.75 4.48 (0.35) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00)
0.85, 0.85, 0.85, 0.85, 0.85, 0.85 33.88 (3.87) 2.21 (0.13) 0.00 (0.00) 0.00 (0.00)
0.5, 0.5, 0.5, 0.5, 0.5, 0.15 0.11 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.5, 0.5, 0.5, 0.5, 0.5, 0.25 0.03 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.5, 0.5, 0.5, 0.5, 0.5, 0.75 0.02 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.5, 0.5, 0.5, 0.5, 0.5, 0.85 0.11 (0.02) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
0.1, 0.1, 0.1, 0.1, 0.1, 0.15 62.29 (6.77) 13.58 (0.48) 0.01 (0.00) 0.00 (0.00)
0.1, 0.1, 0.1, 0.1, 0.1, 0.25 58.19 (1.95) 11.33 (0.02) 0.05 (0.00) 0.00 (0.00)
0.1, 0.1, 0.1, 0.1, 0.1, 0.5 56.93 (0.06) 11.35 (0.00) 0.06 (0.00) 0.00 (0.00)
0.1, 0.1, 0.1, 0.1, 0.1, 0.75 57.01 (0.00) 11.31 (0.00) 0.02 (0.00) 0.00 (0.00)
0.1, 0.1, 0.1, 0.1, 0.1, 0.85 57.05 (0.00) 11.19 (0.00) 0.05 (0.00) 0.00 (0.00)

6.8.3 Discussion

The results show that an increasing population size leads to a higher power to detect a
difference between the populations and to less not available estimates. Obviously, the
greater the difference of the allele frequencies between the populations are, the better
the populations can be separated. The power to show a difference between populations is
high, if the allele frequencies of the five equal populations is at the border of the frequency
range, and not as high, if the five the allele frequencies of the five equal populations are
in the middle of the frequency range. This can be explained by the smaller variances
at the border of the frequency range. The basis for this is shown in Section 2.2.2. The
smaller the variances are, the better the populations can be separated. The effect that
not available estimates are set to one at the power simulation has of course the greatest
influence, where the most of them occur. This does not count for results, where the power
is already nearly null e.g. at the first five settings with equal allele frequencies. Results as
-0.01 can mainly be explained by the usage of θb - θO as the calculation for the bootstrap
distribution. Next to that the effect of small sample sizes which lead to not available
estimates. The power could not be calculated more often than FST , because the power
bases on the FST distribution but if the FST statistic gets discrete it can still be calculated
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mostly. The tendency of the results follows the expectations but is conservative as shown
at the α simulations. A recommendation of a minimal sample size for this number of
compared populations are ten individuals per population or sampling spot. Populations
with less individuals can have a lot of missings and may not be representative for the
populations. Furthermore the maximal power of 84% occurs at a extreme setting and is
decimated if the missings are taken into account. Ten individuals seems quite small and
it has the drawback, that at this sample size a practical power requires are huge difference
of the allele frequencies between the populations. At ten individuals a difference of 0.65
results in a power of 82%. Even if it sounds trivial, the more individuals there are per
population the better they can be separated. The smaller the difference between the
populations is, the more important becomes a high sample size to show that difference.

7 Example data sets

Due to the simulations the characteristics and basics of the used test statistic are known
and can be used to analyse some example data sets. The corresponding multiplicity
adjusted and not multiplicity adjusted p-values of the pairwise comparisons for every
example are shown in the Tables 14 to 19 in the appendix. Three examples are shown.
Each of the results are from one example locus of the data set. At first the fugus data, the
motivating example, is presented. Secondly cattle breeds are of interest in the microbov
example. Thirdly a house cat data set is shown. The p-values are graphically displayed
as letters. Equal letters represent that the populations are not significantly different, at
a multiple α level of .05. The populations are significantly different, if they do not have
any equal letters. The letters are generated with the function multcompLetters of the
multcompV iew R-package, version 0.1-2 (Piepho, 2004).

7.1 Fungus data - Motivating example

The first example data set is the motivating example. The fungus data set is from a trial
done by A.-K. Lühmann. As mentioned before, 16 possible loci could be analysed. Three
are deleted due to technical reasons with the genetic markers. Out of the 13 still remaining
loci the number of individuals with a missing value range between 70 at locus five and 192
at locus eight out of the total 716 sampled individuals. The used markers are codominant
but are evaluated as dominant markers by the experimenter. The method, which is used so
far to estimate the allele frequencies out of the data, is therefore changed. The frequency
of the recessive genotype could be estimated directly as before. The frequencies of the
heterozygous genotypes and the frequencies of the homozygote dominant genotypes are
estimated under the assumption of the HWE. The basis is the measured frequency of the
recessive allele. A bootstrap with 1000 replications is performed to calculate multiplicity
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adjusted p-values out of the original data for an all pair comparison, as described in Section
5. For ten of the 13 loci no p-values could be estimated, because the markers are probably
not polymorph. If they could be estimated, the number of p-values smaller than .05 is
seven, nine and 17 out of 66 possible comparisons for Locus7, Locus4 and Locus16. These
three loci do have in common, that the estimated frequency of the heterozygous genotype
is relatively high, where the other loci do have a high amount of homozygous genotypes.
After this description of the data set, Locus4 is used as an example for the further analysis.
At this locus populations can be separated due to significant comparisons and at this locus
there are only 71 values less than possible in the data set. The frequency of the homozygote
recessive genotype over all populations, could be estimated directly from the data set. The
rounded value is 0.57. Out of this the frequency of the heterozygous individuals and the
dominant genotype must be estimated by the HWE. They rounded values are 0.37 and
0.01, respectively. There are also locations, with generally only few observations as e.g.
‘Lauenau’ with five and ‘Kuesten’ with three observed individuals. As recommended in
the discussion of the simulations, the populations with this sample sizes are not taken
into account. The assumption, that this amount of individuals is representative for the
population, is probably not given. The population sizes vary between 14 for ‘UNI’ and 107
for ‘Kordes’. The results of the all pair comparison of the remaining populations are shown
in Table 7. The locations ‘UNI’ and ‘Ruthe’ are experimental fields, all other locations
are breeding fields. The experimental fields can have a higher fungus heterogeneity due
to fungi of other plants and trials. The breedings field should be more homogenic. The
exclusion of the two locations with too less individuals effects the results. If they are
included, less populations can be separated. This has several reasons. The more locations
are tested, the more comparisons there are. The number of dimensions increases but not
the number of bootstraps. The more dimensions there are the more bootstraps must be
done to cover the area of the multidimensional distribution. The less values there are
in this area the harder it is to estimate a p-value, because the cut point is probably not
correct due to the discrete distribution.
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Table 7: All pair comparison of the 13 different fungus sampling spots. Equal letters show
that a significant difference between the fungi, at an α level of .05, could not be found.
The results are from Locus4.

Fungus sample Letters of no significance
Dortmund abc

GGH ab
Kassel ab
Kordes ab
Noack a
Ruthe bc

Sangerhausen c
StHannover ab

Tantau abc
UNI a

UNISORTEN ab
Bremen abc

7.2 Microbov

A good example is the microbov data set by Laloe et al. (2007) from the adegenet R-
package. In this data set, the cattle breeds should be separated. The 704 cattle individuals
either come from France or not further specified from Africa and belong to the species Bos
taurus or Bos indicus. The data set contains 30 loci with corresponding microsatellite
markers and for each of the loci up to 22 alleles. The used microsatellite markers are
recommended by the Food and Agriculture Organization (Laloe et al., 2007). Due to the
loci and alleles, 373 points can be analysed. Here the second allele of the third loci ‘L03.02’
is used as a example. The locus has rounded frequencies for p2, 2pq and q2 of 0.626, 0.298
and 0.075. An extract of the data set is shown in Table 13 in the appendix. Out of the used
codominant marker, the genotype frequencies are estimated and under assumption of the
HWE the allele frequencies of the populations, too. Six individuals of the 704 analysed,
have no information about the allelic state and are omitted. For every individual, the data
set provides information concerning the 15 breed types that are possible. The individuals
should not be related among each other to avoid pseudo replications. Because of that, the
individuals are rejected, if a related cattle is already measured. A bootstrap with 1000
replications is performed to calculate multiplicity adjusted p-values out of the original
data for an all pair comparison, as described in Section 5. The results are shown in Table
8. Theoretically there are as much differentiations possible as there are measured breeds.
Seven groups are made out of these 15 breeds, again indicated by letters, with an error of
.05. Other loci would have a different result. The different group sizes of the 15 breeds of
29 to 61, are taken into account. Only 85 of the 373 loci deliver p-values, what leads to
288 loci where the calculation of a p-value is a problem. The maximum of p-values smaller
than .05 at one locus is 50, where the loci L03.02 has 15 out of 105 possible comparisons.
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Table 8: All pair comparison of the 15 cattle breeds. Equal letters show that a significant
difference between the breeds at an α level of .05 could not be found. The results are
from locus ‘L03.02’.

Cattle breed Letters of no significance
Bazadais a

BlondeAquitaine abcd
Borgou abcd

BretPieNoire abcd
Charolais abcd
Gascon abcd

Lagunaire b
Limousin a

MaineAnjou bcd
Montbeliard acd

NDama abcd
Salers a
Somba a
Zebu bc

Aubrac cd

7.3 Nancycats

Another example from the adegenet R-package is the data set nancycats of the unpub-
lished paper by Devillard et al. (2011). In this data set, house cat colonies are being
separated. Nancycats has the genotypes of 237 cats (Felis catus) from 17 colonies. The
colony size differs between nine and 23 and is taken into account. It contains nine loci with
microsatellite markers and up to 18 alleles per locus which makes a total of 108 possible
points to look at. Only 14 of the 108 loci delivered p-values, what leads to 94 loci where
the calculation of a p-value was a problem. There were only five out of the 14 loci with
p-values smaller than .05. The shown locus is the one with the most significant p-values,
which are eight out of the 136 possible comparisons at all. The eighth allele of the eighth
locus is used as an example for the analysis, with rounded genotype frequencies p2, 2pq
and q2 of 0.476, 0.362 and 0.161. There are no missing values at the locus ‘L8.08’. Again
a bootstrap with 1000 replications is performed to calculate p-values out of the original
data for an all pair comparison and letters are used to show the differences between the
17 colonies. The results are shown in Table 9. There are not as much letters used as
in the microbov example and there are two more populations. There are three different
groups a, b and ab. Only the groups with just a or just b can be separated from each
other. The other comparisons show no significant difference.
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Table 9: All pair comparison of the 17 cat colonies. Equal letters show that the breeds
are not significant different at an α level of .05. The results are from locus ‘L8.08’.

Cat colony Letters of no significance
P02 ab
P03 ab
P04 ab
P05 ab
P06 a
P07 ab
P08 ab
P09 ab
P10 ab
P11 ab
P12 b
P13 a
P14 ab
P15 a
P16 a
P17 b
P01 ab

8 General discussion

The results of the example data sets show that the FST statistic can be used to differenti-
ate populations into clusters. The simulations show how well the used methods perform.
This must be considered at the interpretation of the example data sets. With the used
procedure, multiple populations can be separated, depending on the sample size and the
difference of the allele frequencies. The power to detect a difference between the popula-
tion increases with a higher sample size and a greater difference of the allele frequencies.
Through the used multiplicity adjustment a global type I error is controlled. Based on the
FST statistic, the bootstrap is used to calculate p-values. The p-value is used to interpret
the FST value. Here it is a data based value to separate populations. Other possible
FST breakpoints could be used if a χ2 distribution of the test statistics is assumed, which
would eventually fit at a high sample size. This is not step with actual practice and so the
bootstrap is used to get a breakpoint. There are no breakpoints defined on the null to one
scale of FST , where populations are totally separated or can not be separated, because
there are no strict guidelines or recommendations. Therefore the test procedure of this
work is used. Obviously the results of significant comparisons depend only somewhat on
the number of bootstraps and the population size, if these parameters are already high
enough. But the results will be more reproducible the higher the sample sizes and the
higher the number of bootstraps are. The effectiveness of more bootstrap replications
to receive further information about the FST distribution depends on the sample size.
Waples and Gaggiotti (2006) report a decreasing power of FST when sample size differs,
as it is in the used examples. It is also obvious, that if only one locus is used, the result
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depends completely on it and can be different if another one would be reviewed. It is the
same with the sampled individuals and populations, because the estimate varies with the
sample (Holsinger and Weir, 2009).
At lot of loci from the example data sets, p-values or p-values smaller than .05 could not
be estimated. The main reason is probably that there is no difference at these loci. It
can also be due to calculation problems with missing values, not available estimates and
markers with a low information content. A small sample size of a population can have
the same effect which rises in combination with marginal allele frequencies for p2 or q2.
The smaller the frequency of the heterozygous genotype becomes, the more homozygous
genotypes there are, the more discrete the resampled FST distribution gets and the harder
it is to calculate a not too liberal or too conservative p-value. The FST test statistic is
adjusted due to the characteristic that FST usually can not become negative, to reduce
the discreteness.
Todays DNA markers are highly polymorphic, which is the basic requirement of a marker.
They are also mostly easily available and can therefore be used to routinely estimate popu-
lation parameters as FST . To detect these population structures, without defining exactly
what a population is, the used locus has to be representative for population and also for
the aim of the work (Waples and Gaggiotti, 2006). FST has a distinct sensitivity to high
polymorphism when migration is low (Hartl and Clark, 1997). Unsampled populations
can influence the estimates of parameters as migration rate, genetic diversity and cor-
responding statistics if this ‘ghost’ populations interact with the sample (Slatkin, 2005).
Whitlock and McCauley (1999) come to the conclusion, that the results of FST do not
apply to the most real populations, because FST and the variants of it are idealized and
have simplistic basics as e.g. the HWE. This is because several points of the HWE are
not considered. Evolution requires e.g. mutation and selection so HWE is only an ap-
proximation because of the stringent conditions to describe populations at a certain time.
Mutation is a very important factor of evolution. There are different types of mutations.
Some have influence to the phenotype, some are only observable with molecular markers.
Mutations are undirected and happen at different rates, depending of the organism and
the region in the genome (Drake et al., 1998). Overall, mutation leads to polymorphism
and it can lead therefore to greater differences between populations. This influence de-
pends on migration and selection. Selection works conjoined with mutation, if it results in
an advantage or disadvantage in survivability. An example for a disadvantage is, if highly
conserved regions mutate. The individuals mostly have a negative survivability, because
these changes often lead to death. The mutation model used here is a strong simplifica-
tion of available models and applicable, because only a single locus and generation are
considered. This model can fit with very small genes which have only a few nucleotypes,
but these types of genes do not exist. The possibility that a mutation changes the allele
A to allele a or a back to A shrinks rapidly if the number of nucleotides increases. For
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this case, several models have been developed by scientists. The mutation model e.g. in-
fluences the gene frequencies of the immigrant gene pool (Beaumont, 2005). The infinite
allele model (IAM, (Kimura and Crow, 1964)), used by FST , and the stepwise mutation
model (SMM, (Kimura and Otha, 1978)) are the most known and there are several other
models which are mentioned e.g. in Balloux and Lugon-Moulin (2002). In the IAM each
mutation will result in a completely new allele. If homozygous alleles appear, they are
identical by descent. Identical by descent in the IAM is an extra form of identity in state.
At identity in state only the allelic state of a gene like length or sequence is compared
(Balding et al., 2001). A possibility to measure genetic diversity is the probability of
sampling two alleles of the same type. In the SMM each mutation changes the number of
repeats if a microsatellite marker is used, which includes the allele size into the compar-
ison of individuals or populations. The mutation models are mentioned, because of the
different characteristics of molecular markers and because the population differentiation
parameters each have one of this model as an assumption. Molecular markers can fit to a
mutation model differently, e.g. microsatellite markers appear to be in the middle of the
two mutation models IAM and SMM (Balding et al., 2001).
As a result of different mutation rates and selection pressure, the term ‘heterogeneous
genomic divergence’ was created (Nosil et al., 2009). This means that the genome can be
highly uneven in terms of genetic differentiation and so the FST values depend on the used
locus. Divergent selection reduces heterogeneity by selecting extreme phenotypes, because
that genotypes are often homozygous. Molecular genetic differentiation can happen at
specific loci if they are linked to the phenotype, this can act with or without gene flow
(Nosil et al., 2009). FST can also be used to test if loci are influenced by natural selection.
This is indirectly done if the Lewontin Krakauer Test is used (Beaumont, 2005). Loci un-
der selection show higher FST values than neutral loci (Oleksyk et al., 2010). The effect of
heterogeneous genomic divergence was observed by Charlesworth (1998). The FST value
depends to big parts on the within population diversity level, which is documented by
two DNA variation studies of Drosophila where the variation within and between popula-
tions was compared. Regions with a low recombination rate did have a higher variability
between populations, than genes in regions with a normal recombination rate. Loci with
high FST values did show a reduced within population variability (Charlesworth, 1998).
Besides mutation and selection the genetic drift can change allele frequencies in a pop-
ulation, too. Genetic drift is a complete random change like bottle neck effects of small
populations after a mass mortality caused by a catastrophic event. Genetic drift is possi-
ble in a short time period where selection and mutation will change the gene pool mostly
over multiple generations. If one population is split up because for example of continental
drift or human activities, the genetic differences will increase over time. The change of
allele frequencies depends, next to mutation and selection, on the population size and on
the migration rate. Migration is the exchange of individuals between populations. The
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higher the migration rate per generation is, the closer the gene pools of the separated
populations become. The migration rate or gene flow can be described as mNi. FST can
be used to estimate gene flow by FST = 1/(4mN + 1) (Wright, 1951). Todays approaches
can estimatemNi under migration–drift equilibrium quite well, but are limited to pairwise
comparisons under non-equilibrium conditions (Hey et al., 2004) or allow only a simple
exponential change in population size and miss changes in population divergence (Pals-
boll et al., 2007). FST has a simple relationship of Nm in the IAM but it is unclear how
this works with more general models of population structure (Balding et al., 2001). The
problem of estimating gene flow and separating populations are effects from unsampled
populations, which immigrate into the sampled population (Slatkin, 2005) and that the
ideal case in which each sample is a deme is rare. The demes are often mixed, because the
boundaries between the samples are often not clear. That leads to an underestimation of
the sample variance among populations (Balloux and Lugon-Moulin, 2002). Pearse and
Crandall (2004) wrote that estimates as FST have a greatly reduced informativeness if the
a priori defined classes of the samples as e.g. ‘Bazadais’ or colony ‘P06’ do not represent
the actual biological reality. An alternative would be to define populations based on the
data only without defining populations e.g. by sampling spots a priori but for that FST

can not be used. Genetic diversity between groups can be quantified by FST but the draw-
back is the unclear definition of a population and the effect of population sampling. The
estimated FST changes with the definition of a population and obviously with the sampled
individuals (Pearse and Crandall, 2004; Waples and Gaggiotti, 2006). A simplification for
the situation of population boundaries is the population island model or the isolation by
distance or also called neighborhood model. If the migration rates are discontinuous this
can be seen as an separated island where each island is an area with random mating and
so a deme (Waples and Gaggiotti, 2006; Falconer, 1970; Wright, 1951). Allele frequen-
cies between populations get more equal due to the exchange of genes and the effects of
selection and genetic drift are reduced. The fixation of alleles is hardly possible if gene
flow between populations is high enough (Balloux and Lugon-Moulin, 2002). Whitlock
and McCauley (1999) wrote that FST 6= 1/(4Nm + 1) because the HWE assumptions
are not fulfilled and is to use with caution at migration. There are further known re-
current population effects which are contrary to the assumptions of the HWE. One of
them is called ‘Wahlund’-effect (Wahlund, 1928). Individuals tend to mate with those
that are nearby which is a form of non-random mating. These impacts of local mating
will mimic those of inbreeding within a single, well-mixed population. This effect is also
mentioned by Palsboll et al. (2007) as ‘stepping stone population model’. They describe
this behavior like before but expound the correlation between the geographical distance
and increasing genetic divergence with gene flow that happens only between nearby pop-
ulations. Even theoretical completely random mating populations like the European eel
(Anguilla anguilla) are geographically structured (Balloux and Lugon-Moulin, 2002). The

41



more distinct the populations are, the less is the similarity. However this effect is called,
it leads to more homozygous and less heterozygous allele frequencies.
There are a lot of other methods available to separate populations and estimating mNi.
Suggested by Laurentin (2009) are e.g. next to FST Nei’s GST (Nei, 1973) and Slatkin’s
RST (Slatkin, 1995). They are mostly a further development of Wright’s F statistics and
look in some points similar to them. Nei (1973) described his GST as an estimate of
FST for multiple alleles instead of a biallelic locus. GST is the ratio of the difference of
total population heterozygosity and the average subpopulation heterozygosity to the total
population heterozygosity. The total population heterozygosity is one, subtracted by the
sum of the squared average allele frequencies over subpopulations. The amount of genetic
variation for highly variable loci determinates the GST value, which is not the case for
FST . GST is a derivation of FST , because it does not use the allele frequency variance
among subpopulations but the expected panmictic heterozygousity (Weicker et al., 2001).
Weicker et al. (2001) also reported that FST and GST versus Cockerham’s θ are correlated
with an r2 of 0.91 by using 39 empirical data sets, but they estimated θ by using FST and
GST values. GST does not range between 0 and 1 at all and uses fixed effect sampling
(Hedrick, 2005). Fixed effect sampling means, that the characteristics of the sample are
consigned to the larger population from where the sample is taken from. Next to the
disadvantage, that GST ignores as FST the sampling error, (Weicker et al., 2001) GST was
not used, because biallelic loci are considered only. RST was formulated by Slatkin (1995)
and is because of that one of the newest popular population differentiation parameter.
RST is the ratio of the difference of the average squared difference in allele size between
all pairs of alleles and the average sum of squares of the differences in allele size within
each subpopulations to the average squared difference in allele size between all pairs of
alleles. So RST is estimated by the variances of allele sizes, whereas FST is estimated by
the variances of allele frequencies (Balloux and Lugon-Moulin, 2002). It uses the SMM
and the variances of allele sizes for the calculation, instead of the variances of allele fre-
quency and also a different mutation model, instead of the IAM, which are used by FST

(Balloux and Lugon-Moulin, 2002). Disadvantages of RST are, that it has problems if the
mutation model could not be assumed. Another disadvatage of RST is, that it has a high
variance (Balloux and Lugon-Moulin, 2002).
As described, all of the parameters to separate populations have their characteristics,
advantages and disadvantages (Kitada et al., 2007; Holsinger and Weir, 2009). Indepen-
dently of the statistic, events as the effect of unsampled populations will occur and the
meanderings of the HWE assumptions and missing values are an issue not only for FST .
The used FST works at the simulated data and at the example data sets but there are
still further improvements which can be programmed, simulated and implemented. This
can be simulating different sample sizes, HWE meanderings, missing values or considering
multiple loci. At first a less conservative FST would be the aim. The FST here is estimated
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simply. The variance of the FST parameter is not estimated. To estimate the variance of
the FST parameter, a bootstrap estimate can be used. This would not be optimal and an
extensive procedure. Secondly the implementation of multiple loci to FST can be done.
This is also extensive, because if more than one locus is analysed, the correlation between
the loci should be taken into account. Furthermore Charlesworth (1998) mentioned that
methods as FST , which measure the proportion of between-population to total diversity,
‘are not necessarily appropriate’, if multiple loci with a high variance within populations
are compared. So the implementation of GST or RST might not be a big step forward,
depending on the data. A probable solution would be the implementation of a new pop-
ulation differentiation parameter based on linear models. A further task would be the
implementation of a HWE check. Available programs as e.g. Genepop (Rousset, 2008)
can calculate this next to FST or multiple alleles but not pairwise comparisons of popu-
lations and multiplicity adjusted p-values.
To sum up it is shown that the used procedure is implementable to separate populations
but given the following simplified settings. The populations are compared in a single gen-
eration at a single locus. Therefore mutation, selection, migration, linkage disequilibrium
between loci etc. can be ignored. The used population sample and the correct classifica-
tion of the individuals to the populations and their representativeness is assumed. The
experimenter has the sole responsibility of the sample quality. Misinterpretation would be
the result, if the individuals or compared species do not fit. Results are not interpretable
if e.g. independently evolved taxa are compared or more precisely FST does not work at
homoplasy (Balloux and Lugon-Moulin, 2002). But for the used setting ‘FST is an excel-
lent measure of the genetic differentiation among populations’ (Whitlock and McCauley,
1999), independent if this difference comes from genetic (e.g. mutation) or statistical
sampling variance (e.g. finite sampled individuals). Due to the calculated p-value this
measure is easy interpretable and due to the maximal test statistic, which is implemented
in this work, the FWER is controlled if multiple comparisons are done.
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A Appendix

A.1 R-code

In the following section the program code for the statistical software R (R Development
Core Team, 2010) is shown.

A.1.1 Function to generate populations

genosim <- function(p, n){
pg <- cbind(p^2, 2*p*(1-p), (1-p)^2, n)
apply(pg, 1, function(x){

sample(rep(0:2, rmultinom(1, size=x[4], x[1:3])))
})

}

A.1.2 Function to estimate allele frequencies

#######################
### Dominant marker ###
#######################
allelfreqDOM <- function(gpop, pop){

n <- tapply(gpop,pop,length)
r <- length(unique(pop))
## Estimate allele frequencies
naa <- tapply(gpop, pop, function(x) sum(x == 2))

#HWE assumed
q <- naa/n
p <- 1-q
h <- 2*p*q
out <- list(p=p, h=h, n=n)
out

}

#########################
### Codominant marker ###
#########################
allelfreq <- function(gpop, pop){

n <- tapply(gpop,pop,length)
r <- length(unique(pop))
## Estimate allele frequencies
nAA <- tapply(gpop, pop, function(x) sum(x == 0))
nAa <- tapply(gpop, pop, function(x) sum(x == 1))
naa <- tapply(gpop, pop, function(x) sum(x == 2))

pAA <- nAA/n
pAa <- nAa/n
paa <- naa/n
p <- pAA + pAa/2
q <- paa + pAa/2
# proportion heterozygous
h <- nAa/n
out <- list(p=p, h=h, n=n)
out

}
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A.1.3 Bootstrap function

The bootstrap is done at every created population using the boot function from the boot
R-package in version 1.2-43. The boot functions are adapted from (Davison and Hinkley,
1997).

#####################################
### Bootstrap for two populations ###
#####################################
library(boot)
Ftest <- function(gpop, R=1000){

geno <- as.vector(gpop)
pop <- as.factor(rep(paste("pop",1:ncol(gpop), sep=""), times=n))
af <- allelfreq(geno, pop)
oF <- Fstats(af$p, af$h, af$n)[1]
Fboot <- function(geno, inds, pop, oF){

afb <- allelfreq(geno[inds], pop)
bF <- Fstats(afb$p, afb$h, afb$n)[1]
bF - oF

}
fboot <- boot(geno, Fboot, strata=pop, R=R, stype="i", pop=pop, oF=oF)
bstat <- fboot$t[,1]
pv <- mean(bstat[!is.nan(bstat)] > oF)
c(Fst=oF, pvalue=pv)

}

##########################################
### Bootstrap for multiple populations ###
##########################################
#All pair comparison
pairwiseFstats <- function(p, h, n){

require(multcomp)
K <- abs(contrMat(p, type="Tukey"))
apply(K,1,function(x) Fstats(p[x > 0], h[x > 0], n[x > 0]))

}

library(boot)
pairwiseFtest <- function(gpop,pop, R=1000){

af <- allelfreq(gpop, pop)
oF <- pairwiseFstats(af$p, af$h, af$n)[1,]
Fboot <- function(gpop, inds, pop, oF){

afb <- allelfreq(gpop[inds], pop)
bF <- pairwiseFstats(afb$p, afb$h, afb$n)[1,]
bF - oF

} fboot <- boot(gpop, Fboot, strata=pop, R=R, stype="i", pop=pop, oF=oF)
bstat <- apply(fboot$t,1,max)
reject <- na.omit(t(apply(rbind(bstat),2, function(x) x > oF)))
data.frame(Fst=oF, pvalue=apply(reject,2,mean))

}

A.1.4 FST function

The FST function is adapted from (Weir and Cockerham, 1984).

Fstats <- function(p, h, n){
r <- length(p)
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# Weir & Cockerham (1984)
nb <- mean(n)
nc <- (r*nb - sum(n^2)/(r*nb)) / (r-1)
pb <- sum(n*p)/(r*nb)
s <- sum(n*(p-pb)^2)/((r-1)*nb)
hb <- sum(n*h) / (r*nb)
#
a <- (nb/nc) * ( s - (1/(nb-1)) * ( pb*(1-pb) - ((r-1)/r)*s - (1/4)*hb))
b <- (nb/(nb-1)) * ( pb*(1-pb) - ((r-1)/r)*s - ((2*nb-1)/(4*nb))*hb)
c <- 1/2*hb
#
theta <- a / (a+b+c)
F <- 1 - c / (a+b+c)
f <- 1 - c / (b+c)
#
out <- c(theta, F, f)
names(out) <- c("theta", "F", "f")
out

}

A.2 Figures of the comparison of two populations

Figure 8: Simulated FST distributions from 1000 bootstraps for the allele frequency p
with 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 for both of the two generated populations
with 100 individuals. Missing values are set to null.
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Figure 9: Simulated FST distribution of two populations with 1000 individuals from 1000
bootstraps for the allele frequency p = 0.5.

A.3 Figures and tables of the global comparison of multiple pop-

ulations

Figure 10: Simulated global FST distributions of six populations from 1000 bootstraps for
the allele frequency p with 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 for all of the populations with
100 individuals. Missing values are set to null.
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Figure 11: Simulated global FST distribution of six populations of a global comparison
from 1000 bootstraps for the allele frequency p = 0.5, for all of the populations with 1000
individuals.

Table 10: Each of the 14 rows shows one setting of allele frequencies for each of the six
populations and the corresponding means of simulated FST values. The populations are
compared with global comparisons. Four different population sizes are tested.

Allele frequencies n = 5 n = 10 n = 25 n = 50
0.15, 0.15, 0.15, 0.15, 0.15, 0.15 -0.00 -0.00 -0.00 0.00
0.25, 0.25, 0.25, 0.25, 0.25, 0.25 0.00 0.00 -0.00 0.00
0.5, 0.5, 0.5, 0.5, 0.5, 0.5 0.00 -0.00 -0.00 0.00
0.75, 0.75, 0.75, 0.75, 0.75, 0.75 -0.00 -0.00 -0.00 0.00
0.85, 0.85, 0.85, 0.85, 0.85, 0.85 0.00 -0.00 -0.00 0.00
0.5, 0.5, 0.5, 0.5, 0.5, 0.15 0.08 0.08 0.08 0.08
0.5, 0.5, 0.5, 0.5, 0.5, 0.25 0.04 0.04 0.04 0.04
0.5, 0.5, 0.5, 0.5, 0.5, 0.75 0.04 0.04 0.04 0.04
0.5, 0.5, 0.5, 0.5, 0.5, 0.85 0.08 0.08 0.08 0.08
0.1, 0.1, 0.1, 0.1, 0.1, 0.15 0.00 0.00 0.00 0.00
0.1, 0.1, 0.1, 0.1, 0.1, 0.25 0.03 0.03 0.03 0.03
0.1, 0.1, 0.1, 0.1, 0.1, 0.5 0.18 0.18 0.19 0.19
0.1, 0.1, 0.1, 0.1, 0.1, 0.75 0.39 0.40 0.40 0.40
0.1, 0.1, 0.1, 0.1, 0.1, 0.85 0.50 0.49 0.49 0.49
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A.4 Figures and tables of the all pair comparison of multiple

populations

Table 11: Each of the 14 rows shows one setting of allele frequencies for each of the six
populations and the corresponding means of simulated FST values. The populations were
compared with an all pair comparison. Four different population sizes are tested.

Allele frequencies n = 5 n = 10 n = 25 n = 50
0.15, 0.15, 0.15, 0.15, 0.15, 0.15 -0.01 0.00 0.00 0.00
0.25, 0.25, 0.25, 0.25, 0.25, 0.25 -0.01 0.00 0.00 0.00
0.5, 0.5, 0.5, 0.5, 0.5, 0.5 -0.01 0.00 0.00 0.00
0.75, 0.75, 0.75, 0.75, 0.75, 0.75 -0.01 0.00 0.00 0.00
0.85, 0.85, 0.85, 0.85, 0.85, 0.85 -0.01 0.00 0.00 0.00
0.5, 0.5, 0.5, 0.5, 0.5, 0.15 0.21 0.23 0.24 0.24
0.5, 0.5, 0.5, 0.5, 0.5, 0.25 0.10 0.12 0.12 0.12
0.5, 0.5, 0.5, 0.5, 0.5, 0.75 0.10 0.12 0.12 0.12
0.5, 0.5, 0.5, 0.5, 0.5, 0.85 0.21 0.23 0.24 0.24
0.1, 0.1, 0.1, 0.1, 0.1, 0.15 0.00 0.01 0.01 0.01
0.1, 0.1, 0.1, 0.1, 0.1, 0.25 0.05 0.06 0.07 0.07
0.1, 0.1, 0.1, 0.1, 0.1, 0.5 0.28 0.30 0.31 0.32
0.1, 0.1, 0.1, 0.1, 0.1, 0.75 0.57 0.59 0.60 0.60
0.1, 0.1, 0.1, 0.1, 0.1, 0.85 0.69 0.71 0.71 0.72
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Figure 12: Simulated multidimensional FST distributions of three populations from 1000
bootstraps for the allele frequency pi with 0.2, 0.3, 0.4 and 0.5 for all of the populations
with 100 individuals. Missing values are set to null.

A.5 Table of α simulations

Table 12: Saturation of α for twelve different population sizes. Either two or six popu-
lations with an allele frequency of 0.5 at a single locus are compared. 10000 replications
and 1000 bootstraps are done.

Populations size two populations six populations (global) six populations (all pair)
75 1e-04 0 0

100 1e-04 0 0
150 1e-04 0 0
200 0 0 0
250 0 0 0
500 0 0 0

1000 1e-04 0 0
1500 2e-04 0 0
2000 0 0 0
2500 0 1e-04 0
3000 0 0 0
3500 0 0 0
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A.6 Additional information of the example data sets

A.6.1 Extract of the microbov example data set

Table 13: Extract of 704 reviewed cattle individuals of 373 loci of 15 populations. The
results of the analysis with genetic marker data are shown. The possible genotypes of the
biallelic loci are indicated with 0, 0.5 and 1. The required information of the corresponding
population of the individuals is in this case not combined with the results of the individual
data but saved in an extra slot.

L01.1 L01.2 L01.3 L01.4 L01.5 L03.02
001 0 0 0 0 0 0
002 0 0 0 0 0 0.5
003 0 0 0 0 0.5 1
004 0 0 0 0 0 0
005 0 0 0 0 0.5 0
006 0 0 0 0 0.5 0
007 0 0 0 0 0.5 0
008 0 0 0 0 0 0
009 0 0 0 0 0.5 0.5
010 0 0 0 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

600 0 0 0 0 1 0
601 0 0 0 0.5 0.5 0
602 0 0 0 0 1 0
603 NA NA NA NA NA 0
604 0 0 0 0 1 0
605 0 0 0 0.5 0.5 0
606 0 0 0 0 1 0
607 0 0 0 0 0.5 0.5
608 0 0 0 0.5 0.5 0.5
609 0 0 0 1 0 0
610 0 0 0 0.5 0.5 0
611 0 0 0 1 0 NA
612 0 0 0 0 1 0
613 0 0 0 0 1 NA
614 0 0 0 1 0 0
615 0 0 0 0.5 0.5 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

700 0 0 0 0.5 0 0.5
701 0 0 0 0 0 0
702 0 0 0 0.5 0 0
703 0 0 0 1 0 0
704 0 0 0 0.5 0 1
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A.6.2 Multiplicity adjusted and not adjusted p-values of the all pair comparison of the microbov data set

Table 14: Multiplicity adjusted p-values of the all pair comparison of the microbov data set of locus ‘L03.02’.

Bazadais BlondeAquitaine Borgou BretPieNoire Charolais Gascon Lagunaire Limousin MaineAnjou Montbeliard NDama Salers Somba Zebu Aubrac
Bazadais 1 0.387 0.874 0.727 0.866 0.924 0.000 1 0.001 0.999 0.098 1 1 0.000 1

BlondeAquitaine 1 1 1 1 1 0.695 0.622 1 1 1 0.695 0.626 0.999 0.892
Borgou 1 1 1 1 0.262 0.971 0.980 1 1 0.981 0.970 0.965 0.998

BretPieNoire 1 1 1 0.212 0.895 0.997 1 1 0.919 0.890 0.994 0.989
Charolais 1 1 0.298 0.965 0.981 1 1 0.978 0.965 0.970 0.997

Gascon 1 0.190 0.988 0.961 1 1 0.991 0.988 0.933 0.999
Lagunaire 1 0.000 1 0.001 0.931 0.000 0.000 1 0.000
Limousin 1 0.018 1 0.216 1 1 0.007 1

MaineAnjou 1 0.507 1 0.025 0.017 1 0.080
Montbeliard 1 0.976 1 1 0.410 1

NDama 1 0.264 0.208 1 0.473
Salers 1 1 0.017 1
Somba 1 0.007 1

Zebu 1 0.056
Aubrac 1

Table 15: Not multiplicity adjusted p-values of the all pair comparison of the microbov data set of locus ‘L03.02’.

Bazadais BlondeAquitaine Borgou BretPieNoire Charolais Gascon Lagunaire Limousin MaineAnjou Montbeliard NDama Salers Somba Zebu Aubrac
Bazadais 1 0.018 0.101 0.079 0.080 0.118 0.000 1 0.000 0.250 0.005 1 1 0.000 0.600

BlondeAquitaine 1 0.637 1 0.611 0.508 0.001 0.047 0.204 0.296 0.473 0.030 0.020 0.168 0.065
Borgou 1 1 1 1 0.001 0.144 0.127 0.640 0.319 0.158 0.116 0.088 0.213

BretPieNoire 1 1 1 0.003 0.121 0.249 0.470 0.458 0.111 0.089 0.205 0.167
Charolais 1 1 0.001 0.133 0.097 0.613 0.314 0.134 0.103 0.084 0.194

Gascon 1 0.000 0.144 0.092 0.924 0.282 0.158 0.130 0.083 0.220
Lagunaire 1 0.000 0.192 0.000 0.066 0.000 0.000 0.205 0.000
Limousin 1 0.000 0.342 0.011 1 1 0.000 1

MaineAnjou 1 0.048 0.657 0.000 0.000 1 0.002
Montbeliard 1 0.176 0.342 0.303 0.029 0.443

NDama 1 0.004 0.008 0.556 0.026
Salers 1 1 0.000 1
Somba 1 0.000 1

Zebu 1 0.002
Aubrac 1
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A.6.3 Multiplicity adjusted and not adjusted p-values of the all pair comparison of the nancycats data set

Table 16: Multiplicity adjusted p-values of the all pair comparison of the nancycats data set of locus ‘L8.08’.

P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 P01
P02 1 1 1 1 1 1 1 1 1 1 0.292 1 1 1 1 0.535 1
P03 1 1 1 1 1 1 1 1 1 0.418 1 1 1 0.997 0.711 1
P04 1 1 0.959 1 1 1 1 1 0.883 0.978 1 0.995 0.939 0.983 1
P05 1 0.723 1 1 1 1 1 0.979 0.850 1 0.933 0.659 1 1
P06 1 0.573 1 1 1 0.995 0.004 1 1 1 1 0.004 0.488
P07 1 1 1 1 1 0.995 0.681 1 0.821 0.504 1 1
P08 1 1 1 1 0.261 1 1 1 1 0.533 1
P09 1 1 1 0.173 1 1 1 1 0.362 1
P10 1 1 0.150 1 1 1 1 0.317 1
P11 1 0.594 0.998 1 1 0.989 0.824 1
P12 1 0.005 0.161 0.009 0.004 1 0.998
P13 1 1 1 1 0.008 0.617
P14 1 1 1 0.327 1
P15 1 1 0.013 0.768
P16 1 0.004 0.403
P17 1 1
P01 1

Table 17: Not multiplicity adjusted p-values of the all pair comparison of the nancycats data set of locus ‘L8.08’.

P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 P01
P02 1 1 0.428 0.334 0.284 0.268 1 1 1 0.993 0.001 0.418 1 0.453 0.243 0.020 0.321
P03 1 0.834 0.484 0.245 0.409 1 1 1 1 0.007 0.369 1 0.380 0.206 0.077 0.436
P04 1 1 0.031 0.737 0.573 0.463 0.371 0.998 0.032 0.106 0.392 0.114 0.029 0.135 0.787
P05 1 0.026 1 0.412 0.329 0.274 0.479 0.088 0.057 0.281 0.060 0.015 0.277 1
P06 1 0.003 0.290 0.312 0.325 0.086 0.000 1 0.356 1 1 0.000 0.020
P07 1 0.349 0.294 0.216 0.410 0.151 0.028 0.251 0.042 0.003 0.293 1
P08 1 1 1 0.999 0.003 0.403 1 0.441 0.262 0.047 0.396
P09 1 1 0.887 0.000 0.454 1 0.402 0.253 0.019 0.334
P10 1 0.701 0.000 0.460 1 0.427 0.242 0.006 0.323
P11 1 0.004 0.204 0.595 0.212 0.053 0.039 0.434
P12 1 0.000 0.000 0.000 0.000 1 0.244
P13 1 0.473 1 1 0.000 0.069
P14 1 0.522 0.281 0.008 0.282
P15 1 1 0.000 0.084
P16 1 0.000 0.007
P17 1 0.433
P01 1
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A.6.4 Multiplicity adjusted and not adjusted p-values of the all pair comparison of the fungus data set

Table 18: Multiplicity adjusted p-values of the all pair comparison of the fungus data set of ‘Locus4’.

Dortmund GGH Kassel Kordes Noack Ruthe Sangerhausen StHannover Tantau UNI UNISORTEN Bremen
Dortmund 1 0.995 1 0.892 0.454 0.995 0.287 1 1 0.585 1 1

GGH 1 1 1 0.960 0.490 0.006 1 0.995 0.945 1 1
Kassel 1 1 0.937 0.737 0.030 1 1 0.922 1 1
Kordes 1 1 0.082 0.001 1 0.930 0.995 1 0.947
Noack 1 0.001 0.000 0.867 0.494 1 0.787 0.397
Ruthe 1 0.931 0.764 0.993 0.008 0.805 0.985

Sangerhausen 1 0.030 0.228 0.000 0.030 0.145
StHannover 1 1 0.879 1 1

Tantau 1 0.634 1 1
UNI 1 0.794 0.577

UNISORTEN 1 1
Bremen 1

Table 19: Not multiplicity adjusted p-values of the all pair comparison of the fungus data set of ‘Locus4’.

Dortmund GGH Kassel Kordes Noack Ruthe Sangerhausen StHannover Tantau UNI UNISORTEN Bremen
Dortmund 1 0.310 0.262 0.063 0.001 0.402 0.021 0.369 1 0.000 0.485 1

GGH 1 1 0.726 0.224 0.191 0.002 1 0.357 0.120 1 0.445
Kassel 1 0.235 0.027 0.196 0.000 1 0.340 0.001 1 0.547
Kordes 1 0.261 0.038 0.000 0.326 0.071 0.058 0.414 0.194
Noack 1 0.000 0.000 0.091 0.002 0.795 0.203 0.032
Ruthe 1 0.330 0.227 0.402 0.000 0.276 0.369

Sangerhausen 1 0.002 0.010 0.000 0.010 0.030
StHannover 1 0.429 0.013 1 0.674

Tantau 1 0.000 0.543 1
UNI 1 0.038 0.003

UNISORTEN 1 0.997
Bremen 1
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